
BME646 and ECE 60146 – Homework 4 

Nadine Amin 

Section 3.1 

To create a subset of the COCO dataset, the COCO API is used, and an instance is initialized the 

downloaded annotation file. The COCO API is used to get the ID of each of the 5 desired 

categories, and the IDs of images belonging to each of those categories. In the COCO dataset, a 

certain image can have multiple labels (i.e. belong to multiple categories). However,  for the sake 

of our subset dataset, only images that belong to only one of the 5 categories are used. Hence, for 

each of the 5 categories, the corresponding list of image IDs is cleaned to remove IDs that appear 

in any of the other lists (belonging to the other categories). See Figure 1. 

 

Figure 1 

A dataset dictionary is initialized with empty lists for the training and validation splits. For each 

of our categories, 2000 indices are randomly generated without replacement (minimum possible 

value: 0, maximum possible value: the total number of images only belonging to this category 

minus 1). This is done using numpy.random.Generator.choice. The first 1600 indices are reserved 

for training instances and the last 400 for validation instances. (See Figure 2). Images are then 

processed for each split using the function process_imgs shown in Figure 3. 



 

Figure 2 

The splitIDs input to the  process_imgs function contains the randomly generated indices for 

images in the corresponding split. Therefore, for each dataset instance, the actual ID is extracted 

at the randomly generated index from the list of image IDs in that category. For each image, the 

image is loaded from the COCO URL, resized using opencv, named with its ID value, and saved 

to the dataset directory. The dataset dictionary is then updated such that a new element is added to 

the corresponding split. This element is a new dataset instance with img being the name of the 

image and label being the name of its category. 

 

Figure 3 



Three images from each category are plotted (see Figure 4) and shown in Figure 5. 

 

Figure 4 

 

Figure 5 



The dataset instances are then shuffled, a list of the category names is added to the dataset 

dictionary, and the dataset dictionary is then saved as a json file as shown in Figure 6. 

 

Figure 6 

Section 3.2 

Dataset Class 

In order to load the subset of the COCO dataset created in Section 3.1, a dataset class is needed. I 

used the dataset class I had implemented for Homework 2 and adapted it as needed. Figure 7 shows 

the dataset class. The __init__() function takes as input (1) the split (being ‘train’ or ‘val’) to 

determine which images should be included in the dataset and (2) the root directory of the dataset. 

It accordingly updates the values of the self.split and self.root instance variables. In addition, it 

loads the dataset dictionary from the root directory and extracts category names. Lastly, it specifies 

the transformations that need to be made to training and validation images. For training purposes, 

images are horizontally flipped with a probability of 0.5. For both training and validation purposes, 

tvt.Grayscale(num_output_channels = 3) is used to ensure all images have 3 output channels. This 

is important because some of the images in the dataset are originally grayscale. Lastly, for both 

training and validation images, we get the tensor representation, as well as perform pixel value 

scaling and normalization. The __len__() function returns the number of images of the chosen split 

as indicated by the dataset dictionary. In the __getitem__() function, the name of the image at the 

desired index is read from the dataset dictionary. Next, the image is read using PIL and the 

appropriate transformations are carried out depending on the split. The image label is also read 

from the dataset dictionary and, using the category names, transformed into a new label with the 

category index. Lastly, the transformed image and the index label are returned. 



 

 

 

Figure 7 



Task 1 

Since our dataset has 5 classes, the value of XX in Net 1 (and all other networks) is 5. To calculate 

XXXX for Net 1, we calculate the size of the output after each layer: 

• Input Size : 3×64×64 

• 1st Convolution:  

o Input Channels: 3 

o Output Channels: 16  

o Kernel Size: 3 

o Stride: 1 (default) 

o Padding: 0 (default) 

o Output =
𝑁+(2∗𝑃)−𝐾

𝑆
+ 1 =

64+(2∗0)−3

1
+ 1 = 62 

o Output Size: 16×62×62 

• 1st Max Pooling (2D): 

o Output Size: 16×
62

2
×

62

2
=16×31×31 

• 2nd Convolution: 

o Input Channels: 16 

o Output Channels: 32 

o Kernel Size: 3 

o Stride: 1 (default) 

o Padding: 0 (default) 

o Output =
𝑁+(2∗𝑃)−𝐾

𝑆
+ 1 =

31+(2∗0)−3

1
+ 1 = 29 

o Output Size: 32×29×29 

• 2nd Max Pooling (2D): 

o Output Size: 32×⌊
29

2
⌋×⌊

29

2
⌋ = 32×14×14 

• Linear Layer: 

o Input Size (after flattening) = 32×14×14 = 6272 

Therefore, XXXX is 6272. 

Figure 8 shows the class for Task 1, named HW4Net1. It is copied from the homework guidelines, 

and the values for XX and XXXX are updated. 



 

Figure 8 

Task 2 

Again, the value of XX in Net 2 (like all other networks) is 5. To calculate XXXX for Net 2, we 

calculate the size of the output after each layer: 

• Input Size : 3×64×64 

• 1st Convolution:  

o Input Channels: 3 

o Output Channels: 16 

o Kernel Size: 3 

o Stride: 1 (default) 

o Padding: 1 

o Output =
𝑁+(2∗𝑃)−𝐾

𝑆
+ 1 =

64+(2∗1)−3

1
+ 1 = 64 

o Output Size: 16×64×64 

• 1st Max Pooling (2D): 

o Output Size: 16×
64

2
×

64

2
=16×32×32 

• 2nd Convolution: 

o Input Channels: 16 

o Output Channels: 32 

o Kernel Size: 3 

o Stride: 1 (default) 

o Padding: 1 



o Output =
𝑁+(2∗𝑃)−𝐾

𝑆
+ 1 =

32+(2∗1)−3

1
+ 1 = 32 

o Output Size: 32×32×32 

• 2nd Max Pooling (2D): 

o Output Size: 32×
32

2
×

32

2
= 32×16×16 

• Linear Layer: 

o Input Size (after flattening) = 32×16×16 = 8192 

Therefore, XXXX is 8192. 

Figure 9 shows the class for Task 2, named HW4Net2. It is an updated version of HW4Net1 such 

that each convolution layer includes a padding of 1. The value of XXXX is also updated. 

 

Figure 9 

Task 3 

Again, the value of XX in Net 3 (like all other networks) is 5. To calculate XXXX for Net 3, we 

calculate the size of the output after each layer. The first [Convolution + Pooling + Convolution + 

Pooling] are exactly the same as in Task 2. Hence, their output is of size 32×16×16. The extra 10 

convolution layers added are each of 32 input channels, 32 output channels, a kernel size of 3, and 

a padding of 1. Following the equation: Output =
𝑁+(2∗𝑃)−𝐾

𝑆
, we see that 

𝑁+(2∗1)−3

1
+ 1 =  

𝑁−1

1
+

1 = 𝑁. This means that the output size will be equal to the input size. Therefore, the output after 

the chained convolution layers will be 32×16×16. Therefore, the input size to the linear layer, i.e. 

XXXX, would also be 32×16×16 = 8192. 



Figure 10 shows the class for Task 3, named HW4Net3. It is an updated version of HW4Net2 such 

that an instance variable called self.conv_extra stores a list of the 10 convolution layers using 

nn.ModuleList(). In the forward() function, the output of the first two convolution layers and 

poolings is passed through each of the 10 extra convolution layers, each followed by the nonlinear 

ReLU activation function. The final output is then passed through the linear layers. 

 

Figure 10 

Training Networks 

First, as shown in Figure 11, an instance of each of the network classes is created. The number of 

learnable parameters for each network is calculated using the function get_num_params() 

defined as shown in Figure 12. The syntax for calculating the number of parameters is inspired 

from DLStudio (https://engineering.purdue.edu/kak/distDLS/), where the numel() function is 

used on each of the network parameters to count the number of parameters that are learnable 

(requiring gradient). As shown in Figure 11, the numbers of parameters are 406885, 529765, and 

622245 for Net1, Net2, and Net3 respectively (also see Table 1). 

https://engineering.purdue.edu/kak/distDLS/


 

Figure 11 

 

Figure 12 

Next, as shown in Figure 13, each of the networks is trained and the calculated training losses are 

plotted on the same figure (see Figure 15). The train_network() function is defined as shown in 

Figure 14. The code is adapted from the example shown in the homework guidelines. The dataset 

directory is first specified, the device set to cuda:0, and the network moved to the device. Next, an 

instance of the dataset class is created with the split set to ‘train’. An instance of 

torch.utils.data.DataLoader is also created to wrap the dataset instance and set the batch size to 4, 

allow shuffling of dataset instances, as well as set the number of workers to 2. Next, the Cross 

Entropy loss is chosen, the optimizer is chosen to be Adam with a learning rate of 1e-3 and betas 

of default values (0.9 and 0.99). The number of epochs is chosen to be 10, and an empty list is 

initialized to later store the training loss every 100 iterations. In every epoch, and for each batch 

in the dataset, images and labels are read and moved to the device. The gradients of learnable 

parameters are reset to 0 and the inputs are passed through the network. The loss is then calculated, 

and back propagation is performed. Lastly, the optimizer step is updated, and the calculated loss 

added to the running loss. Every 100 iterations, the running loss is averaged, printed, and stored in 

the list of training losses to be returned by the function. The running loss is then reset to 0. At the 

very end, the final list of training losses every 100 iterations is returned. 

 

Figure 13 



 

 

Figure 14 



 

Figure 15 – (iterations in hundreds) 

Figure 15 shows the resulting plot of the training losses per iterations (in hundreds) for each of the 

three networks. As can be seen, the training loss curves of Net1 and Net2 are very close. The 

training loss of Net3, on the other hand, is much larger than that of the other two networks. More 

on these differences is explained below (see Comparison & Questions section). 

Testing 

After training the networks, they are tested on the validation dataset. The function test_network() 

is implemented as shown in Figure 17 and is inspired from DLStudio 

(https://engineering.purdue.edu/kak/distDLS/). The dataset directory is first specified, the device 

set to cuda:0, and the network set to evaluation mode and moved to the device. Next, an instance 

of the dataset class is created with the split set to ‘val. An instance of torch.utils.data.DataLoader 

is also created to wrap the dataset instance and set the batch size to 4, allow shuffling of dataset 

instances, as well as set the number of workers to 2. Empty lists are initialized to later store the 

true labels and corresponding labels predicted by the network. Next, with torch.no_grad() is used 

to indicate that gradient calculation is disabled. Then, for every batch in the validation dataset, the 

inputs and true labels are read and moved to the device. They are then passed through the network 

and the output is calculated. The output contains a value for each of our 5 classes; hence, the 

predicted class is extracted to be the one assigned a greater value. Lastly, the lists of true and 

predicted labels are extended to include those of the current batch. Both lists (true and predicted 

labels) are finally returned by the function. 

 

Figure 16 

https://engineering.purdue.edu/kak/distDLS/


 

Figure 17 

After obtaining the lists of true and predicted labels for each of the networks, the validation 

accuracy is calculated using the accuracy_score function from sklearn.metrics (imported here as 

accuracy). As shown in Figure 18, the validation accuracies are 54.35%, 54.30%, and 51.05% for 

Net1, Net2, and Net3 respectively (also see Table 1). We can see that Net1 and Net2 achieved 

almost the same accuracy, while Net3 achieved a slightly less score. More on these differences is 

explained below (see Comparison & Questions section). Lastly, as shown in Figure 19, the 

confusion matrix for each of the networks is calculated and displayed using the 

ConfusionMatrixDisplay function from sklearn.metrics (imported here as cfd). Figures 20, 21, and 

22 show the confusion matrices for each of the networks. 



 

Figure 18 

 

Figure 19 

 

Figure 20 – Net1 



 

Figure 21 – Net2 

 

Figure 22 – Net3 

Comparison & Questions 

Table 1 summarizes the number of parameters and the classification accuracy for each of the 

three networks. Lastly, the questions in Homework 4 are answered below. 



 # Parameters Validation Accuracy 

Net 1 406885 54.35% 

Net 2 529765 54.30% 

Net 3 622245 51.05% 

Table 1 

• Does adding padding to the convolutional layers make a difference in classification 

performance? 

➔ To compare the effect of adding padding to the convolutional layers, we compare the 

performance of Net1 and Net2. As can be seen from Figure 15, the training loss curves 

of Net1 and Net2 are very close. With the curve for Net2 very slightly below that of 

Net1, perhaps it converged just a little bit faster than Net1. However, the difference is 

probably insignificant. Similarly, from Figure 18 and Table 1, we can see that Net1 and 

Net2 achieved almost the same validation accuracy. Generally speaking, when padding 

is not added (as is the case with Net1), the size of the image shrinks as it goes through 

the network (see image size calculations in Task 1 section). On the other hand, adding 

a padding of 1 (as is the case with Net2) preserves the image size as it goes through the 

network (see image size calculations in Task 2 section). This preservation of size can 

result in enhanced performance. In our case, the image size did not shrink a lot in Net1 

since the network contains only 2 convolution layers. Hence, the final performance of 

Net1 and Net2 was very close. 

• As you may have known, naively chaining a large number of layers can result in 

difficulties in training. This phenomenon is often referred to as vanishing gradient. 

Do you observe something like that in Net3? 

➔ In Net3, 10 extra convolution layers are naively stacked after the first 2 convolution + 

pooling layers. As shown in Figure 15, the training loss of Net3 is much larger than that 

of the other two networks. The convergence is comparably slow, and the final loss is 

more than double the final loss of Net1 and Net2. Also, from Figure 18 and Table 1, we 

can see that Net3 had the lowest classification accuracy despite being the larger 

network. The reason for this is the vanishing gradient problem associated with the naïve 

increase in number of layers. During backpropagation, the propagated gradient 

becomes smaller and smaller until it somewhat vanishes. Hence, the updates in the 

parameter values are very small and the network becomes hard to train. 

• Compare the classification results by all three networks, which CNN do you think is 

the best performer? 

➔ As discussed in detail in answers to questions 1 and 2, Net1 and Net2 performed quite 

similarly while Net3 had a lower performance in comparison. Therefore, Net1 and Net2 

are preferred over Net3 (which suffers from the vanishing gradient problem). Because 

of the preservation of spatial dimensions through pooling, Net2 can probably be 

preferred over Net1. 

• By observing your confusion matrices, which class or classes do you think are more 

difficult to correctly differentiate and why?  



➔ In all three networks, the class that was hardest to differentiate is the dog class. As 

highlighted in red boxes in Figures 20 – 22, only 162, 154 and 179 out of 400 images 

were correctly classified as dog by the three networks respectively. Perhaps the reason 

can be that dogs can appear in images of very different contexts. In addition, most of 

the time, they only take up a small portion of the image due to their small size. 

• What is one thing that you propose to make the classification performance better? 

➔ Despite the training loss of Net1 and Net2 being much lower than that of Net3 (see 

Figure 15), their validation accuracies are not that far apart (see Table 1). This might 

indicate that Net1 and Net2 had actually slightly overfitted the training dataset. Perhaps 

it is worth experimenting whether using fewer training epochs for Net1 and Net2 would 

result in a better classification accuracy on the validation split. Regularization 

techniques to avoid overfitting, such as adding dropout layers, can also be 

experimented with. Lastly, by visually inspecting the 64×64 images in the dataset, we 

can see that such reduction in size makes them hard to categorize even for us humans. 

Hence, not reducing the image size that much preserves more image features that can 

be helpful to the networks in classification.  

Full Source Code: 

Libraries: 

# import libraries 

from pycocotools.coco import COCO 

import numpy as np 

import skimage.io as io 

import matplotlib.pyplot as plt 

import cv2 

import json 

import torch 

import torch.nn as nn 

import torch.nn.functional as F 

import torchvision.transforms as tvt 

import os 

from PIL import Image 

from sklearn.metrics import accuracy_score as accuracy, ConfusionMatrixDisplay as 

cfd 

 

Section 3.1 

# specify annotation file 

annotation_file = 'ECE 60146 - Deep 

Learning/train2017/annotations/instances_train2017.json' 

 

# COCO API - initialize with annotation file 

my_coco = COCO(annotation_file) 



 

# specify the 5 desired categories 

my_categories = ['boat', 'cake', 'couch', 'dog', 'motorcycle'] 

# get IDs of the 5 desired categories 

catIDs = [] 

for category in my_categories: 

  catIDs.append(my_coco.getCatIds(catNms = category)[0]) 

 

# get IDs of images from each of the 5 desired categories 

all_imgIDs = [] 

for i in range(len(catIDs)): 

  all_imgIDs.append(my_coco.getImgIds(catIds = catIDs[i])) 

 

# remove images belonging to multiple categories 

my_imgIDs = {} 

my_imgIDs[my_categories[0]] = list(set(all_imgIDs[0]) - set(all_imgIDs[1] + 

all_imgIDs[2] + all_imgIDs[3] + all_imgIDs[4])) 

my_imgIDs[my_categories[1]] = list(set(all_imgIDs[1]) - set(all_imgIDs[0] + 

all_imgIDs[2] + all_imgIDs[3] + all_imgIDs[4])) 

my_imgIDs[my_categories[2]] = list(set(all_imgIDs[2]) - set(all_imgIDs[0] + 

all_imgIDs[1] + all_imgIDs[3] + all_imgIDs[4])) 

my_imgIDs[my_categories[3]] = list(set(all_imgIDs[3]) - set(all_imgIDs[0] + 

all_imgIDs[1] + all_imgIDs[2] + all_imgIDs[4])) 

my_imgIDs[my_categories[4]] = list(set(all_imgIDs[4]) - set(all_imgIDs[0] + 

all_imgIDs[1] + all_imgIDs[2] + all_imgIDs[3])) 

 

# a function that processes dataset images of a corresponding split 

# the function loads images from COCO url, resizes them, saves them to dataset 

directory, and updates the dataset dictionary 

def process_imgs(allIDs, splitIDs, split): 

 

  # for every instance in the split 

  for instance in splitIDs: 

 

    # get instance ID 

    ID = allIDs[instance] 

 

    # get image at current ID using COCO API 

    img_at_ID = my_coco.loadImgs(ID)[0] 

 

    # read image from COCO url 

    img_at_ID = io.imread(img_at_ID['coco_url']) 

 

    # resize image to 64x64 

    img_at_ID = cv2.resize(img_at_ID, (64, 64), interpolation = cv2.INTER_AREA) 



 

    # save image to dataset directory 

    img_name = str(ID) + '.jpg' 

    cv2.imwrite(my_dataset_dir + split + '/' + img_name, img_at_ID) 

 

    # create a dictionary for this dataset instance with image name and one hot 

encoding for label 

    img = {} 

    img['img'] = img_name 

    img['label'] = np.zeros(len(my_categories)) 

    img['label'][my_categories.index(category)] = 1 

 

    # add instance to the corresponding split of the dataset dictionary 

    my_dataset_dict[split].append(img) 

 

# initialize a dataset dictionary 

my_dataset_dict = {} 

my_dataset_dict['train'] = [] 

my_dataset_dict['val'] = [] 

# specify dataset directory 

my_dataset_dir = r'ECE 60146 - Deep Learning/my_dataset/' 

 

# for every category 

for category in my_categories: 

 

  # get image IDs for this category 

  cat_imgIDs = my_imgIDs[category] 

 

  # initialize a random generator to select a subset (2000) of the category 

images 

  my_rand_gen = np.random.default_rng() 

  # generate 2000 indices without replacement 

  rnd_indices = my_rand_gen.choice(len(cat_imgIDs), 2000, replace = False) 

 

  # let training IDs be the first 1600 randomly generated indices 

  train_ids = rnd_indices[:1600] 

  # let validation IDs be the last 400 randomly generated indices 

  val_ids = rnd_indices[1600:] 

 

  # process images for both splits (read, resize, and save images) + update 

dataset dictionary 

  process_imgs(cat_imgIDs, train_ids, 'train') 

  process_imgs(cat_imgIDs, val_ids, 'val') 

 

# plot 3 training images from each category 



 

# initialize a figure 

fig = plt.figure(figsize=(4, 8)) 

sub_to_plot = 1 

 

# for each category 

for i in range(5): 

 

  # generate random indices for each category (note: start and end points are 

because of the dataset order) 

  rnd_idx = np.random.randint((i*1600), (i+1)*(1600), size = 3) 

 

  # for each of the three images 

  for j in range(3): 

 

    # get image name from training split 

    img_to_plot_name = my_dataset_dict['train'][rnd_idx[j]]['img'] 

 

    # read image from path 

    img_to_plot = cv2.imread(my_dataset_dir + 'train/' + img_to_plot_name) 

 

    # plot image 

    fig.add_subplot(5, 3, sub_to_plot) 

    plt.imshow(img_to_plot) 

    plt.axis('off') 

    sub_to_plot += 1 

 

# shuffle dataset instances 

np.random.shuffle(my_dataset_dict['train']) 

np.random.shuffle(my_dataset_dict['val']) 

 

# add categories to dataset dictionary 

my_dataset_dict['categories'] = ['boat', 'cake', 'couch', 'dog', 'motorcycle'] 

 

# specify name for dataset file 

my_dataset_file = my_dataset_dir + 'my_dataset.txt' 

 

# save dataset dictionary as a json file 

with open(my_dataset_file, 'w') as json_file: 

  json.dump(my_dataset_dict, json_file) 

 

Section 3.2 

Dataset Class 



# dataset class 

class MyDataset(torch.utils.data.Dataset): 

  def __init__ (self, split, root): 

    super().__init__() 

 

    # initialize the split and the root path with None 

    self.split = None 

    self.root = None 

 

    # if chosen split is training 

    if split == 'train': 

      # set root directory to be that of training 

      self.root = root + 'train/' 

      # chosen split 

      self.split = 'train' 

    if split == 'val': 

      # root path for validation images 

      self.root = root + 'val/' 

      # chosen split 

      self.split = 'val' 

 

    # load dataset dictionary 

    with open(root + 'my_dataset.txt') as json_file: 

      self.dataset_dict = json.load(json_file) 

    self.categories = self.dataset_dict['categories'] 

 

    # data augmentation transforms for training data 

    self.train_trans = tvt.Compose([ 

        # randomly flip dataset images horizontally 

        tvt.RandomHorizontalFlip(p=0.5), 

        # transform number of channels into 3 (this is important because some of 

the instances are in grayscale) 

        tvt.Grayscale(num_output_channels = 3), 

        # get tensor representation of dataset images and perform pixel value 

scaling 

        tvt.ToTensor(), 

        # perform pixel normalization 

        tvt.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) 

 

    # transforms for validation data (without augmentation) 

    self.val_trans = tvt.Compose([ 

        # transform number of channels into 3 (this is important because some of 

the instances are in grayscale) 

        tvt.Grayscale(num_output_channels = 3), 



        # get tensor representation of dataset images and perform pixel value 

scaling 

        tvt.ToTensor(), 

        # perform pixel normalization 

        tvt.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) 

 

  def __len__(self): 

    # return the total number of images 

    return len(self.dataset_dict[self.split]) 

 

  def __getitem__(self, index): 

    # get name of image at specified index from specified split 

    img_name = self.dataset_dict[self.split][index]['img'] 

 

    # read image 

    img = Image.open(self.root + img_name) 

 

    # perform appropriate transforms on image (depending on the split) 

    trans_img = None 

    if (self.split == 'train'): 

      trans_img = self.train_trans(img) 

    if (self.split == 'val'): 

      trans_img = self.val_trans(img) 

 

    # get categorical image label 

    categ_label = self.dataset_dict[self.split][index]['label'] 

    # set label to the corresponding class index 

    label = self.categories.index(categ_label) 

 

    # return augmented tensor and integer label 

    return trans_img, label 

 

Helper Functions 

# a function that returns the total number of learnable parameters of a network 

# reference: DLStudio (https://engineering.purdue.edu/kak/distDLS/) 

def get_num_params(network): 

  # sum the number of parameters that are learnable (requiring gradient) 

  return sum(param.numel() for param in network.parameters() if 

param.requires_grad) 

 

# Commented out IPython magic to ensure Python compatibility. 

# a function that trains a network 

# updated from homework guidelines 

def train_network(network): 



 

  # specify dataset root directory 

  data_dir = 'ECE 60146 - Deep Learning/my_dataset/' 

  # specify device 

  device = torch.device("cuda:0") 

  # move network to device 

  network = network.to(device) 

 

  # instantiate the dataset for training purposes 

  my_dataset = MyDataset(split = 'train', root = data_dir) 

  # wrap the dataset instance within torch.utils.data.DataLoader 

  my_dataloader = torch.utils.data.DataLoader(my_dataset, batch_size = 4, shuffle 

= True, num_workers = 2) 

 

  # specify criterion, optimizer, and number of epochs 

  criterion = torch.nn.CrossEntropyLoss() 

  optimizer = torch.optim.Adam(network.parameters(), lr = 1e-3, betas = (0.9, 

0.99)) 

  epochs = 10 

 

  # make an empty list to store training loss 

  training_loss = [] 

 

  # for every epoch 

  for epoch in range(epochs): 

 

    # initialize running loss with 0.0 

    running_loss = 0.0 

 

    # for every batch in the dataset 

    for i, data in enumerate(my_dataloader): 

      # get batch images and labels 

      inputs, labels = data 

      # move images and labels to device 

      inputs = inputs.to(device) 

      labels = labels.to(device) 

 

      # set gradients of learnable parameters to zero 

      optimizer.zero_grad() 

      # pass inputs into the network 

      outputs = network(inputs) 

      # calculate loss 

      loss = criterion(outputs, labels) 

      # perform back propagation 

      loss.backward() 



      # update optimizer step 

      optimizer.step() 

      # update running loss 

      running_loss += loss.item() 

 

      # save loss every 100 iterations 

      if ((i+1) % 100 == 0): 

        # get average of running loss 

        running_loss /= 100 

        # add loss to list of training losses 

        training_loss.append(running_loss) 

        # print current epoch, batch, and averaged loss 

        print ("[epoch: %d, batch: %5d] loss: %.3f" \ 

#               % (epoch + 1, i + 1, running_loss)) 

        # reset running loss 

        running_loss = 0.0 

 

  # return training loss 

  return training_loss 

 

# a function that tests a network, inspired from DLStudio 

(https://engineering.purdue.edu/kak/distDLS/) 

def test_network(network): 

  # specify dataset root directory 

  data_dir = 'ECE 60146 - Deep Learning/my_dataset/' 

  # specify device 

  device = torch.device("cuda:0") 

  # set model in evaluation mode 

  network = network.eval() 

  # move network to device 

  network = network.to(device) 

 

  # instantiate the dataset for validation purposes 

  my_dataset = MyDataset(split = 'val', root = data_dir) 

  # wrap the dataset instance within torch.utils.data.DataLoader 

  my_dataloader = torch.utils.data.DataLoader(my_dataset, batch_size = 4, shuffle 

= True, num_workers = 2) 

 

  # create empty lists to store true and predicted labels 

  true_labels = [] 

  predicted_labels = [] 

 

  # indicate disabling gradient calculation 

  with torch.no_grad(): 

    # for every batch in the dataset 



    for i, data in enumerate(my_dataloader): 

 

      # get batch images and labels 

      inputs, t_labels = data 

      # move batch images and labels to device 

      inputs = inputs.to(device) 

      t_labels = t_labels.to(device) 

 

      # pass inputs into the network 

      outputs = network(inputs) 

      # get label with maximum output value 

      max_value, p_labels = torch.max(outputs.data, 1) 

 

      # add true and predicted labels to corresponding lists 

      true_labels.extend(t_labels.tolist()) 

      predicted_labels.extend(p_labels.tolist()) 

 

  # return lists of true and predicted labels 

  return true_labels, predicted_labels 

 

Task 1 Class 

# network class for task 1 

# copied from homework guidelines 

class HW4Net1(nn.Module): 

  def __init__(self): 

    super(HW4Net1, self).__init__() 

    # 1st convolution layer 

    self.conv1 = nn.Conv2d(3, 16, 3) 

    # pooling layer 

    self.pool = nn.MaxPool2d(2, 2) 

    # 2nd convolution layer 

    self.conv2 = nn.Conv2d(16, 32, 3) 

    # 1st fully connected layer 

    self.fc1 = nn.Linear(6272, 64) 

    # 2nd fully connected layer 

    self.fc2 = nn.Linear(64, 5) 

 

  def forward(self, x): 

    # 1st convolution layer + ReLU activation + pooling 

    x = self.pool(F.relu(self.conv1(x))) 

    # 2nd convolution layer + ReLU activation + pooling 

    x = self.pool(F.relu(self.conv2(x))) 

    x = x.view(x.shape[0], -1) 

    # 1st fully connected layer + ReLU activation 



    x = F.relu(self.fc1(x)) 

    # 2nd fully connected layer 

    x = self.fc2(x) 

    return x 

 

Task 2 Class 

# network class for task 2 

# updated from homework guidelines 

class HW4Net2(nn.Module): 

  def __init__(self): 

    super(HW4Net2, self).__init__() 

    # 1st convolution layer 

    self.conv1 = nn.Conv2d(3, 16, 3, padding = 1) 

    # pooling layer 

    self.pool = nn.MaxPool2d(2, 2) 

    # 2nd convolution layer 

    self.conv2 = nn.Conv2d(16, 32, 3, padding = 1) 

    # 1st fully connected layer 

    self.fc1 = nn.Linear(8192, 64) 

    # 2nd fully connected layer 

    self.fc2 = nn.Linear(64, 5) 

 

  def forward(self, x): 

    # 1st convolution layer + ReLU activation + pooling 

    x = self.pool(F.relu(self.conv1(x))) 

    # 2nd convolution layer + ReLU activation + pooling 

    x = self.pool(F.relu(self.conv2(x))) 

    x = x.view(x.shape[0], -1) 

    # 1st fully connected layer + ReLU activation 

    x = F.relu(self.fc1(x)) 

    # 2nd fully connected layer 

    x = self.fc2(x) 

    return x 

 

Task 3 Class 

# network class for task 3 

# updated from homework guidelines 

class HW4Net3(nn.Module): 

  def __init__(self): 

    super(HW4Net3, self).__init__() 

    # 1st convolution layer 

    self.conv1 = nn.Conv2d(3, 16, 3, padding = 1) 

    # pooling layer 



    self.pool = nn.MaxPool2d(2, 2) 

    # 2nd convolution layer 

    self.conv2 = nn.Conv2d(16, 32, 3, padding = 1) 

    # 10 extra convolution layers 

    self.conv_extra = nn.ModuleList() 

    for i in range(10): 

      self.conv_extra.append(nn.Conv2d(32, 32, 3, padding = 1)) 

    # 1st fully connected layer 

    self.fc1 = nn.Linear(8192, 64) 

    # 2nd fully connected layer 

    self.fc2 = nn.Linear(64, 5) 

 

  def forward(self, x): 

    # 1st convolution layer + ReLU activation + pooling 

    x = self.pool(F.relu(self.conv1(x))) 

    # 2nd convolution layer + ReLU activation + pooling 

    x = self.pool(F.relu(self.conv2(x))) 

    # 10 extra convolution layers + ReLU activation 

    for i in range(10): 

      x = F.relu(self.conv_extra[i](x)) 

    x = x.view(x.shape[0], -1) 

    # 1st fully connected layer + ReLU activation 

    x = F.relu(self.fc1(x)) 

    # 2nd fully connected layer 

    x = self.fc2(x) 

    return x 

 

Train Networks 

# instantiate the three networks 

Net1 = HW4Net1() 

Net2 = HW4Net2() 

Net3 = HW4Net3() 

 

print("Number of Parameters:\nNet1: " + str(get_num_params(Net1)) + "\nNet2: " + 

str(get_num_params(Net2)) + "\nNet3: " + str(get_num_params(Net3))) 

 

# train the three networks 

net1_training_loss = train_network(Net1) 

net2_training_loss = train_network(Net2) 

net3_training_loss = train_network(Net3) 

 

# plot all training losses vs iterations 

plt.figure() 

plt.plot(net1_training_loss, label="Net1") 



plt.plot(net2_training_loss, label="Net2") 

plt.plot(net3_training_loss, label="Net3") 

# set legend, figure title, and axes labels 

plt.legend(loc="upper right") 

plt.xlabel("Iterations") 

plt.ylabel("Training Loss") 

plt.title("Training Loss vs Iterations (10 Epochs)") 

# show figure 

plt.show() 

 

Test Networks 

# test each of the three networks 

t_net1, p_net1 = test_network(Net1) 

t_net2, p_net2 = test_network(Net2) 

t_net3, p_net3 = test_network(Net3) 

 

# calculate validation accuracy of each of the three networks 

val_acc_1 = accuracy(t_net1, p_net1) 

val_acc_2 = accuracy(t_net2, p_net2) 

val_acc_3 = accuracy(t_net3, p_net3) 

print("Validation Accuracy:\nNet1: " + str(val_acc_1) + "\nNet2: " + 

str(val_acc_2) + "\nNet3: " + str(val_acc_3)) 

 

# calculate confusion matrices of each of the three networks 

my_categories = ['boat', 'cake', 'couch', 'dog', 'motorcycle'] 

conf_mat_1 = cfd.from_predictions(t_net1, p_net1, display_labels = 

np.array(my_categories), cmap='GnBu') 

conf_mat_2 = cfd.from_predictions(t_net2, p_net2, display_labels = 

np.array(my_categories), cmap='GnBu') 

conf_mat_3 = cfd.from_predictions(t_net3, p_net3, display_labels = 

np.array(my_categories), cmap='GnBu') 

 


