
BME646 and ECE 60146 – Homework 4

Nadine Amin

Section 3.1

To create a subset of the COCO dataset, the COCO API is used, and an instance is initialized the

downloaded annotation file. The COCO API is used to get the ID of each of the 5 desired

categories, and the IDs of images belonging to each of those categories. In the COCO dataset, a

certain image can have multiple labels (i.e. belong to multiple categories). However, for the sake

of our subset dataset, only images that belong to only one of the 5 categories are used. Hence, for

each of the 5 categories, the corresponding list of image IDs is cleaned to remove IDs that appear

in any of the other lists (belonging to the other categories). See Figure 1.

Figure 1

A dataset dictionary is initialized with empty lists for the training and validation splits. For each

of our categories, 2000 indices are randomly generated without replacement (minimum possible

value: 0, maximum possible value: the total number of images only belonging to this category

minus 1). This is done using numpy.random.Generator.choice. The first 1600 indices are reserved

for training instances and the last 400 for validation instances. (See Figure 2). Images are then

processed for each split using the function process_imgs shown in Figure 3.

Figure 2

The splitIDs input to the process_imgs function contains the randomly generated indices for

images in the corresponding split. Therefore, for each dataset instance, the actual ID is extracted

at the randomly generated index from the list of image IDs in that category. For each image, the

image is loaded from the COCO URL, resized using opencv, named with its ID value, and saved

to the dataset directory. The dataset dictionary is then updated such that a new element is added to

the corresponding split. This element is a new dataset instance with img being the name of the

image and label being the name of its category.

Figure 3

Three images from each category are plotted (see Figure 4) and shown in Figure 5.

Figure 4

Figure 5

The dataset instances are then shuffled, a list of the category names is added to the dataset

dictionary, and the dataset dictionary is then saved as a json file as shown in Figure 6.

Figure 6

Section 3.2

Dataset Class

In order to load the subset of the COCO dataset created in Section 3.1, a dataset class is needed. I

used the dataset class I had implemented for Homework 2 and adapted it as needed. Figure 7 shows

the dataset class. The __init__() function takes as input (1) the split (being ‘train’ or ‘val’) to

determine which images should be included in the dataset and (2) the root directory of the dataset.

It accordingly updates the values of the self.split and self.root instance variables. In addition, it

loads the dataset dictionary from the root directory and extracts category names. Lastly, it specifies

the transformations that need to be made to training and validation images. For training purposes,

images are horizontally flipped with a probability of 0.5. For both training and validation purposes,

tvt.Grayscale(num_output_channels = 3) is used to ensure all images have 3 output channels. This

is important because some of the images in the dataset are originally grayscale. Lastly, for both

training and validation images, we get the tensor representation, as well as perform pixel value

scaling and normalization. The __len__() function returns the number of images of the chosen split

as indicated by the dataset dictionary. In the __getitem__() function, the name of the image at the

desired index is read from the dataset dictionary. Next, the image is read using PIL and the

appropriate transformations are carried out depending on the split. The image label is also read

from the dataset dictionary and, using the category names, transformed into a new label with the

category index. Lastly, the transformed image and the index label are returned.

Figure 7

Task 1

Since our dataset has 5 classes, the value of XX in Net 1 (and all other networks) is 5. To calculate

XXXX for Net 1, we calculate the size of the output after each layer:

• Input Size : 3×64×64

• 1st Convolution:

o Input Channels: 3

o Output Channels: 16

o Kernel Size: 3

o Stride: 1 (default)

o Padding: 0 (default)

o Output =
𝑁+(2∗𝑃)−𝐾

𝑆
+ 1 =

64+(2∗0)−3

1
+ 1 = 62

o Output Size: 16×62×62

• 1st Max Pooling (2D):

o Output Size: 16×
62

2
×

62

2
=16×31×31

• 2nd Convolution:

o Input Channels: 16

o Output Channels: 32

o Kernel Size: 3

o Stride: 1 (default)

o Padding: 0 (default)

o Output =
𝑁+(2∗𝑃)−𝐾

𝑆
+ 1 =

31+(2∗0)−3

1
+ 1 = 29

o Output Size: 32×29×29

• 2nd Max Pooling (2D):

o Output Size: 32×⌊
29

2
⌋×⌊

29

2
⌋ = 32×14×14

• Linear Layer:

o Input Size (after flattening) = 32×14×14 = 6272

Therefore, XXXX is 6272.

Figure 8 shows the class for Task 1, named HW4Net1. It is copied from the homework guidelines,

and the values for XX and XXXX are updated.

Figure 8

Task 2

Again, the value of XX in Net 2 (like all other networks) is 5. To calculate XXXX for Net 2, we

calculate the size of the output after each layer:

• Input Size : 3×64×64

• 1st Convolution:

o Input Channels: 3

o Output Channels: 16

o Kernel Size: 3

o Stride: 1 (default)

o Padding: 1

o Output =
𝑁+(2∗𝑃)−𝐾

𝑆
+ 1 =

64+(2∗1)−3

1
+ 1 = 64

o Output Size: 16×64×64

• 1st Max Pooling (2D):

o Output Size: 16×
64

2
×

64

2
=16×32×32

• 2nd Convolution:

o Input Channels: 16

o Output Channels: 32

o Kernel Size: 3

o Stride: 1 (default)

o Padding: 1

o Output =
𝑁+(2∗𝑃)−𝐾

𝑆
+ 1 =

32+(2∗1)−3

1
+ 1 = 32

o Output Size: 32×32×32

• 2nd Max Pooling (2D):

o Output Size: 32×
32

2
×

32

2
= 32×16×16

• Linear Layer:

o Input Size (after flattening) = 32×16×16 = 8192

Therefore, XXXX is 8192.

Figure 9 shows the class for Task 2, named HW4Net2. It is an updated version of HW4Net1 such

that each convolution layer includes a padding of 1. The value of XXXX is also updated.

Figure 9

Task 3

Again, the value of XX in Net 3 (like all other networks) is 5. To calculate XXXX for Net 3, we

calculate the size of the output after each layer. The first [Convolution + Pooling + Convolution +

Pooling] are exactly the same as in Task 2. Hence, their output is of size 32×16×16. The extra 10

convolution layers added are each of 32 input channels, 32 output channels, a kernel size of 3, and

a padding of 1. Following the equation: Output =
𝑁+(2∗𝑃)−𝐾

𝑆
, we see that

𝑁+(2∗1)−3

1
+ 1 =

𝑁−1

1
+

1 = 𝑁. This means that the output size will be equal to the input size. Therefore, the output after

the chained convolution layers will be 32×16×16. Therefore, the input size to the linear layer, i.e.

XXXX, would also be 32×16×16 = 8192.

Figure 10 shows the class for Task 3, named HW4Net3. It is an updated version of HW4Net2 such

that an instance variable called self.conv_extra stores a list of the 10 convolution layers using

nn.ModuleList(). In the forward() function, the output of the first two convolution layers and

poolings is passed through each of the 10 extra convolution layers, each followed by the nonlinear

ReLU activation function. The final output is then passed through the linear layers.

Figure 10

Training Networks

First, as shown in Figure 11, an instance of each of the network classes is created. The number of

learnable parameters for each network is calculated using the function get_num_params()

defined as shown in Figure 12. The syntax for calculating the number of parameters is inspired

from DLStudio (https://engineering.purdue.edu/kak/distDLS/), where the numel() function is

used on each of the network parameters to count the number of parameters that are learnable

(requiring gradient). As shown in Figure 11, the numbers of parameters are 406885, 529765, and

622245 for Net1, Net2, and Net3 respectively (also see Table 1).

https://engineering.purdue.edu/kak/distDLS/

Figure 11

Figure 12

Next, as shown in Figure 13, each of the networks is trained and the calculated training losses are

plotted on the same figure (see Figure 15). The train_network() function is defined as shown in

Figure 14. The code is adapted from the example shown in the homework guidelines. The dataset

directory is first specified, the device set to cuda:0, and the network moved to the device. Next, an

instance of the dataset class is created with the split set to ‘train’. An instance of

torch.utils.data.DataLoader is also created to wrap the dataset instance and set the batch size to 4,

allow shuffling of dataset instances, as well as set the number of workers to 2. Next, the Cross

Entropy loss is chosen, the optimizer is chosen to be Adam with a learning rate of 1e-3 and betas

of default values (0.9 and 0.99). The number of epochs is chosen to be 10, and an empty list is

initialized to later store the training loss every 100 iterations. In every epoch, and for each batch

in the dataset, images and labels are read and moved to the device. The gradients of learnable

parameters are reset to 0 and the inputs are passed through the network. The loss is then calculated,

and back propagation is performed. Lastly, the optimizer step is updated, and the calculated loss

added to the running loss. Every 100 iterations, the running loss is averaged, printed, and stored in

the list of training losses to be returned by the function. The running loss is then reset to 0. At the

very end, the final list of training losses every 100 iterations is returned.

Figure 13

Figure 14

Figure 15 – (iterations in hundreds)

Figure 15 shows the resulting plot of the training losses per iterations (in hundreds) for each of the

three networks. As can be seen, the training loss curves of Net1 and Net2 are very close. The

training loss of Net3, on the other hand, is much larger than that of the other two networks. More

on these differences is explained below (see Comparison & Questions section).

Testing

After training the networks, they are tested on the validation dataset. The function test_network()

is implemented as shown in Figure 17 and is inspired from DLStudio

(https://engineering.purdue.edu/kak/distDLS/). The dataset directory is first specified, the device

set to cuda:0, and the network set to evaluation mode and moved to the device. Next, an instance

of the dataset class is created with the split set to ‘val. An instance of torch.utils.data.DataLoader

is also created to wrap the dataset instance and set the batch size to 4, allow shuffling of dataset

instances, as well as set the number of workers to 2. Empty lists are initialized to later store the

true labels and corresponding labels predicted by the network. Next, with torch.no_grad() is used

to indicate that gradient calculation is disabled. Then, for every batch in the validation dataset, the

inputs and true labels are read and moved to the device. They are then passed through the network

and the output is calculated. The output contains a value for each of our 5 classes; hence, the

predicted class is extracted to be the one assigned a greater value. Lastly, the lists of true and

predicted labels are extended to include those of the current batch. Both lists (true and predicted

labels) are finally returned by the function.

Figure 16

https://engineering.purdue.edu/kak/distDLS/

Figure 17

After obtaining the lists of true and predicted labels for each of the networks, the validation

accuracy is calculated using the accuracy_score function from sklearn.metrics (imported here as

accuracy). As shown in Figure 18, the validation accuracies are 54.35%, 54.30%, and 51.05% for

Net1, Net2, and Net3 respectively (also see Table 1). We can see that Net1 and Net2 achieved

almost the same accuracy, while Net3 achieved a slightly less score. More on these differences is

explained below (see Comparison & Questions section). Lastly, as shown in Figure 19, the

confusion matrix for each of the networks is calculated and displayed using the

ConfusionMatrixDisplay function from sklearn.metrics (imported here as cfd). Figures 20, 21, and

22 show the confusion matrices for each of the networks.

Figure 18

Figure 19

Figure 20 – Net1

Figure 21 – Net2

Figure 22 – Net3

Comparison & Questions

Table 1 summarizes the number of parameters and the classification accuracy for each of the

three networks. Lastly, the questions in Homework 4 are answered below.

 # Parameters Validation Accuracy

Net 1 406885 54.35%

Net 2 529765 54.30%

Net 3 622245 51.05%

Table 1

• Does adding padding to the convolutional layers make a difference in classification

performance?

➔ To compare the effect of adding padding to the convolutional layers, we compare the

performance of Net1 and Net2. As can be seen from Figure 15, the training loss curves

of Net1 and Net2 are very close. With the curve for Net2 very slightly below that of

Net1, perhaps it converged just a little bit faster than Net1. However, the difference is

probably insignificant. Similarly, from Figure 18 and Table 1, we can see that Net1 and

Net2 achieved almost the same validation accuracy. Generally speaking, when padding

is not added (as is the case with Net1), the size of the image shrinks as it goes through

the network (see image size calculations in Task 1 section). On the other hand, adding

a padding of 1 (as is the case with Net2) preserves the image size as it goes through the

network (see image size calculations in Task 2 section). This preservation of size can

result in enhanced performance. In our case, the image size did not shrink a lot in Net1

since the network contains only 2 convolution layers. Hence, the final performance of

Net1 and Net2 was very close.

• As you may have known, naively chaining a large number of layers can result in

difficulties in training. This phenomenon is often referred to as vanishing gradient.

Do you observe something like that in Net3?

➔ In Net3, 10 extra convolution layers are naively stacked after the first 2 convolution +

pooling layers. As shown in Figure 15, the training loss of Net3 is much larger than that

of the other two networks. The convergence is comparably slow, and the final loss is

more than double the final loss of Net1 and Net2. Also, from Figure 18 and Table 1, we

can see that Net3 had the lowest classification accuracy despite being the larger

network. The reason for this is the vanishing gradient problem associated with the naïve

increase in number of layers. During backpropagation, the propagated gradient

becomes smaller and smaller until it somewhat vanishes. Hence, the updates in the

parameter values are very small and the network becomes hard to train.

• Compare the classification results by all three networks, which CNN do you think is

the best performer?

➔ As discussed in detail in answers to questions 1 and 2, Net1 and Net2 performed quite

similarly while Net3 had a lower performance in comparison. Therefore, Net1 and Net2

are preferred over Net3 (which suffers from the vanishing gradient problem). Because

of the preservation of spatial dimensions through pooling, Net2 can probably be

preferred over Net1.

• By observing your confusion matrices, which class or classes do you think are more

difficult to correctly differentiate and why?

➔ In all three networks, the class that was hardest to differentiate is the dog class. As

highlighted in red boxes in Figures 20 – 22, only 162, 154 and 179 out of 400 images

were correctly classified as dog by the three networks respectively. Perhaps the reason

can be that dogs can appear in images of very different contexts. In addition, most of

the time, they only take up a small portion of the image due to their small size.

• What is one thing that you propose to make the classification performance better?

➔ Despite the training loss of Net1 and Net2 being much lower than that of Net3 (see

Figure 15), their validation accuracies are not that far apart (see Table 1). This might

indicate that Net1 and Net2 had actually slightly overfitted the training dataset. Perhaps

it is worth experimenting whether using fewer training epochs for Net1 and Net2 would

result in a better classification accuracy on the validation split. Regularization

techniques to avoid overfitting, such as adding dropout layers, can also be

experimented with. Lastly, by visually inspecting the 64×64 images in the dataset, we

can see that such reduction in size makes them hard to categorize even for us humans.

Hence, not reducing the image size that much preserves more image features that can

be helpful to the networks in classification.

Full Source Code:

Libraries:

import libraries

from pycocotools.coco import COCO

import numpy as np

import skimage.io as io

import matplotlib.pyplot as plt

import cv2

import json

import torch

import torch.nn as nn

import torch.nn.functional as F

import torchvision.transforms as tvt

import os

from PIL import Image

from sklearn.metrics import accuracy_score as accuracy, ConfusionMatrixDisplay as

cfd

Section 3.1

specify annotation file

annotation_file = 'ECE 60146 - Deep

Learning/train2017/annotations/instances_train2017.json'

COCO API - initialize with annotation file

my_coco = COCO(annotation_file)

specify the 5 desired categories

my_categories = ['boat', 'cake', 'couch', 'dog', 'motorcycle']

get IDs of the 5 desired categories

catIDs = []

for category in my_categories:

 catIDs.append(my_coco.getCatIds(catNms = category)[0])

get IDs of images from each of the 5 desired categories

all_imgIDs = []

for i in range(len(catIDs)):

 all_imgIDs.append(my_coco.getImgIds(catIds = catIDs[i]))

remove images belonging to multiple categories

my_imgIDs = {}

my_imgIDs[my_categories[0]] = list(set(all_imgIDs[0]) - set(all_imgIDs[1] +

all_imgIDs[2] + all_imgIDs[3] + all_imgIDs[4]))

my_imgIDs[my_categories[1]] = list(set(all_imgIDs[1]) - set(all_imgIDs[0] +

all_imgIDs[2] + all_imgIDs[3] + all_imgIDs[4]))

my_imgIDs[my_categories[2]] = list(set(all_imgIDs[2]) - set(all_imgIDs[0] +

all_imgIDs[1] + all_imgIDs[3] + all_imgIDs[4]))

my_imgIDs[my_categories[3]] = list(set(all_imgIDs[3]) - set(all_imgIDs[0] +

all_imgIDs[1] + all_imgIDs[2] + all_imgIDs[4]))

my_imgIDs[my_categories[4]] = list(set(all_imgIDs[4]) - set(all_imgIDs[0] +

all_imgIDs[1] + all_imgIDs[2] + all_imgIDs[3]))

a function that processes dataset images of a corresponding split

the function loads images from COCO url, resizes them, saves them to dataset

directory, and updates the dataset dictionary

def process_imgs(allIDs, splitIDs, split):

 # for every instance in the split

 for instance in splitIDs:

 # get instance ID

 ID = allIDs[instance]

 # get image at current ID using COCO API

 img_at_ID = my_coco.loadImgs(ID)[0]

 # read image from COCO url

 img_at_ID = io.imread(img_at_ID['coco_url'])

 # resize image to 64x64

 img_at_ID = cv2.resize(img_at_ID, (64, 64), interpolation = cv2.INTER_AREA)

 # save image to dataset directory

 img_name = str(ID) + '.jpg'

 cv2.imwrite(my_dataset_dir + split + '/' + img_name, img_at_ID)

 # create a dictionary for this dataset instance with image name and one hot

encoding for label

 img = {}

 img['img'] = img_name

 img['label'] = np.zeros(len(my_categories))

 img['label'][my_categories.index(category)] = 1

 # add instance to the corresponding split of the dataset dictionary

 my_dataset_dict[split].append(img)

initialize a dataset dictionary

my_dataset_dict = {}

my_dataset_dict['train'] = []

my_dataset_dict['val'] = []

specify dataset directory

my_dataset_dir = r'ECE 60146 - Deep Learning/my_dataset/'

for every category

for category in my_categories:

 # get image IDs for this category

 cat_imgIDs = my_imgIDs[category]

 # initialize a random generator to select a subset (2000) of the category

images

 my_rand_gen = np.random.default_rng()

 # generate 2000 indices without replacement

 rnd_indices = my_rand_gen.choice(len(cat_imgIDs), 2000, replace = False)

 # let training IDs be the first 1600 randomly generated indices

 train_ids = rnd_indices[:1600]

 # let validation IDs be the last 400 randomly generated indices

 val_ids = rnd_indices[1600:]

 # process images for both splits (read, resize, and save images) + update

dataset dictionary

 process_imgs(cat_imgIDs, train_ids, 'train')

 process_imgs(cat_imgIDs, val_ids, 'val')

plot 3 training images from each category

initialize a figure

fig = plt.figure(figsize=(4, 8))

sub_to_plot = 1

for each category

for i in range(5):

 # generate random indices for each category (note: start and end points are

because of the dataset order)

 rnd_idx = np.random.randint((i*1600), (i+1)*(1600), size = 3)

 # for each of the three images

 for j in range(3):

 # get image name from training split

 img_to_plot_name = my_dataset_dict['train'][rnd_idx[j]]['img']

 # read image from path

 img_to_plot = cv2.imread(my_dataset_dir + 'train/' + img_to_plot_name)

 # plot image

 fig.add_subplot(5, 3, sub_to_plot)

 plt.imshow(img_to_plot)

 plt.axis('off')

 sub_to_plot += 1

shuffle dataset instances

np.random.shuffle(my_dataset_dict['train'])

np.random.shuffle(my_dataset_dict['val'])

add categories to dataset dictionary

my_dataset_dict['categories'] = ['boat', 'cake', 'couch', 'dog', 'motorcycle']

specify name for dataset file

my_dataset_file = my_dataset_dir + 'my_dataset.txt'

save dataset dictionary as a json file

with open(my_dataset_file, 'w') as json_file:

 json.dump(my_dataset_dict, json_file)

Section 3.2

Dataset Class

dataset class

class MyDataset(torch.utils.data.Dataset):

 def __init__ (self, split, root):

 super().__init__()

 # initialize the split and the root path with None

 self.split = None

 self.root = None

 # if chosen split is training

 if split == 'train':

 # set root directory to be that of training

 self.root = root + 'train/'

 # chosen split

 self.split = 'train'

 if split == 'val':

 # root path for validation images

 self.root = root + 'val/'

 # chosen split

 self.split = 'val'

 # load dataset dictionary

 with open(root + 'my_dataset.txt') as json_file:

 self.dataset_dict = json.load(json_file)

 self.categories = self.dataset_dict['categories']

 # data augmentation transforms for training data

 self.train_trans = tvt.Compose([

 # randomly flip dataset images horizontally

 tvt.RandomHorizontalFlip(p=0.5),

 # transform number of channels into 3 (this is important because some of

the instances are in grayscale)

 tvt.Grayscale(num_output_channels = 3),

 # get tensor representation of dataset images and perform pixel value

scaling

 tvt.ToTensor(),

 # perform pixel normalization

 tvt.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

 # transforms for validation data (without augmentation)

 self.val_trans = tvt.Compose([

 # transform number of channels into 3 (this is important because some of

the instances are in grayscale)

 tvt.Grayscale(num_output_channels = 3),

 # get tensor representation of dataset images and perform pixel value

scaling

 tvt.ToTensor(),

 # perform pixel normalization

 tvt.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

 def __len__(self):

 # return the total number of images

 return len(self.dataset_dict[self.split])

 def __getitem__(self, index):

 # get name of image at specified index from specified split

 img_name = self.dataset_dict[self.split][index]['img']

 # read image

 img = Image.open(self.root + img_name)

 # perform appropriate transforms on image (depending on the split)

 trans_img = None

 if (self.split == 'train'):

 trans_img = self.train_trans(img)

 if (self.split == 'val'):

 trans_img = self.val_trans(img)

 # get categorical image label

 categ_label = self.dataset_dict[self.split][index]['label']

 # set label to the corresponding class index

 label = self.categories.index(categ_label)

 # return augmented tensor and integer label

 return trans_img, label

Helper Functions

a function that returns the total number of learnable parameters of a network

reference: DLStudio (https://engineering.purdue.edu/kak/distDLS/)

def get_num_params(network):

 # sum the number of parameters that are learnable (requiring gradient)

 return sum(param.numel() for param in network.parameters() if

param.requires_grad)

Commented out IPython magic to ensure Python compatibility.

a function that trains a network

updated from homework guidelines

def train_network(network):

 # specify dataset root directory

 data_dir = 'ECE 60146 - Deep Learning/my_dataset/'

 # specify device

 device = torch.device("cuda:0")

 # move network to device

 network = network.to(device)

 # instantiate the dataset for training purposes

 my_dataset = MyDataset(split = 'train', root = data_dir)

 # wrap the dataset instance within torch.utils.data.DataLoader

 my_dataloader = torch.utils.data.DataLoader(my_dataset, batch_size = 4, shuffle

= True, num_workers = 2)

 # specify criterion, optimizer, and number of epochs

 criterion = torch.nn.CrossEntropyLoss()

 optimizer = torch.optim.Adam(network.parameters(), lr = 1e-3, betas = (0.9,

0.99))

 epochs = 10

 # make an empty list to store training loss

 training_loss = []

 # for every epoch

 for epoch in range(epochs):

 # initialize running loss with 0.0

 running_loss = 0.0

 # for every batch in the dataset

 for i, data in enumerate(my_dataloader):

 # get batch images and labels

 inputs, labels = data

 # move images and labels to device

 inputs = inputs.to(device)

 labels = labels.to(device)

 # set gradients of learnable parameters to zero

 optimizer.zero_grad()

 # pass inputs into the network

 outputs = network(inputs)

 # calculate loss

 loss = criterion(outputs, labels)

 # perform back propagation

 loss.backward()

 # update optimizer step

 optimizer.step()

 # update running loss

 running_loss += loss.item()

 # save loss every 100 iterations

 if ((i+1) % 100 == 0):

 # get average of running loss

 running_loss /= 100

 # add loss to list of training losses

 training_loss.append(running_loss)

 # print current epoch, batch, and averaged loss

 print ("[epoch: %d, batch: %5d] loss: %.3f" \

% (epoch + 1, i + 1, running_loss))

 # reset running loss

 running_loss = 0.0

 # return training loss

 return training_loss

a function that tests a network, inspired from DLStudio

(https://engineering.purdue.edu/kak/distDLS/)

def test_network(network):

 # specify dataset root directory

 data_dir = 'ECE 60146 - Deep Learning/my_dataset/'

 # specify device

 device = torch.device("cuda:0")

 # set model in evaluation mode

 network = network.eval()

 # move network to device

 network = network.to(device)

 # instantiate the dataset for validation purposes

 my_dataset = MyDataset(split = 'val', root = data_dir)

 # wrap the dataset instance within torch.utils.data.DataLoader

 my_dataloader = torch.utils.data.DataLoader(my_dataset, batch_size = 4, shuffle

= True, num_workers = 2)

 # create empty lists to store true and predicted labels

 true_labels = []

 predicted_labels = []

 # indicate disabling gradient calculation

 with torch.no_grad():

 # for every batch in the dataset

 for i, data in enumerate(my_dataloader):

 # get batch images and labels

 inputs, t_labels = data

 # move batch images and labels to device

 inputs = inputs.to(device)

 t_labels = t_labels.to(device)

 # pass inputs into the network

 outputs = network(inputs)

 # get label with maximum output value

 max_value, p_labels = torch.max(outputs.data, 1)

 # add true and predicted labels to corresponding lists

 true_labels.extend(t_labels.tolist())

 predicted_labels.extend(p_labels.tolist())

 # return lists of true and predicted labels

 return true_labels, predicted_labels

Task 1 Class

network class for task 1

copied from homework guidelines

class HW4Net1(nn.Module):

 def __init__(self):

 super(HW4Net1, self).__init__()

 # 1st convolution layer

 self.conv1 = nn.Conv2d(3, 16, 3)

 # pooling layer

 self.pool = nn.MaxPool2d(2, 2)

 # 2nd convolution layer

 self.conv2 = nn.Conv2d(16, 32, 3)

 # 1st fully connected layer

 self.fc1 = nn.Linear(6272, 64)

 # 2nd fully connected layer

 self.fc2 = nn.Linear(64, 5)

 def forward(self, x):

 # 1st convolution layer + ReLU activation + pooling

 x = self.pool(F.relu(self.conv1(x)))

 # 2nd convolution layer + ReLU activation + pooling

 x = self.pool(F.relu(self.conv2(x)))

 x = x.view(x.shape[0], -1)

 # 1st fully connected layer + ReLU activation

 x = F.relu(self.fc1(x))

 # 2nd fully connected layer

 x = self.fc2(x)

 return x

Task 2 Class

network class for task 2

updated from homework guidelines

class HW4Net2(nn.Module):

 def __init__(self):

 super(HW4Net2, self).__init__()

 # 1st convolution layer

 self.conv1 = nn.Conv2d(3, 16, 3, padding = 1)

 # pooling layer

 self.pool = nn.MaxPool2d(2, 2)

 # 2nd convolution layer

 self.conv2 = nn.Conv2d(16, 32, 3, padding = 1)

 # 1st fully connected layer

 self.fc1 = nn.Linear(8192, 64)

 # 2nd fully connected layer

 self.fc2 = nn.Linear(64, 5)

 def forward(self, x):

 # 1st convolution layer + ReLU activation + pooling

 x = self.pool(F.relu(self.conv1(x)))

 # 2nd convolution layer + ReLU activation + pooling

 x = self.pool(F.relu(self.conv2(x)))

 x = x.view(x.shape[0], -1)

 # 1st fully connected layer + ReLU activation

 x = F.relu(self.fc1(x))

 # 2nd fully connected layer

 x = self.fc2(x)

 return x

Task 3 Class

network class for task 3

updated from homework guidelines

class HW4Net3(nn.Module):

 def __init__(self):

 super(HW4Net3, self).__init__()

 # 1st convolution layer

 self.conv1 = nn.Conv2d(3, 16, 3, padding = 1)

 # pooling layer

 self.pool = nn.MaxPool2d(2, 2)

 # 2nd convolution layer

 self.conv2 = nn.Conv2d(16, 32, 3, padding = 1)

 # 10 extra convolution layers

 self.conv_extra = nn.ModuleList()

 for i in range(10):

 self.conv_extra.append(nn.Conv2d(32, 32, 3, padding = 1))

 # 1st fully connected layer

 self.fc1 = nn.Linear(8192, 64)

 # 2nd fully connected layer

 self.fc2 = nn.Linear(64, 5)

 def forward(self, x):

 # 1st convolution layer + ReLU activation + pooling

 x = self.pool(F.relu(self.conv1(x)))

 # 2nd convolution layer + ReLU activation + pooling

 x = self.pool(F.relu(self.conv2(x)))

 # 10 extra convolution layers + ReLU activation

 for i in range(10):

 x = F.relu(self.conv_extra[i](x))

 x = x.view(x.shape[0], -1)

 # 1st fully connected layer + ReLU activation

 x = F.relu(self.fc1(x))

 # 2nd fully connected layer

 x = self.fc2(x)

 return x

Train Networks

instantiate the three networks

Net1 = HW4Net1()

Net2 = HW4Net2()

Net3 = HW4Net3()

print("Number of Parameters:\nNet1: " + str(get_num_params(Net1)) + "\nNet2: " +

str(get_num_params(Net2)) + "\nNet3: " + str(get_num_params(Net3)))

train the three networks

net1_training_loss = train_network(Net1)

net2_training_loss = train_network(Net2)

net3_training_loss = train_network(Net3)

plot all training losses vs iterations

plt.figure()

plt.plot(net1_training_loss, label="Net1")

plt.plot(net2_training_loss, label="Net2")

plt.plot(net3_training_loss, label="Net3")

set legend, figure title, and axes labels

plt.legend(loc="upper right")

plt.xlabel("Iterations")

plt.ylabel("Training Loss")

plt.title("Training Loss vs Iterations (10 Epochs)")

show figure

plt.show()

Test Networks

test each of the three networks

t_net1, p_net1 = test_network(Net1)

t_net2, p_net2 = test_network(Net2)

t_net3, p_net3 = test_network(Net3)

calculate validation accuracy of each of the three networks

val_acc_1 = accuracy(t_net1, p_net1)

val_acc_2 = accuracy(t_net2, p_net2)

val_acc_3 = accuracy(t_net3, p_net3)

print("Validation Accuracy:\nNet1: " + str(val_acc_1) + "\nNet2: " +

str(val_acc_2) + "\nNet3: " + str(val_acc_3))

calculate confusion matrices of each of the three networks

my_categories = ['boat', 'cake', 'couch', 'dog', 'motorcycle']

conf_mat_1 = cfd.from_predictions(t_net1, p_net1, display_labels =

np.array(my_categories), cmap='GnBu')

conf_mat_2 = cfd.from_predictions(t_net2, p_net2, display_labels =

np.array(my_categories), cmap='GnBu')

conf_mat_3 = cfd.from_predictions(t_net3, p_net3, display_labels =

np.array(my_categories), cmap='GnBu')

