BME646 and ECE 60146 — Homework 4

Nadine Amin

Section 3.1

To create a subset of the COCO dataset, the COCO API is used, and an instance is initialized the
downloaded annotation file. The COCO API is used to get the ID of each of the 5 desired
categories, and the IDs of images belonging to each of those categories. In the COCO dataset, a
certainimage can have multiple labels (i.e. belong to multiple categories). However, for the sake
of our subset dataset, only images that belong to only one of the 5 categories are used. Hence, for
each of the 5 categories, the corresponding list of image IDs is cleaned to remove IDs that appear
in any of the other lists (belonging to the other categories). See Figure 1.

annotation_file =

my_coco = COCO({annotation file)

loading annotations into memory...
Done (t=29.54s)

creating index...

index created!

my_categories = ['boat’, "cake®

catIDs = []
for category in my_categories:
catIDs.append(my_coco.getCatIds(cathNms = category)[e])

all imgIDs = []
for i in range(len(catIDs)):
all_imgIDs.append(my coco.getImgIds(catIds = catIDs[i]))

my_imgIDs = {}
my_imgIDs[my_ categories[@
my_imgIDs[my categories[1

1] set(all_imgIDs) - t(all_imgIDs + all_imgIDs + all_imgIDs[3] + all imgIDs[4])

11 t(all imgIDs + all _imgIDs + all imgIDs[3] + all_imgIDs
my_imgIDs[my categories[2]] i) - t(all_imgIDs + all_imgIDs + all_imgIDs[3] + all_imgIDs[4])

1]

11

my_imgIDs[my_ categories[3
my_imgIDs[my categories|

t(all_imgIDs + all_imgIDs + all_imgIDs + all imgIDs[4])
11 _imgIDs[@] + all imgIDs + all_imgIDs + all_imgIDs[3])

Figure 1

A dataset dictionary is initialized with empty lists for the training and validation splits. For each
of our categories, 2000 indices are randomly generated without replacement (minimum possible
value: 0, maximum possible value: the total number of images only belonging to this category
minus 1). This is done using numpy.random. Generator.choice. The first 1600 indices are reserved
for training instances and the last 400 for validation instances. (See Figure 2). Images are then
processed for each split using the function process imgs shown in Figure 3.

my_dataset_dict = {}
my _dataset_dict['trai
my _dataset_dict[

my_dataset_dir =

F

or category in my_categories:

cat_imgIDs = my imgIDs[category]

my_rand_gen = np.random.default_rng()

rnd_indices = my_rand gen.choice(len(cat_imgIDs), 2000, replace =

train ids = rnd indices[:1600]

val _ids = rnd_indices[1600:]

process_imgs(cat_imgIDs, train_ids,
process_imgs(cat imgIDs, val ids, "

Figure 2

The splitIDs input to the process imgs function contains the randomly generated indices for
images in the corresponding split. Therefore, for each dataset instance, the actual ID is extracted
at the randomly generated index from the list of image IDs in that category. For each image, the
image is loaded from the COCO URL, resized using opencv, named with its ID value, and saved
to the dataset directory. The dataset dictionary is then updated such that a new element is added to
the corresponding split. This element is a new dataset instance with img being the name of the
image and label being the name of its category.

process_imgs(allIDs, splitIDs, split):
for instance in splitIDs:
ID = alliDs[instance]
img_at ID = my_coco.loadImgs(ID)[@]
img at ID = io.imread(img_at ID[
img_at ID = cv2.resize(img at ID, (64, 64), interpolation = cv2.INTER_AREA)

img_name = str(ID) + ".jpg’
cv2.imwrite(my dataset_dir + split + '/' + img_name, img at ID)

img = {
img[= img_name
img[el'] = category

my dataset dict[split].append(img)

Figure 3

Three images from each category are plotted (see Figure 4) and shown in Figure 5.

fig = plt.figure(figsize=(4, 8))
sub_to_plot = 1

for i in range(5):

rnd_idx = np.random.randint((i*1600), (i+1)*(1600), size = 3)
for j in range(3):
img to plot_name = my dataset dict['train'][rnd idx[j]]
img to plot = cv2.imread(my dataset dir + 'train/' + img_to plot name)
fig.add subplot(s, 3, sub_to_plot)
plt.imshow(img_to plot)

plt.axis('o
sub_to plot += 1

Figure 5

The dataset instances are then shuffled, a list of the category names is added to the dataset
dictionary, and the dataset dictionary is then saved as a json file as shown in Figure 6.

np.random. shuffle(my dataset dict[train’'])
np.random.shuffle(my dataset dict['val'])

my_dataset dict['cat s'] = ['boat’, 'cake’

my_dataset file = my dataset dir + 'my dataset.txt'

with open{my dataset file, 'w') as json file:
json.dump(my dataset dict, json file)

Figure 6
Section 3.2
Dataset Class

In order to load the subset of the COCO dataset created in Section 3.1, a dataset class is needed. 1
used the dataset class I had implemented for Homework 2 and adapted it as needed. Figure 7 shows
the dataset class. The init () function takes as input (1) the split (being ‘train’ or ‘val’) to
determine which images should be included in the dataset and (2) the root directory of the dataset.
It accordingly updates the values of the self.split and self.root instance variables. In addition, it
loads the dataset dictionary from the root directory and extracts category names. Lastly, it specifies
the transformations that need to be made to training and validation images. For training purposes,
images are horizontally flipped with a probability of 0.5. For both training and validation purposes,
tvt.Grayscale(num_output _channels = 3) is used to ensure all images have 3 output channels. This
is important because some of the images in the dataset are originally grayscale. Lastly, for both
training and validation images, we get the tensor representation, as well as perform pixel value
scaling and normalization. The _ /en () function returns the number of images of the chosen split
as indicated by the dataset dictionary. In the _ getitem__ () function, the name of the image at the
desired index is read from the dataset dictionary. Next, the image is read using PIL and the
appropriate transformations are carried out depending on the split. The image label is also read
from the dataset dictionary and, using the category names, transformed into a new label with the
category index. Lastly, the transformed image and the index label are returned.

MyDataset(torch.utils.data.Dataset):
__ipit_ (self, split, root):
super()._ init_ ()

self.split =
self.root =
if split == "train’:

self.root = root + "train/’'

self.split = 'train
if split == ‘val’:

self.root = root + 'val/’

self.split = ‘val®

with open(root + 'my_dataset.txt') as json_file:
self.dataset_dict = json.load(json_file)
self.categories = self.dataset dict['categories’]

self.train trans = tvt.Compose([

tvt.RandomHorizontalFlip(p=6.5),

tvt.Grayscale(num output channels = 3),

tvt.ToTensor(),

tvt.Normalize((e.5, @.5, @.5), (0.5, .5, ©.5))])

self.val_trans = tvt.Compose([
tvt.Grayscale(num_output_channels = 3),
tvt.ToTensor(),
tvt.Normalize((e.5, ©.5, @.5), (©.5, .5, ©.5))])
__len_ (self):
return len(self.dataset dict[self.split])
_ getitem (self, index):

img_name = self.dataset_dict[self.split][index][img"]

img = Image.open(self.root + img name)

trans_img =

if (self.split == 'train'):
trans_img = self.train trans(img)

if (self.split == 'val'):
trans_img = self.val trans(img)

categ_label = self.dataset_dict[self.split][index][label’]

label = self.categories.index(categ label)

return trans_img, label

Figure 7

Task 1

Since our dataset has 5 classes, the value of XX in Net 1 (and all other networks) is 5. To calculate
XXXX for Net 1, we calculate the size of the output after each layer:

e Input Size : 3x64x64

e 1* Convolution:

Input Channels: 3
Output Channels: 16
Kernel Size: 3
Stride: 1 (default)
Padding: 0 (default)

N+(2+P)-K

0O O O O O O

64+(2%0)-3
1

Output = +1= +1=62

o Output Size: 16x62x62
e 1 Max Pooling (2D):

o Output Size: 16x>x2 =16x31x31

e 2" Convolution:

o Input Channels: 16
Output Channels: 32
Kernel Size: 3
Stride: 1 (default)
Padding: 0 (default)

N+(2%P)-K

0O O O O O

31+(2%0)-3
1

Output = +1= +1=29

o Output Size: 32x29%29
e 2" Max Pooling (2D):
o Output Size: 324%4% = 32x14x14
e Linear Layer:
o Input Size (after flattening) = 32x14x14 = 6272
Therefore, XXXX is 6272.

Figure 8 shows the class for Task 1, named HW4Netl. It is copied from the homework guidelines,
and the values for XX and XXXX are updated.

HWANet1(nn.Module):

__ipit_ (self):
super(HWaNet1, self). init ()
self.convl = nn.Conv2d(3, 16, 3)
self.pool = nn.MaxPool2d(2, 2)

self.conv2 = nn.Conv2d(16, 32, 3)

self.fcl = nn.Linear(6272, 64)

self.fc2 = nn.Linear(64, 5)

forward(self, x):
self.pool(F.relu(self.convi(x)))

self.pool(F.relu(self.conv2(x)))
x.view(x.shape[0], -1)

= F.relu(selt.fci(x))

= self.fc2(x)
return x

Figure 8
Task 2

Again, the value of XX in Net 2 (like all other networks) is 5. To calculate XXXX for Net 2, we
calculate the size of the output after each layer:

e Input Size : 3x64%x64

e [Convolution:

Input Channels: 3

Output Channels: 16

Kernel Size: 3

Stride: 1 (default)

Padding: 1

N+(2+P)—K _64+(2+1)-3
1

O O O O O O

Output = +1 +1=064
o Output Size: 16x64%x64

e 1% Max Pooling (2D):
o Output Size: 16x2x2 =16x32x32

e 2" Convolution:
o Input Channels: 16
o Output Channels: 32
o Kernel Size: 3
o Stride: 1 (default)
o Padding: 1

N+(2+P)-K _ 32+4(2¢1)-3

1

o Output = +1 +1=32

o Output Size: 32x32x32
e 2" Max Pooling (2D):

o Output Size: 32x2x2 = 32x16x16

e Linear Layer:
o Input Size (after flattening) = 32x16x16 = 8192

Therefore, XXXX is 8192.

Figure 9 shows the class for Task 2, named HW4Net2. It is an updated version of HW4Net1 such
that each convolution layer includes a padding of 1. The value of XXXX is also updated.

HWANet2(nn.Module):
__init_ (self):
super(HW4ANet2, self). init ()

self.convl = nn.Conv2d(3, 16, 3, padding = 1)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(16, 32, 3, padding = 1)
self.fcl = nn.Linear(8192, 64)
self.fc2 = nn.Linear(64, 5)

forward(self, x):
x = self.pool(F.relu(self.convi(x)))

x = self.pool(F.relu(self.conv2(x)))
X = X.view(x.shape[®], -1)

x = F.relu(self.fc1(x))

x = self.fc2(x)
return x

Figure 9
Task 3

Again, the value of XX in Net 3 (like all other networks) is 5. To calculate XXXX for Net 3, we
calculate the size of the output after each layer. The first [Convolution + Pooling + Convolution +
Pooling] are exactly the same as in Task 2. Hence, their output is of size 32x16x16. The extra 10
convolution layers added are each of 32 input channels, 32 output channels, a kernel size of 3, and

N+(2*P)—-K N+(2x1)-3 +1= N—I1+

a padding of 1. Following the equation: Output = , we see that

1 = N. This means that the output size will be equal to the input size. Therefore, the output after
the chained convolution layers will be 32x16x16. Therefore, the input size to the linear layer, i.e.
XXXX, would also be 32x16x16 = 8192.

Figure 10 shows the class for Task 3, named HW4Net3. It is an updated version of HW4Net2 such
that an instance variable called self.conv_extra stores a list of the 10 convolution layers using
nn.ModuleList(). In the forward() function, the output of the first two convolution layers and
poolings is passed through each of the 10 extra convolution layers, each followed by the nonlinear
ReLU activation function. The final output is then passed through the linear layers.

- (self):
super(HW4Net3, self)._ init_ ()

self.convl = nn.Conv2d(3, 16, 3, padding = 1)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(16, 32, 3, padding = 1)
self.conv_extra = nn.Modulelist()
for i in range(10):

self.conv_extra.append(nn.Conv2d(32, 32, 3, padding = 1))
self.fcl = nn.Linear(8192, 64)
self.fc2 = nn.Linear(64, 5)

forward(self, x):

self.pool(F.relu(self.convi(x)))

= self.pool(F.relu(self.conv2(x)))

in range(10):
F.relu(self.conv_extral[i](x))

i
x.view(x.shape[8], -1)

F.relu(self.fcl(x))

x = self.fc2(x)
return x

Figure 10
Training Networks

First, as shown in Figure 11, an instance of each of the network classes is created. The number of
learnable parameters for each network is calculated using the function get num_params()
defined as shown in Figure 12. The syntax for calculating the number of parameters is inspired
from DLStudio (https://engineering.purdue.edu/kak/distDLS/), where the numel() function is
used on each of the network parameters to count the number of parameters that are learnable
(requiring gradient). As shown in Figure 11, the numbers of parameters are 406885, 529765, and
622245 for Netl, Net2, and Net3 respectively (also see Table 1).

https://engineering.purdue.edu/kak/distDLS/

Netl = HWANet1()
Net2 = HWANet2()
Net3 = HWANet3()

print (" Num ‘s:\nNetl: " + str(get_num_params(Net1)) + "\nNet2: " + str(get_num_params(Net2)) + "\nNet3: " + str(get_num_params(Net3)))

Number of Parameters:
Netl: 406885
Net2: 529765
Net3: 622245

Figure 11

get_num_params(network):

return sum(param.numel() for param in network.parameters() if param.requires_grad)

Figure 12

Next, as shown in Figure 13, each of the networks is trained and the calculated training losses are
plotted on the same figure (see Figure 15). The train_network() function is defined as shown in
Figure 14. The code is adapted from the example shown in the homework guidelines. The dataset
directory is first specified, the device set to cuda: 0, and the network moved to the device. Next, an
instance of the dataset class is created with the split set to ‘frain’. An instance of
torch.utils.data. DataLoader is also created to wrap the dataset instance and set the batch size to 4,
allow shuffling of dataset instances, as well as set the number of workers to 2. Next, the Cross
Entropy loss is chosen, the optimizer is chosen to be Adam with a learning rate of 1e-3 and betas
of default values (0.9 and 0.99). The number of epochs is chosen to be 10, and an empty list is
initialized to later store the training loss every 100 iterations. In every epoch, and for each batch
in the dataset, images and labels are read and moved to the device. The gradients of learnable
parameters are reset to 0 and the inputs are passed through the network. The loss is then calculated,
and back propagation is performed. Lastly, the optimizer step is updated, and the calculated loss
added to the running loss. Every 100 iterations, the running loss is averaged, printed, and stored in
the list of training losses to be returned by the function. The running loss is then reset to 0. At the
very end, the final list of training losses every 100 iterations is returned.

netl training loss = train_network(Net1)
net2_training_loss = train_network(Net2)
net3_training_loss = train_network(Net3)

.Figure()

.plot(netl_training loss, label="
.plot(net2 training loss, label
.plot(net3_training loss, label="Net3")

.legend(loc="1
-xlabel("
.ylabel("
title("T

. show()

Figure 13

train_network(network) :

data_dir =
device = torch.device(

network = network.to(device)

my_dataset = MyDataset(split , root = data_dir)
my_dataloader = torch.utils.data.Dataloader(my dataset, batch size = 4, , num_workers = 2)
criterion = torch.nn.CrossEntropyloss()

optimizer = torch.optim.Adam(network.parameter , 1r = 1e-3, betas = (0.9, 8.99))
epochs = 18

training_loss = []

~ epoch in range(epochs):

running_loss

for i, data in enumerate(my_dataloader):
inputs, labels = data
inputs = inputs.to(device)
= labels.to(device)
optimizer.zero_grad()
outputs = network(inputs)
oss = criterion(outputs, labels)
loss.backward()
optimizer.step()

running_loss += loss.item()

+1) % 100 == 8):

running_loss /= 1080

training_loss.append(running_loss)

print ("[h: b 5d] 1
% (epoch + 1, i + 1, running_loss))

running loss = 8.8

rn training loss

Figure 14

Training Loss vs lterations (10 Epochs)

— Netl
MNet2
— Net3

16 -
1ad

1.2 4

g II’VHJ‘(\A
g 1.0 ' llr\uh‘l’\\\ﬂ M
® I
T
0.6 MWJ
0.4
6 2I5 SID ?IS lCIrU 12I 5 15I 0 l?l"5 2 [I)O
lterations

Figure 15 — (iterations in hundreds)

Figure 15 shows the resulting plot of the training losses per iterations (in hundreds) for each of the
three networks. As can be seen, the training loss curves of Netl and Net2 are very close. The
training loss of Net3, on the other hand, is much larger than that of the other two networks. More
on these differences is explained below (see Comparison & Questions section).

Testing

After training the networks, they are tested on the validation dataset. The function test network()
is implemented as shown in Figure 17 and is inspired from DLStudio
(https://engineering.purdue.edu/kak/distDLS/). The dataset directory is first specified, the device
set to cuda: 0, and the network set to evaluation mode and moved to the device. Next, an instance
of the dataset class is created with the splitset to ‘val. An instance of torch.utils.data. DataLoader
is also created to wrap the dataset instance and set the batch size to 4, allow shuftling of dataset
instances, as well as set the number of workers to 2. Empty lists are initialized to later store the
true labels and corresponding labels predicted by the network. Next, with torch.no_grad() is used
to indicate that gradient calculation is disabled. Then, for every batch in the validation dataset, the
inputs and true labels are read and moved to the device. They are then passed through the network
and the output is calculated. The output contains a value for each of our 5 classes; hence, the
predicted class is extracted to be the one assigned a greater value. Lastly, the lists of true and
predicted labels are extended to include those of the current batch. Both lists (true and predicted
labels) are finally returned by the function.

t_netl, p_netl = test network(Net1)

t_net2, p_net2 = test_network(Net2)
t_net3, p_net3 = test_ network(Net3)

Figure 16

https://engineering.purdue.edu/kak/distDLS/

test_network(network):
data dir =
device = torch.devic
network = network.eval()

network = network.to(device)

my_dataset = MyDataset(split = 'val’, root = data dir)

my_dataloader = torch.utils.data.DatalLoader(my_dataset, batch_size = 4, shuffle = » num_workers = 2)

with torch.no_grad()
for i, data in enumerate(my_dataloader):
inputs, t_labels = data
inputs = inputs.to(device)

t_labels = t_labels.to(device)

outputs = network(inputs)

max_value, p_labels = torch.max(outputs.data, 1)

true_labels.extend(t_labels.tolis
predicted labels.extend(p_labels.tolist())

return true_labels, predicted_labels

Figure 17

After obtaining the lists of true and predicted labels for each of the networks, the validation
accuracy is calculated using the accuracy score function from sklearn.metrics (imported here as
accuracy). As shown in Figure 18, the validation accuracies are 54.35%, 54.30%, and 51.05% for
Netl, Net2, and Net3 respectively (also see Table 1). We can see that Netl and Net2 achieved
almost the same accuracy, while Net3 achieved a slightly less score. More on these differences is
explained below (see Comparison & Questions section). Lastly, as shown in Figure 19, the
confusion matrix for each of the networks is calculated and displayed using the
ConfusionMatrixDisplay function from sklearn.metrics (imported here as cfd). Figures 20, 21, and
22 show the confusion matrices for each of the networks.

val_acc_1 = accuracy(t_netl, p_netl)
val_acc_2 = accuracy(t_net2, p_net2)

val_acc_3 = accuracy(t_net3, p_net3)

print(nhletl: str(: " + str(val_acc| 2) + "\nNet3: " + str(val_acc_3))

Validation Accuracy:
Netl: ©6.5435

Net2: ©.543

Net3: ©.5105

my_categories = [', 'c » h*, "dog', 'm e']
conf_mat_1 = -from_predictions(t_netl, p _netl, display labels = np.array(my_categories)
conf_mat_2 = cfd.from predictions(t_net2, p net2, display labels = np.array(my_categori

conf_mat_3 = cfd.from predictions|(t_net3, p_net3, display labels = np.array(my_categories

Figure 19

250
boat 71 38
200
cake 78 14
v - 150
£
= couch - 97 11
18}
2
}_
- 100
dog{ 66 72 65 35
50
motorcycle | 11 46 26 67 220
T T T T -
boat cake couch dog motorcycle

Predicted label

Figure 20 — Net1

250
boat
200
cake
2 - 150
[15]
= couch -
¥
=
=
r 100
dog -
50
motorcycle 4 69 25 40 56
T T T T I
boat cake couch dog motorcycle
Predicted label
Figure 21 — Net2
225
boat 500
175
cake
150
2
T h A 125
" couc
=
(S - 100
dog - 75
50
motorcycle 4 29 54 17 79 L o5
, L |

boat cake couch dog motorcycle
Predicted label

Figure 22 — Net3

Comparison & Questions

Table 1 summarizes the number of parameters and the classification accuracy for each of the
three networks. Lastly, the questions in Homework 4 are answered below.

Parameters Validation Accuracy
Net 1 406885 54.35%
Net 2 529765 54.30%
Net 3 622245 51.05%
Table 1

Does adding padding to the convolutional layers make a difference in classification

performance?

= To compare the effect of adding padding to the convolutional layers, we compare the
performance of Netl and Net2. As can be seen from Figure 15, the training loss curves
of Netl and Net2 are very close. With the curve for Net2 very slightly below that of
Netl, perhaps it converged just a little bit faster than Netl. However, the difference is
probably insignificant. Similarly, from Figure 18 and Table 1, we can see that Netl and
Net2 achieved almost the same validation accuracy. Generally speaking, when padding
is not added (as is the case with Net1), the size of the image shrinks as it goes through
the network (see image size calculations in Task 1 section). On the other hand, adding
apadding of 1 (as is the case with Net2) preserves the image size as it goes through the
network (see image size calculations in Task 2 section). This preservation of size can
resultin enhanced performance. In our case, the image size did not shrink a lot in Netl
since the network contains only 2 convolution layers. Hence, the final performance of
Netl and Net2 was very close.

As you may have known, naively chaining a large number of layers can result in

difficulties in training. This phenomenon is often referred to as vanishing gradient.

Do you observe something like that in Net3?

=» In Net3, 10 extra convolution layers are naively stacked after the first 2 convolution +
pooling layers. As shown in Figure 15, the training loss of Net3 is much larger than that
of the other two networks. The convergence is comparably slow, and the final loss is
more than double the final loss of Netl and Net2. Also, from Figure 18 and Table 1, we
can see that Net3 had the lowest classification accuracy despite being the larger
network. The reason for this is the vanishing gradient problem associated with the naive
increase in number of layers. During backpropagation, the propagated gradient
becomes smaller and smaller until it somewhat vanishes. Hence, the updates in the
parameter values are very small and the network becomes hard to train.

Compare the classification results by all three networks, which CNN do you think is

the best performer?

= As discussed in detail in answers to questions 1 and 2, Netl and Net2 performed quite
similarly while Net3 had a lower performance in comparison. Therefore, Net1 and Net2
are preferred over Net3 (which suffers from the vanishing gradient problem). Because
of the preservation of spatial dimensions through pooling, Net2 can probably be
preferred over Netl.

By observing your confusion matrices, which class or classes do you think are more

difficult to correctly differentiate and why?

= In all three networks, the class that was hardest to differentiate is the dog class. As
highlighted in red boxes in Figures 20 — 22, only 162, 154 and 179 out of 400 images
were correctly classified as dog by the three networks respectively. Perhaps the reason
can be that dogs can appear in images of very different contexts. In addition, most of
the time, they only take up a small portion of the image due to their small size.

e What is one thing that you propose to make the classification performance better?

= Despite the training loss of Netl and Net2 being much lower than that of Net3 (see
Figure 15), their validation accuracies are not that far apart (see Table 1). This might
indicate that Net1 and Net2 had actually slightly overfitted the training dataset. Perhaps
itis worth experimenting whether using fewer training epochs for Net1 and Net2 would
result in a better classification accuracy on the validation split. Regularization
techniques to avoid overfitting, such as adding dropout layers, can also be
experimented with. Lastly, by visually inspecting the 64x64 images in the dataset, we
can see that such reduction in size makes them hard to categorize even for us humans.
Hence, not reducing the image size that much preserves more image features that can
be helpful to the networks in classification.

Full Source Code:

Libraries:

from pycocotools.coco import COCO
import numpy as np

import skimage.io as io

import matplotlib.pyplot as plt
import cv2

import json

import torch

import torch.nn as nn

import torch.nn.functional as F

import torchvision.transforms as tvt

import os

from PIL import Image

from sklearn.metrics import accuracy_score as accuracy, ConfusionMatrixDisplay as
cfd

Section 3.1

annotation file = "ECE 60146 - Deep
Learning/train2017/annotations/instances train2017.json’

my coco = COCO(annotation file)

my_categories = ['boat', 'cake', 'couch', 'dog', 'motorcycle’]

catIDs = []
for category in my categories:
catIDs.append(my_coco.getCatIds(catNms = category)[0])

all imgIDs = []
for i in range(len(catIDs)):
all imgIDs.append(my_coco.getImgIds(catIds = catIDs[i]))

my_imgIDs = {}

my_imgIDs[my categories[@]] = list(set(all_imgIDs[@]) - set(all imgIDs[1]
all imgIDs[2] + all imgIDs[3] + all imgIDs[4]))

my_imgIDs[my categories[1]] = list(set(all_imgIDs[1]) - set(all _imgIDs[9]
all imgIDs[2] + all imgIDs[3] + all imgIDs[4]))

my_imgIDs[my categories[2]] = list(set(all_imgIDs[2]) set(all_imgIDs[0]
all imgIDs[1] + all imgIDs[3] + all imgIDs[4]))

my_imgIDs[my categories[3]] = list(set(all_imgIDs[3]) - set(all imgIDs[O]
all imgIDs[1] + all imgIDs[2] + all imgIDs[4]))

my_imgIDs[my_categories[4]] = list(set(all_imgIDs[4]) - set(all_imgIDs[O]
all imgIDs[1] + all imgIDs[2] + all imgIDs[3]))

process_imgs(allIDs, splitIDs, split):

for instance in splitIDs:

ID = allIDs[instance]

img at ID = my coco.loadImgs(ID)[9]

img at ID = io.imread(img_at ID['coco url'])

img at ID = cv2.resize(img at ID, (64, 64), interpolation = cv2.INTER AREA)

img_name = str(ID) + '.jpg’
cv2.imwrite(my_dataset dir + split + /' + img_name, img _at ID)

img = {}

img['img'] = img_name

img['label'] = np.zeros(len(my_ categories))
img['label'][my_categories.index(category)] = 1

my_dataset_dict[split].append(img)

my _dataset dict = {}
my_dataset dict['train
my dataset dict['val']

'1=11

[]
my_dataset_dir =
for category in my categories:
cat_imgIDs = my_ imgIDs[category]
my_rand_gen = np.random.default _rng()
rnd_indices = my_rand _gen.choice(len(cat_imgIDs), 2000, replace =
train_ids = rnd_indices[:1600]

val ids = rnd_indices[1600:]

process_imgs(cat_imgIDs, train ids, 'train')
process_imgs(cat_imgIDs, val ids, 'val')

fig = plt.figure(figsize=(4, 8))
sub_to plot =1

for i in range(5):

rnd_idx = np.random.randint((i*1600), (i+1)*(1600), size =

for j in range(3):

img to plot name = my dataset dict['train'][rnd_idx[j]]["img"]

img_to plot = cv2.imread(my_dataset _dir + 'train/' + img_to_plot_name)

fig.add _subplot(5, 3, sub_to plot)
plt.imshow(img_to_plot)
plt.axis('off")

sub_to_plot += 1

np.random.shuffle(my dataset dict['train'])
np.random.shuffle(my dataset dict['val'])

my_dataset_dict['categories'] = ['boat', 'cake', ‘couch', 'dog', 'motorcycle’]

my dataset file = my dataset dir + 'my dataset.txt'

with open(my dataset file, 'w') as json file:
json.dump(my dataset dict, json file)

Section 3.2

Dataset Class

MyDataset (torch.utils.data.Dataset):
__init__ (self, split, root):
super(). init ()

self.split =

self.root =

if split == 'train':
self.root = root + 'train/'

self.split = "train’
if split == 'val':

self.root = root + 'val/'

self.split = 'val'
with open(root + 'my dataset.txt') as json file:

self.dataset dict = json.load(json file)
self.categories = self.dataset_dict['categories']
self.train_trans = tvt.Compose([

tvt.RandomHorizontalFlip(p=0.5),

tvt.Grayscale(num_output _channels = 3),

tvt.ToTensor(),

tvt.Normalize((©.5, 0.5, ©0.5), (0.5, 0.5, 0.5))])

self.val trans = tvt.Compose([

tvt.Grayscale(num output channels = 3),

tvt.ToTensor(),
tvt.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
__len_ (self):
return len(self.dataset dict[self.split])
__getitem__ (self, index):

img_name = self.dataset dict[self.split][index][‘img"]

img = Image.open(self.root + img name)

trans_img =
if (self.split == 'train'):
trans_img = self.train_trans(img)
if (self.split == 'val'):
trans_img = self.val trans(img)

categ label = self.dataset_dict[self.split][index]['label"]

label = self.categories.index(categ label)

return trans img, label

Helper Functions

get_num_params (network):

return sum(param.numel() for param in network.parameters() if
param.requires_grad)

train network(network) :

data_dir = 'ECE 60146 - Deep Learning/my_dataset/'
device = torch.device("cuda:0")

network = network.to(device)

my_dataset = MyDataset(split = ‘train’', root = data_dir)

my dataloader = torch.utils.data.DatalLoader(my dataset, batch size = 4, shuffle
, hum_workers = 2)

criterion = torch.nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(network.parameters(), lr = le-3, betas = (0.9,
.99))

epochs = 10

training loss = []

for epoch in range(epochs):

running_loss = 0.0

for i, data in enumerate(my_dataloader):
inputs, labels = data
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = network(inputs)
loss = criterion(outputs, labels)

loss.backward()

optimizer.step()

running_loss += loss.item()

if ((i+1) % 100 == 0):
running_loss /= 100
training_loss.append(running_loss)

print ("[epoch: , batch:] loss: "\

running loss = 0.0

return training_loss

def test network(network) :
data_dir = 'ECE 60146 - Deep Learning/my_dataset/'
device = torch.device("cuda:0")
network = network.eval()

network = network.to(device)

my_ dataset = MyDataset(split = 'val', root = data_dir)
my dataloader = torch.utils.data.DatalLoader(my dataset, batch size = 4, shuffle

, hum_workers = 2)

true_labels = []
predicted_labels = []

with torch.no_grad():

for i, data in enumerate(my_dataloader):
inputs, t_labels = data
inputs = inputs.to(device)

t labels = t labels.to(device)

outputs = network(inputs)

max_value, p labels = torch.max(outputs.data, 1)

true_labels.extend(t_labels.tolist())
predicted labels.extend(p_labels.tolist())

return true labels, predicted labels

Task 1 Class

class HW4ANetl(nn.Module):
def _init_ ():

super(HW4Net1,).__init_ ()
.convl = nn.Conv2d(3, 16, 3)
.pool = nn.MaxPool2d(2, 2)
.conv2 = nn.Conv2d(16, 32, 3)
.fcl = nn.Linear(6272, 64)
.fc2 = nn.Linear(64, 5)

forward(, X):

.pool(F.relu(.convl(x)))

.pool(F.relu(.conv2(x)))
X.view(x.shape[0], -1)

F.relu(.fcl(x))

.fc2(x)
return X

Task 2 Class

class HW4ANet2(nn.Module):
def __init_ ():
super(HW4Net2,).__init_ ()
.convl = nn.Conv2d(3, 16, 3, padding = 1)
.pool = nn.MaxPool2d(2, 2)
.conv2 = nn.Conv2d(16, 32, 3, padding = 1)

.fcl = nn.Linear(8192, 64)

.fc2 = nn.Linear(64, 5)

forward(, X):
.pool(F.relu(.convl(x)))

.pool(F.relu(.conv2(x)))
X.view(x.shape[0], -1)

F.relu(.fcl(x))

X = .fc2(x)
return X

Task 3 Class

class HW4Net3(nn.Module):
def init ():
super(HW4Net3,). _init ()

.convl = nn.Conv2d(3, 16, 3, padding = 1)

.pool = nn.MaxPool2d(2, 2)
.conv2 = nn.Conv2d(16, 32, 3, padding = 1)
.conv_extra = nn.ModulelList()
for i in range(10):
.conv_extra.append(nn.Conv2d(32, 32, 3, padding = 1))
.fcl = nn.Linear(8192, 64)
.fc2 = nn.Linear(64, 5)
forward(, X):
.pool(F.relu(.convl(x)))
.pool(F.relu(.conv2(x)))
i in range(10):
F.relu(.conv_extral[i](x))
.view(x.shape[0], -1)

.relu(.fcl(x))

.fc2(x)
return X

Train Networks

Netl = HW4Net1()

Net2 = HW4Net2()

Net3 = HW4Net3()

print("Number of Parameters:\nNetl: "
str(get_num_params(Net2)) + "\nNet3:

+ str(get_num _params(Netl)) + "\nNet2: " +
+ str(get_num_params(Net3)))

netl_training loss = train_network(Netl)
net2_training loss = train_network(Net2)
net3_training loss = train_network(Net3)

plt.figure()
plt.plot(netl training loss, label="Netl")

.plot(net2 training loss, label="Net2")
.plot(net3 training loss, label="Net3")

.legend(loc="upper right")

.xlabel("Iterations™)

.ylabel("Training Loss")

.title("Training Loss vs Iterations (10 Epochs)")

.show()

Test Networks

t_netl, p _netl = test _network(Netl)
t_net2, p_net2 = test_network(Net2)
t net3, p net3 = test network(Net3)

accuracy(t_netl, p netl)
accuracy(t_net2, p net2)
acc accuracy(t_net3, p_net3)
print("Validation Accuracy:\nNetl: " + str(val _acc_1) + "\nNet2:
str(val acc 2) + "\nNet3: " + str(val acc 3))

my_categories = ['boat', 'cake', 'couch', 'dog', 'motorcycle’]
conf_mat 1 = cfd.from predictions(t netl, p netl, display labels
np.array(my_categories), cmap='GnBu')

conf_mat 2 = cfd.from predictions(t net2, p net2, display labels
np.array(my_categories), cmap='GnBu')

conf_mat_3 = cfd.from_predictions(t net3, p net3, display labels
np.array(my categories), cmap='GnBu')

