BME646 and ECE60146: Homework 3

Spring 2024
Due Date: 11:59pm, Jan 29, 2024
TA: Akshita Kamsali (akamsali@purdue.edu)

Turn in typed solutions via BrightSpace. Additional instructions can be
found at BrightSpace. Late submissions will be accepted with penalty: -10
points per-late-day, up to 5 days.

1 Introduction

The goal of this homework is for you to develop a greater appreciation for
the step-size optimization logic that is ubiquitous in training deep neural
networks. To that end, this homework will first ask you to execute the
scripts in the Examples directory of your instructor’s CGP class that are
based on a vanilla implementation of SGD (Stochastic Gradient Descent).
Subsequently, you will be asked to improve the learning performance that
can be achieved with those scripts by replacing the basic SGD step-size
calculation with your implementation based on what’s known as the Adam
optimizer.

The Adam optimizer involves two parameters that are commonly de-
noted by 1 and 2. A second goal of this homework is for you to carry
out hyperparameter tuning with respect to these two parameters. What
that means is that you need to search through a designated range of values
for these two parameters in order to find the values that give you the best
performance. That begs the question: How to measure the performance of
a network for any given values for 81 and £857 For now, just use the least
value of the loss achieved with IV iterations of training.

For further information regarding the concepts described above, please
refer to Prof. Kak’s slides on Autograd [1].

2 Becoming Familiar with the Primer

1. Download the tar.gz archive and install version 1.1.3 of your instruc-
tor’s ComputationalGraphPrimer. You will be notified via Piazza or
Brightspace if there are any version updates. You may not want to
sudo pip install the Primer since that would not give you the Ex-
amples directory of the distribution that you are going to need for



the homework. The main documentation page for the Primer can be
accessed though the following link:

https://engineering.purdue.edu/kak/distCGP/

. Execute the following scripts in the Examples directory:
python3 one_neuron_classifier.py
python3 multi_neuron_classifier.py

The final output of both these scripts is a display of the training loss
versus the training iterations.

. Now, execute the following script in the Examples directory
python3 verify_with_torchnn.py

If you did not make changes to the script in the Examples directory,
the loss vs. iterations graph that you will see is for a network that is
a torch.nn version of the handcrafted network you get through the
script multi neuron classifier.py

Compare visually the output you get with the above call with what
you saw for the second script in Step 2.

. Now make appropriate changes to the file verify with_torchnn.py
in order to see the torch.nn based output for the one-neuron model.
The changes you need to make are mentioned in the documentation
part of the file verify with torchnn.py.

Again compare visually the loss-vs-iterations for the one-neuron case
with the handcrafted network vis-a-vis the torch.nn based network.

. Now comes the somewhat challenging part of this homework:

If you’d look at the code for the one-neuron and multi-neuron models
in the Primer, you will notice that the step-size calculations do no
use any optimizations. [For the one-neuron case, you can also see the
backprop and update code on Slide 59 and, for the multi-neuron case,
on Slide 80 of the Week 3 slides.] The implemented parameter update
steps are based solely on the current value of the gradient of the loss
with respect to the parameter in question. That is,

Dit1 =Pt — Ir* gr 1 (1)

where p; denotes learnable parameters from the previous time step,
e.g. layer weights at iteration ¢, and g;y1 denotes the corresponding
gradient for the current time step t + 1.


https://engineering.purdue.edu/kak/distCGP/

It is your job to improve the estimation of p;y1 using the ideas dis-
cussed on Slides 105 through 117 of the Week 3 slides. In order to
fully appreciate what that means, it is recommended that you care-
fully review the material on those slides|[1].

As you will see in the slides mentioned above, the two major com-
ponents of step-size optimization are: (1) using momentum; and (2)
adapting the step sizes to the gradient values of the different parame-
ters. (The latter is also referred to as dealing with sparse gradients.)
Adam (Adaptive Moment Estimation) currently incorporates both of
these components and stands as the world’s most popular step-size
optimizer. However, in some cases, practitioners choose SGD+ over
Adam. Feel free to consult your TA to understand the reasons behind
this choice. Also, feel free to inititate a conversation on Piazza over
the same topic.

What follows is a brief description of the two choices for the optimizer
in order to help you do your homework.

e SGD with Momentum (SGD+): In its simplest form, in-
corporating momentum involves retaining the step size from the
previous iteration. The current step-size decision is then based
on the current gradient value and the preceding step size. To in-
voke momentum for step optimization, separate step updates are
computed for individual learnable parameters. This approach fa-
cilitates determining the current step size by considering both its
prior value and the current gradient value. The recursive update
formula for the step size (v) is expressed as follows:

Vi1 = * Ve + gy,

_ (2)
Ptr1 = Pt — It x vy,

In the formulas shown, v is the step size and the first equation
is the recursive update formula for its update. wvg is typically
initialized with all zeros.

When determining the step size for the current iteration t + 1,
only a fraction p of its value from the previous iteration is utilized.
The momentum scalar p € [0,1] determines the weight assigned
to the previous time step update. If you set p = 0, it corresponds
to Vanilla Gradient Descent. Since this exercise aims for you to
comprehend what goes under the hood, what variable you think
1 corresponds to in the torch implementation of SGD.



You can find the torch documentation of SGD in the following
link:
https://pytorch.org/docs/stable/generated/torch.optim.
SGD.html

e Adaptive Moment Estimation (Adam): Adam is one of the
most widely used step-size optimizers for SGD in deep learning
owing to its efficiency and robust performance especially on large
datasets. The key idea behind Adam is a joint estimation of the
momentum term and the gradient adaptation term in the calcu-
lation of the step sizes. To this end, it keeps running averages
of both the first and second moments of the gradients, and takes
both the moments into account for calculating the step size. The
equations below demonstrate the key logic:

mit1 = Brxmy + (1 — B1) * g,
vig1 = Bax v+ (1= B2) * (ge41)?, 3)
Per1 = pp—Irx —E
VUt+1 T €
where the definitions of the bias-corrected moments r and ¥ can
be found on Slide 115 of [1]. In practice, 81 and f2, which control
the decay rates for the moments, are generally set to 0.9 and 0.99,
respectively.

e Hyperparameter Tuning the the Adam Optimizer:
Hyperparameter tuning is crucial in deep learning as it involves
optimizing the settings that control the learning process, impact-
ing model performance. The right hyperparameter values can sig-
nificantly enhance a model’s accuracy, generalization, and ability
to extract meaningful patterns from data. Effective tuning en-
sures that a model adapts well to diverse datasets and problem
domains, ultimately leading to more robust and reliable models.
This exercise is aimed to provide insights into the sensitivity of
the Adam optimizer to changes in 81 and 2 values and enhance
your understanding of hyperparameter tuning in deep learning.

3 Programming Task

e Your main programming task is two-fold: implementing SGD+ and
Adam based on the basic SGD you see in one_neuron_classifier.
Py and multi_neuron_classifier.py.


https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
https://pytorch.org/docs/stable/generated/torch.optim.SGD.html

As explained in Section 2, the Steps 1-4 are for you to become familiar
with Version 1.1.3 of the Primer. Prof. Kak’s slides on Autograd
explain the basic logic of the implementation code for
one_neuron_classifier.py and multi_neuron_classifier.py.

More specifically, your programming task is to create new versions of
the one-neuron and multi neuron-classifiers that are based on SGD+
as well as Adam.

Note that for the implementation of both SGD+ and Adam, mod-
ifying the main module file ComputationalGraphPrimer.py is
NOT recommended. Instead, you should create subclasses that in-
herit the ComputationalGraphPrimer class provided by the module.
In your subclasses, create or override any class methods as your im-
plementation requires. Also, it should be stressed that you are not
allowed to use PyTorch’s built-in SGD optimizer.

Do include your observations on why the results with torch.nn are
better. Also, talk about the effect of beta values in 3.

Fig. 1 shows an example of the comparative plots from the one-neuron
classifier. This plot is shown just to give you an idea of the improve-
ment achieved from SGD+ over SGD. Your results could vary based
on your choice of the parameters, such as learning rate, u, batch size,
number of iterations, etc.

In this final exercise, you will explore how the performance of the
Adam optimizer is affected by two hyperparameters: (§; (for the ex-
ponential decay of the first moment estimates) and [y (for the ex-
ponential decay of the second moment estimates). Using your own
implemention for the Adam optimizer, train your network with 3 dif-
ferent values for 81 and (5. For example, you can set /3 to [0.8, 0.95,
0.99] and 52 to [0.89, 0.9, 0.95]. Pick a reasonable value for N. You
may continue with the same number of iterations as in previous exer-
cises. Now, tabulate the time taken, final and minimum losses in these
nine different configurations.

Based on your observations, state your conclusions about the impact
of B1 and 2 on the Adam optimizer’s performance.



—— SGD Training Loss

0.30 SGD+ Training Loss

0.25 1
0.20 +
0.15 ~
0.10 +
0.05 4 ‘

0.00 +

T T T T T T T
0 a0 100 150 200 250 300 350 400

Figure 1: Sample comparative plot (SGD+ vs SGD) for the one-neuron
network. Your results could vary depending on your choice of the training
parameters. All the plot formatting related options are also flexible.

4 Submission Instructions

Include a typed report explaining how did you solve the given programming
tasks.

1. Do NOT include CGP Primer downloaded folder or any datasets. Only
submit the .py files you have modified. If you have made any changes
to CGP Primer, your code won’t run on our test scripts. Please be
warned and adhere to instructions in 3 on modifying the main module
files.

2. Your pdf must include a description of

e A description of both SGD+ and Adam in your own words with
key equations.



e For the one-neuron classifier, a plot of training loss vs iteration
comparing all three optimizers (SGD, SGD+, Adam). Another
2 sets of the same plot but with two different learning rates of
your choice covering a good spectrum of low to high learning
rates. What are your observations in terms of loss smoothness
and convergence?

e The same comparative plots with 3 different learning rates for
multi-neuron and state your observations.

e Discuss your findings comparing the performance of the three
optimizers in one or two paragraphs.

e Discuss your findings comparing the performance of the Adam
optimizer under 9 configurations in one or two paragraphs.

e Your source code. Make sure that your source code files are
adequately commented and cleaned up.

. Turn in a pdf file a typed self-contained pdf report with source code
and results. Rename your .pdf file as hw3_<First Name><Last Name>.pdf

. Turn in a zipped file, it should include all source code files (only .py
files are accepted). Rename your .zip file as hw3_<First Name><Last
Name>.zip .

. For all homeworks, you are encouraged to use .ipynb for development
and the report. If you use .ipynb, please convert it to .py and submit
that as source code.

. You can resubmit a homework assignment as many times as you want
up to the deadline. Each submission will overwrite any previous
submission. If you are submitting late, do it only once on
BrightSpace. Otherwise, we cannot guarantee that your latest sub-
mission will be pulled for grading and will not accept related regrade
requests.

. The sample solutions from previous years are for reference only. Your
code and final report must be your own work.

. To help better provide feedback to you, make sure to number your
figures and tables.



References

[1] Autograd for Automatic Differentiation and for Auto-Construction
of Computational Graphs. URL https://engineering.purdue.edu/
DeepLearn/pdf-kak/AutogradAndCGP . pdf.


https://engineering.purdue.edu/DeepLearn/pdf-kak/AutogradAndCGP.pdf
https://engineering.purdue.edu/DeepLearn/pdf-kak/AutogradAndCGP.pdf

	Introduction
	Becoming Familiar with the Primer
	Programming Task
	Submission Instructions

