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1- Exploring the Primer 
Figure 1 shows the loss-vs-iterations plot produced by multi_neuron_classifer.py and Figure 2 
shows the loss-vs-iterations plot produced by verify_with_torchnn.py in the multi neuron 
configuration. From inspecting these plots, we can see that both models are learning since the 
loss is continually decreasing. However, when we take a closer look at the values of the loss. 
The torch.nn model performs worse in as its final loss value hovered around 6, while the 
manually created multi neuron model’s loss hovered around 0.10. We also notice that in Figure 
1 the loss didn’t improve after about 60 iterations suggesting that learning is complete. 
However, in Figure 2 we can see that the loss is continually improving suggesting that more 
iterations of learning can take place. We can also notice that torch.nn is more smooth in its loss 
than the manual method.  

 
Figure 1: loss-vs-iteration plot of multi_neuron_classifer.py 

 
Figure 2: loss-vs-iteration plot of verify_with_torchnn.py (multi-neuron config) 



 
 

Figure 3 and Figure 4 show the same plots as Figure 1 and Figure 2 but for the one-neuron 
scenario. A similarity in Figures 3 and 4 is that both have decreasing loss suggesting that both 
models are indeed learning. However, it’s the rate at which they are learning is the difference. 
For instance, Figure 3’s loss is more linear whereas Figure 4’s loss is more exponential decay. 
However, Figure 4’s model performs much worse as its loss hovers around 1 at the end of 
training, but the loss for Figure 3’s model hovers around 0.20 at the end of training. 
Nevertheless, using torch.nn is still better to use as it includes optimizations to better update 
the parameters.   

 
Figure 3: loss-vs-iteration plot of one_neuron_classifer.py 

 
Figure 4: loss-vs-iteration plot of verify_with_torchnn.py (one-neuron config) 

  



 
 

2- Description of SGD+ and Adam 
a. SGD+ 

We all know that Stochastic Gradient Decent (SGD) is a popular method to optimize a loss 
function in any machine learning model. SGD+ is an extension of SGD that uses the concept of 
momentum to speed up convergence. It does so by increasing the values of the gradients of the 
parameters. In SGD’s journey of finding the minimum of the loss’s hyperplane, if we realize that 
we have been correctly descending to the bottom of the valley, then we can make a greater 
jump to get to the bottom faster. This faster jump or the idea of taking a larger leap is called 
momentum.  
 
The typical update rule for SGD is as follows,  p!"#  =  p!  −  lr  ⋅  g!"#. Here 𝑝$"# is the update 
to be made, the current update 𝑝$, the learning rate 𝑙𝑟, and the next gradient 𝑔$"#. 
 
To convert the mentioned equation to SGD+, we need to consider the previous update (the 
step that was taken last iteration). We still want to make sure we consider the current update 
as well, since if the current gradient is the opposite direction of the previous update, then we 
know we went passed the minimum and we need to self-correct. Therefore, we take a fraction 
of the previous update. The fractional amount of the previous update to consider is determined 
by the variable called momentum. The concepts can be mathematically represented by the 
following equations. 

𝑣$"# = µ ⋅ 𝑣$ + 𝑔$"# 
𝑝$"# = 𝑝$ − 𝑙𝑟 ⋅ 𝑣$"# 

In these equations, the momentum is 𝜇, the previous update is 𝑣$, and 𝑣$"# can be seen as a 
temporary variable.  
 
When comparing the equations of SGD and SGD+, we can see that there is an additional step 
before we modify the update in SGD+. That additional step is essentially, 𝜇 ⋅ 𝑣$. The value of 𝜇 
can range from 0 to 1. A value of 1 means we consider the entire amount of the previous 
update. Alternatively, a value of 0 means we don’t consider the previous update at all. Notice 
that setting 𝜇 = 0 simplifies the equations to be the same as SGD.  
 
 
 
 
 
 
 
 
 
 



 
 

b. ADAM 
Adaptive Moment Estimation, or ADAM for short, is an improved optimizer and is known to 
work very well. Adam combines the concepts of momentum and adaptability. We already know 
that momentum helps reach convergence faster. It does so by checking the previous update 
and if it points at the same direction as the current update, then it will take a larger jump. The 
concept of adaptability addresses the issue of sparse gradients. It is often the case that 
gradients are zeros, meaning there is not much to learn at a particular iteration in training. 
However, in the rare instance that there is a non-zero gradient, then we know this particular 
gradient contains vital information, and as a result we should give it more attention. 
 
The following equations show mathematically what is mentioned in the previous paragraph.  

𝑚$"# = β# ⋅ 𝑚$ + (1 − β#) ⋅ 𝑔$"# 
 

𝑣$"# = β% ⋅ 𝑣$ + (1 − β%) ⋅ (𝑔$"#)% 
 

𝑝$"# = 𝑝$ − 𝑙𝑟 ⋅
𝑚$"#7

8𝑣$"#7+𝜖
 

The first equation incorporates momentum by taking a running weighted average of the 
gradients. As we can see, the weight of the previous gradients is determined by 𝛽#. Setting 
		𝛽# = 0 results in not using momentum at all. The second equation incorporates adaptability 
by taking a running weighted average of the gradient’s variance. Like the case with 𝛽#, setting 
𝛽% = 0	will mean not considering the previous variances. The third equation is our parameter 
update equation. The difference here from the original SGD update equation is that the 
gradient term is replaced with &!"#'

()!"#'"*
 . The numerator of this fraction is essentially the gradient 

with momentum. The denominator of the fraction handles the inverse relationship with 
variance. The logic behind this is that when high variance is observed Adam needs to slow down 
its learning. Additionally, when low variance is observed Adam needs to speed up learning 
because the gradients don’t contain new knowledge to gain. Lastly, the 𝜖 is added to avoid a 
divide by zero error: typically, 𝜖 = 1𝑒 − 8. 
 
While this is the essence of Adam, an issue occurs in practice that requires us to make one 
small change. In the initial iterations of training, 𝑚$ = 𝑣$ = 0. These sway the averages of the 
mean and variance to 0 in the initial iterations. As a result, the following equations are used as 
corrected values for 𝑚$ and 𝑣$.  

𝑚corrected =
&

#12#k
   𝑣corrected =

)
#12%k

 

Here k indicates what iteration the training loop is in. The logic here is the following. In the 
beginning stages of training (small k), the denominator will be a small value resulting in large 
adjustments to 𝑚$ and 𝑣$. While we approach the later stages of training (large k), the 
denominator will approach 1 and not correct our 𝑚$ and 𝑣$. This is perfect because it’s in the 
beginning where we need correction to avoid the 0 bias caused by setting 𝑚$ = 𝑣$ = 0. 
 
 



 
 

3- Implementation 
a. One Neuron 

              
 
 
 
 
 
 
 
     
     
     
     
     
     
     
     
     
     
             
              
Figure 5 – 7 show the iterations vs loss plot of the one neuron model at different learning rates 
with 3 different optimizers: SGD, SGD+, and Adam. In regard to smoothness, it is very evident 
that Adam has the smoothest loss plots. We can see this since the green line in all these plots 
are very thin meaning there is less variation. SGD+ is also considerably smooth but not as 
smooth as the Adam. However, the least smooth is SGD. Figure 5 shows that when the learning 
rate is low, the SGD loss is very volatile and not smooth at all. Regarding convergence, we can 

Figures 5: One Neuron Loss Plot (lr = 0.0001) Figures 6: One Neuron Loss Plot (lr = 0.001) 

Figures 7: One Neuron Loss Plot (lr = 0.005) 



 
 

see that with a small learning rate (0.0001) all the optimizers take longer to learn. While Adam 
stabilizes at a loss slightly above 0.20 very quickly, SGD+ can continually decrease its loss ever 
so slowly: shown in Figure 5. With a medium learning rate (0.001), SGD performs much better 
than how it did with a slower learning rate (Figure 6). Adam can stabilize its loss much quicker 
but doesn’t decrease the loss at all (Figure 6). However, SGD+ outperforms both optimizers by 
getting to a loss below 0.15 (Figure 6). Lastly, with a high learning rate (0.005) we in fact see 
divergence in SGD. This is likely due to SGD overshooting the minimum and never being able to 
return back to the bottom of the valley (Figure 7). This is where we see the beauty of 
momentum as SGD+ is able to remember the past gradients and continue its path to 
convergence (Figure 7). Adam again stabilizes very quickly but is not able to improve its loss 
(Figure 7).  

 
b. Multi Neuron 

 Figures 8: Multi Neuron Loss Plot (lr = 0.0001) Figures 9: Multi Neuron Loss Plot (lr = 0.01) 



 
 

 
 
 
Figure 8 – 10 show the iterations vs loss plot of the multi neuron model at different learning 
rates with 3 different optimizers: SGD, SGD+, and Adam. In regard to smoothness, a high 
learning rate yielded the smoothest loss for all 3 optimizers (Figure 10). In general, Adam had 
smooth loss curves except in the case of Figure 9 where Adam had larger variances towards the 
end of training. SGD has overall the least smoothness. SGD did however smooth out at the end 
of training in Figure 9. Regarding convergence, different learning rates didn’t change if a model 
converged or not, except for the case in SGD+ with a small learning rate (Figure 8). This 
observation is peculiar and could be a result of bad initialization weights. It is clear that a 
learning rate of 0.001 with Adam yielded the lowest loss (Figure 9). Additionally, SGD and SGD+ 
performed the best with a higher learning rate of 0.01 (Figure 10). In fact, SGD’s loss starts to 
decrease toward the end of training suggesting that the loss can be further improved with more 
iterations (Figure 10).  
 

c. Findings 
A lot can be learned from the conducted experiments. The overall take from this is that 

Adam tends to produce smoother loss curves which can be attributed to the consideration of 
the second moment. Additionally, Adam may not converge to the lowest loss, but it will 
stabilize the fastest. This is likely due to the combination of momentum and adaptability. If we 
were to rank the optimizer, SGD+ will be the runner up as it too can converge quickly but not as 
fast as Adam. This again is due to the consideration of momentum. The additional benefit of 
momentum is that SGD+ is able to avoid divergence where ordinary SGD cannot. As seen in the 
case of Figure 7, SGD overshot its estimation but since SGD+ is able to remember its previous 
gradient it avoided that issue. This brings SGD to last place where it experiences high variance 
and generally takes longer to converge.  
 

It is important to mention that the different learning rates play a curial role in the 
performance of these optimizers. Given enough effort, one can easily find the right learning 

Figures 10: Multi Neuron Loss Plot (lr = 0.01) 



 
 

rate that will sway one optimizer to perform better than the other. This only shows that 
hyperparameter tuning is critical when training deep learning models.  
 

d. Adam Optimizer Performance 
 
Figure 11 shows the results of testing Adam optimizer with various beta 1 and beta 2 values. 
From the results the duration of training with different beta values plays no significant role. All 
the models finished training in about 8.8 to 9.1 seconds. The worst performing models occurred 
in trials 8 and 9. This was when the beta 1 value was 0.99 and beta 2 values were 0.9 and 0.95. 
The best performing model was trial 1 where beta 1 = 0.8 and beta 2 = 0.89. The second best 
model was trial 4 with beta 1 = 0.95 and beta 2 = 0.89. It’s important to make clear that I 
determine “best model” by looking at the lowest final loss. Based on these trends, it seems that 
Adam performs better when both beta values are a little less than the normal 0.9 and 0.99 
values that are traditionally used. This means Adam performs better when given slightly more 
importance to the current first and second moments. That is essentially the effect that the beta 
values play in Adam. The lower the beta values, the more weightage is given to the current 
moments when averaging. Inversely, the higher the beta values, the less weightage is given to 
the current moments when averaging.  
 

 
 
 

4- Source Code 
5- # %% 
6- import sys 
7- sys.path.append("/Users/nikkhil/Documents/ECE 60146/hw3/ComputationalGraphPrimer-

1.1.4/ComputationalGraphPrimer") 
8-  
9- import random 
10- import numpy as np 

Figures 11: Table of Tested B1 and B2 Values for Adam  



 
 

11- import matplotlib.pyplot as plt 
12- import operator 
13- from ComputationalGraphPrimer import * 
14- import time 
15-  
16- seed = 0 
17- random.seed(seed) 
18- np.random.seed(seed) 
19-  
20- # %% [markdown] 
21- # Create Subclass that returns the loss 
22-  
23- # %% 
24- # NOTE: This subclass is created so the loss is returned so the values can be used 

for plotting 
25- class ComputationalGraphPrimer_ReturnLoss(ComputationalGraphPrimer): 
26-     def __init__(self, *args, **kwargs): 
27-         super(ComputationalGraphPrimer_ReturnLoss, self).__init__(*args, **kwargs) 
28-      
29-     # NOTE: Code is taken from 

https://engineering.purdue.edu/kak/distCGP/ComputationalGraphPrimer-
1.1.4_CodeOnly.html 

30-     #       The only modification made is the loss_running_record list is returned 
and the generated plots are commented out 

31-     def run_training_loop_one_neuron_model(self, training_data): 
32-         self.vals_for_learnable_params = {param: random.uniform(0,1) for param in 

self.learnable_params} 
33-         self.bias = random.uniform(0,1) 
34-  
35-         class DataLoader: 
36-             def __init__(self, training_data, batch_size): 
37-                 self.training_data = training_data 
38-                 self.batch_size = batch_size 
39-                 self.class_0_samples = [(item, 0) for item in 

self.training_data[0]]   ## Associate label 0 with each sample 
40-                 self.class_1_samples = [(item, 1) for item in 

self.training_data[1]]   ## Associate label 1 with each sample 
41-  
42-             def __len__(self): 
43-                 return len(self.training_data[0]) + len(self.training_data[1]) 
44-  
45-             def _getitem(self):     
46-                 cointoss = random.choice([0,1])                            ## When 

a batch is created by getbatch(), we want the 
47-                                                                            ##   

samples to be chosen randomly from the two lists 
48-                 if cointoss == 0: 
49-                     return random.choice(self.class_0_samples) 



 
 

50-                 else: 
51-                     return random.choice(self.class_1_samples)             
52-  
53-             def getbatch(self): 
54-                 batch_data,batch_labels = [],[]                            ## First 

list for samples, the second for labels 
55-                 maxval = 0.0                                               ## For 

approximate batch data normalization 
56-                 for _ in range(self.batch_size): 
57-                     item = self._getitem() 
58-                     if np.max(item[0]) > maxval:  
59-                         maxval = np.max(item[0]) 
60-                     batch_data.append(item[0]) 
61-                     batch_labels.append(item[1]) 
62-                 batch_data = [item/maxval for item in batch_data]          ## 

Normalize batch data 
63-                 batch = [batch_data, batch_labels] 
64-                 return batch                 
65-  
66-         data_loader = DataLoader(training_data, batch_size=self.batch_size) 
67-         loss_running_record = [] 
68-         i = 0 
69-         avg_loss_over_iterations = 0.0                                    ##  

Average the loss over iterations for printing out  
70-                                                                            ##    

every N iterations during the training loop. 
71-         for i in range(self.training_iterations): 
72-             data = data_loader.getbatch() 
73-             data_tuples_in_batch = data[0] 
74-             class_labels_in_batch = data[1] 
75-             y_preds, deriv_sigmoids =  

self.forward_prop_one_neuron_model(data_tuples_in_batch)     ##  FORWARD PROP of 
data 

76-             loss = sum([(abs(class_labels_in_batch[i] - y_preds[i]))**2 for i in 
range(len(class_labels_in_batch))])  ##  Find loss 

77-             avg_loss_over_iterations += loss / float(len(class_labels_in_batch)) 
78-             if i%(self.display_loss_how_often) == 0:  
79-                 avg_loss_over_iterations /= self.display_loss_how_often 
80-                 loss_running_record.append(avg_loss_over_iterations) 
81-                 print("[iter=%d]  loss = %.4f" %  (i+1, avg_loss_over_iterations))                 

## Display average loss 
82-                 avg_loss_over_iterations = 0.0                                                     

## Re-initialize avg loss 
83-             y_errors_in_batch = list(map(operator.sub, class_labels_in_batch, 

y_preds)) 
84-             self.backprop_and_update_params_one_neuron_model(data_tuples_in_batch, 

y_preds, y_errors_in_batch, deriv_sigmoids)  ## BACKPROP loss 
85-         #plt.figure()      



 
 

86-         #plt.plot(loss_running_record)  
87-         #plt.show() 
88-         return loss_running_record 
89-      
90-     # NOTE: Code is taken from 

https://engineering.purdue.edu/kak/distCGP/ComputationalGraphPrimer-
1.1.4_CodeOnly.html 

91-     #       The only modification made is the loss_running_record list is returned 
and the generated plots are commented out 

92-     def run_training_loop_multi_neuron_model(self, training_data): 
93-  
94-         class DataLoader: 
95-             def __init__(self, training_data, batch_size): 
96-                 self.training_data = training_data 
97-                 self.batch_size = batch_size 
98-                 self.class_0_samples = [(item, 0) for item in 

self.training_data[0]]    ## Associate label 0 with each sample 
99-                 self.class_1_samples = [(item, 1) for item in 

self.training_data[1]]    ## Associate label 1 with each sample 
100-  
101-             def __len__(self): 
102-                 return len(self.training_data[0]) + len(self.training_data[1]) 
103-  
104-             def _getitem(self):     
105-                 cointoss = random.choice([0,1])                            ## 

When a batch is created by getbatch(), we want the 
106-                                                                            ##   

samples to be chosen randomly from the two lists 
107-                 if cointoss == 0: 
108-                     return random.choice(self.class_0_samples) 
109-                 else: 
110-                     return random.choice(self.class_1_samples)             
111-  
112-             def getbatch(self): 
113-                 batch_data,batch_labels = [],[]                            ## 

First list for samples, the second for labels 
114-                 maxval = 0.0                                               ## 

For approximate batch data normalization 
115-                 for _ in range(self.batch_size): 
116-                     item = self._getitem() 
117-                     if np.max(item[0]) > maxval:  
118-                         maxval = np.max(item[0]) 
119-                     batch_data.append(item[0]) 
120-                     batch_labels.append(item[1]) 
121-                 batch_data = [item/maxval for item in batch_data]          ## 

Normalize batch data        
122-                 batch = [batch_data, batch_labels] 
123-                 return batch                 



 
 

124-  
125-         self.vals_for_learnable_params = {param: random.uniform(0,1) for param 

in self.learnable_params} 
126-         self.bias =   {i : [random.uniform(0,1) for j in range( 

self.layers_config[i] ) ]  for i in range(1, self.num_layers)} 
127-         data_loader = DataLoader(training_data, batch_size=self.batch_size) 
128-         loss_running_record = [] 
129-         i = 0 
130-         avg_loss_over_iterations = 0.0                                          

##  Average the loss over iterations for printing out  
131-                                                                                 

##    every N iterations during the training loop.    
132-         for i in range(self.training_iterations): 
133-             data = data_loader.getbatch() 
134-             data_tuples = data[0] 
135-             class_labels = data[1] 
136-             self.forward_prop_multi_neuron_model(data_tuples)                                       

## FORW PROP works by side-effect  
137-             predicted_labels_for_batch = 

self.forw_prop_vals_at_layers[self.num_layers-1]           ## Predictions from FORW 
PROP 

138-             y_preds =  [item for sublist in  predicted_labels_for_batch  for 
item in sublist]       ## Get numeric vals for predictions 

139-             loss = sum([(abs(class_labels[i] - y_preds[i]))**2 for i in 
range(len(class_labels))])  ## Calculate loss for batch 

140-             loss_avg = loss / float(len(class_labels))                                              
## Average the loss over batch 

141-             avg_loss_over_iterations += loss_avg                                                    
## Add to Average loss over iterations 

142-             if i%(self.display_loss_how_often) == 0:  
143-                 avg_loss_over_iterations /= self.display_loss_how_often 
144-                 loss_running_record.append(avg_loss_over_iterations) 
145-                 print("[iter=%d]  loss = %.4f" %  (i+1, 

avg_loss_over_iterations))                  ## Display avg loss 
146-                 avg_loss_over_iterations = 0.0                                                      

## Re-initialize avg-over-iterations loss 
147-             y_errors_in_batch = list(map(operator.sub, class_labels, y_preds)) 
148-             self.backprop_and_update_params_multi_neuron_model(y_preds, 

y_errors_in_batch) 
149-         #plt.figure()      
150-         #plt.plot(loss_running_record)  
151-         #plt.show() 
152-         return loss_running_record 
153-  
154- # %% [markdown] 
155- # Create SGD+ (one & multi neuron) 
156-  
157- # %% 



 
 

158- # NOTE: Create a subclass of ComputationalGraphPrimer - SGD+ 
159- #       In this class the backprop functions are modified to use SGD+ 
160- class 

ComputationalGraphPrimer_ReturnLoss_SGD_Plus(ComputationalGraphPrimer_ReturnLoss): 
161-     def __init__(self, *args, **kwargs): 
162-         super(ComputationalGraphPrimer_ReturnLoss_SGD_Plus, 

self).__init__(*args, **kwargs) 
163-  
164-     # NOTE: Function created to set up all variables needed for carrying out 

momentum 
165-     def initializeMomentumStuff_OneNeuron(self, momentum): 
166-         self.mu = momentum 
167-         # Previous updates for weights - set everything to 0 at first 
168-         self.param_updates = {key: 0.0 for key in self.learnable_params} 
169-         # Previous update for bias - set to 0 at first 
170-         self.bias_update = 0.0 
171-  
172-     # NOTE: Function created to set up all variables needed for carrying out 

momentum 
173-     def initializeMomentumStuff_MultiNeuron(self, momentum): 
174-         self.muMulti = momentum 
175-         # Previous updates for weights - set everything to 0 at first 
176-         self.param_updates = {key: 0.0 for key in self.learnable_params} 
177-         # Previous update for bias - set to 0 at first 
178-         self.bias_updates = {i: [0.0 for _ in range(self.layers_config[i])] for 

i in range(1, self.num_layers)} 
179-  
180-     # NOTE: Code is taken from 

https://engineering.purdue.edu/kak/distCGP/ComputationalGraphPrimer-
1.1.4_CodeOnly.html 

181-     #       Most of this function is the same as Prof Avinash Kak's. 
182-     #       Modifications made are indicated by comments. 
183-     def backprop_and_update_params_one_neuron_model(self, data_tuples_in_batch, 

predictions, y_errors_in_batch, deriv_sigmoids): 
184-         input_vars = self.independent_vars 
185-         input_vars_to_param_map = self.var_to_var_param[self.output_vars[0]]                  

## These two statements align the 
186-         param_to_vars_map = {param : var for var, param in 

input_vars_to_param_map.items()}   ##   the input vars  
187-         vals_for_learnable_params = self.vals_for_learnable_params 
188-         for i,param in enumerate(self.vals_for_learnable_params): 
189-             ## For each param, sum the partials from every training data sample 

in batch 
190-             partial_of_loss_wrt_param = 0.0 
191-             for j in range(self.batch_size): 
192-                 vals_for_input_vars_dict =  dict(zip(input_vars, 

list(data_tuples_in_batch[j]))) 



 
 

193-                 partial_of_loss_wrt_param   +=   -  y_errors_in_batch[j] * 
vals_for_input_vars_dict[param_to_vars_map[param]] * deriv_sigmoids[j] 

194-             partial_of_loss_wrt_param /=  float(self.batch_size) 
195-             # Modification ---- Start 
196-             # Here I am using the past parameter update and momentum to slighly 

modify the gradient 
197-             # This is then used to update self.vals_for_learnable_params[param] 
198-             # Equation set 2 from the hw description file is being implemented 

here 
199-             self.param_updates[param] = self.mu * self.param_updates[param] - 

self.learning_rate * partial_of_loss_wrt_param 
200-             self.vals_for_learnable_params[param] += self.param_updates[param] 
201-             # Modification ---- End 
202-              
203-         y_error_avg = sum(y_errors_in_batch) / float(self.batch_size) 
204-         deriv_sigmoid_avg = sum(deriv_sigmoids) / float(self.batch_size) 
205-          
206-         # Modification ---- Start 
207-         # Like the weights the bias is also being updated in the same manner 
208-         # Again equation set 2 from the hw description file is being 

implemented here 
209-         self.bias_update = self.mu * self.bias_update + self.learning_rate * 

y_error_avg * deriv_sigmoid_avg 
210-         self.bias += self.bias_update 
211-         # Modification ---- End 
212-      
213-     # NOTE: Code is taken from 

https://engineering.purdue.edu/kak/distCGP/ComputationalGraphPrimer-
1.1.4_CodeOnly.html 

214-     #       Most of this function is the same as Prof Avinash Kak's. 
215-     #       Modifications made are indicated by comments. 
216-     def backprop_and_update_params_multi_neuron_model(self, predictions, 

y_errors): 
217-         ## Eq. (24) on Slide 73 of my Week 3 lecture says we need to store 

backproped errors in each layer leading up to the last: 
218-         pred_err_backproped_at_layers =   [ {i : [None for j in range( 

self.layers_config[i] ) ]   
219-                                                                   for i in 

range(self.num_layers)} for _ in range(self.batch_size) ] 
220-         ## This will store "\delta L / \delta w" you see at the LHS of the 

equations on Slide 73: 
221-         partial_of_loss_wrt_params = {param : 0.0 for param in self.all_params} 
222-         ## For estimating the changes to the bias to be made on the basis of 

the derivatives of the Sigmoids: 
223-         bias_changes =   {i : [0.0 for j in range( self.layers_config[i] ) ]  

for i in range(1, self.num_layers)} 
224-         for b in range(self.batch_size): 



 
 

225-             pred_err_backproped_at_layers[b][self.num_layers - 1] = [ 
y_errors[b] ] 

226-             for back_layer_index in reversed(range(1,self.num_layers)):             
## For the 3-layer network, the first val for back_layer_index is 2 for the 3rd 
layer 

227-                 input_vals = self.forw_prop_vals_at_layers[back_layer_index -1]     
## This is a list of 8 two-element lists  --- since we have two nodes in the 2nd 
layer 

228-                 deriv_sigmoids =  
self.gradient_vals_for_layers[back_layer_index]   ## This is a list eight one-
element lists, one for each batch element 

229-                 vars_in_layer  =  self.layer_vars[back_layer_index]                 
## A list like ['xo'] 

230-                 vars_in_next_layer_back  =  self.layer_vars[back_layer_index - 
1]   ## A list like ['xw', 'xz'] 

231-                 vals_for_input_vars_dict =  dict(zip(vars_in_next_layer_back, 
self.forw_prop_vals_at_layers[back_layer_index - 1][b]))    

232-                 ## For the next statement, note that layer_params are stored in 
a dict like         

233-                 ##       {1: [['ap', 'aq', 'ar', 'as'], ['bp', 'bq', 'br', 
'bs']], 2: [['cp', 'cq']]} 

234-                 ## "layer_params[idx]" is a list of lists for the link weights 
in layer whose output nodes are in layer "idx" 

235-                 layer_params = self.layer_params[back_layer_index]          
236-                 transposed_layer_params = list(zip(*layer_params))                  

## Creating a transpose of the link matrix, See Eq. 30 on Slide 77 
237-                 for k,var1 in enumerate(vars_in_next_layer_back): 
238-                     for j,var2 in enumerate(vars_in_layer): 
239-                         pred_err_backproped_at_layers[b][back_layer_index - 

1][k] = sum([self.vals_for_learnable_params[transposed_layer_params[k][i]] 
240-                                                                                        

* pred_err_backproped_at_layers[b][back_layer_index][i] 
241-                                                                                                                   

for i in range(len(vars_in_layer))]) 
242-                 for j,var in enumerate(vars_in_layer): 
243-                     layer_params = self.layer_params[back_layer_index][j]           

##  ['cp', 'cq']   for the end layer 
244-                     input_vars_to_param_map = self.var_to_var_param[var]            

## These two statements align the    {'xw': 'cp', 'xz': 'cq'} 
245-                     param_to_vars_map = {param : var for var, param in 

input_vars_to_param_map.items()}   ##   and the input vars   {'cp': 'xw', 'cq': 
'xz'} 

246-  
247-                     ##  Update the partials of Loss wrt to the learnable 

parameters between the current layer 
248-                     ##  and the previous layer. You are accumulating these 

partials over the different training 



 
 

249-                     ##  data samples in the batch being processed.  For each 
training data sample, the formula 

250-                     ##  being used is shown in Eq. (29) on Slide 77 of my Week 
3 slides: 

251-                     for i,param in enumerate(layer_params): 
252-                         partial_of_loss_wrt_params[param]   +=   

pred_err_backproped_at_layers[b][back_layer_index][j] * \ 
253-                                                                         

vals_for_input_vars_dict[param_to_vars_map[param]] * deriv_sigmoids[b][j] 
254-                 ##  We will now estimate the change in the bias that needs to 

be made at each node in the previous layer 
255-                 ##  from the derivatives the sigmoid at the nodes in the 

current layer and the prediction error as 
256-                 ##  backproped to the previous layer nodes: 
257-                 for k,var1 in enumerate(vars_in_next_layer_back): 
258-                     for j,var2 in enumerate(vars_in_layer): 
259-                         if back_layer_index-1 > 0: 
260-                             bias_changes[back_layer_index-1][k] += 

pred_err_backproped_at_layers[b][back_layer_index - 1][k] * deriv_sigmoids[b][j]  
261-   
262-         ## Now update the learnable parameters.  The loop shown below carries 

out SGD mandated averaging 
263-         for param in partial_of_loss_wrt_params:  
264-             partial_of_loss_wrt_param = partial_of_loss_wrt_params[param] /  

float(self.batch_size) 
265-             # Modification ---- Start 
266-             # Here I am using the past parameter update and momentum to slighly 

modify the gradient 
267-             # This is then used to update self.vals_for_learnable_params[param] 
268-             # Equation set 2 from the hw description file is being implemented 

here 
269-             self.param_updates[param] = self.muMulti * 

self.param_updates[param] - self.learning_rate * partial_of_loss_wrt_param  
270-             self.vals_for_learnable_params[param] += self.param_updates[param] 
271-             # Modification ---- End 
272-  
273-         ##  Finally we update the biases at all the nodes that aggregate data:       
274-         for layer_index in range(1,self.num_layers):            
275-             for k in range(self.layers_config[layer_index]): 
276-                 # Modification ---- Start 
277-                 # Like the weights the bias is also being updated in the same 

manner 
278-                 # Again equation set 2 from the hw description file is being 

implemented here 
279-                 # A temporary variable 'temp_bias_change' is created to avoid 

having 1 long line of code 
280-                 temp_bias_change = bias_changes[layer_index][k] / 

float(self.batch_size) 



 
 

281-                 self.bias_updates[layer_index][k] = self.muMulti * 
self.bias_updates[layer_index][k] + self.learning_rate * temp_bias_change 

282-                 self.bias[layer_index][k]  +=  
self.bias_updates[layer_index][k] 

283-                 # Modification ---- End 
284-  
285- # %% [markdown] 
286- # Create ADAM (one & multi neuron) 
287-  
288- # %% 
289- # NOTE: Create a subclass of ComputationalGraphPrimer - ADAM  
290- class 

ComputationalGraphPrimer_ReturnLoss_ADAM(ComputationalGraphPrimer_ReturnLoss): 
291-     def __init__(self, *args, **kwargs): 
292-         super(ComputationalGraphPrimer_ReturnLoss_ADAM, self).__init__(*args, 

**kwargs) 
293-  
294-     # NOTE: Function created to set up all variables needed for carrying out 

adam 
295-     # Epsilon is hard coded to be 1e-8 as it is the standard mentioned in 

PyTorch documentation 
296-     def initializeADAMStuff_OneNeuron(self, beta1, beta2, epsilon=1e-8): 
297-         self.b1 = beta1 
298-         self.b2 = beta2 
299-         self.ep = epsilon 
300-         self.timestep = 0 
301-         self.m = {param: 0 for param in self.learnable_params} 
302-         self.v = {param: 0 for param in self.learnable_params} 
303-      
304-     # NOTE: Function created to set up all variables needed for carrying out 

adam 
305-     # Epsilon is hard coded to be 1e-8 as it is the standard mentioned in 

PyTorch documentation 
306-     def initializeADAMStuff_MultiNeuron(self, beta1, beta2, epsilon=1e-8): 
307-         self.b1 = beta1 
308-         self.b2 = beta2 
309-         self.ep = epsilon 
310-         self.timestep = 0 
311-         # For weights 
312-         self.m = {param: 0 for param in self.learnable_params} 
313-         self.v = {param: 0 for param in self.learnable_params} 
314-         # For bias 
315-         self.m_bias = {layer: [0 for _ in range(self.layers_config[layer])] for 

layer in range(1, self.num_layers)} 
316-         self.v_bias = {layer: [0 for _ in range(self.layers_config[layer])] for 

layer in range(1, self.num_layers)} 
317-  



 
 

318-     # NOTE: Code is taken from 
https://engineering.purdue.edu/kak/distCGP/ComputationalGraphPrimer-
1.1.4_CodeOnly.html 

319-     #       Most of this function is the same as Prof Avinash Kak's. 
320-     #       Modifications made are indicated by comments. 
321-     def backprop_and_update_params_one_neuron_model(self, data_tuples_in_batch, 

predictions, y_errors_in_batch, deriv_sigmoids): 
322-          
323-         # Modification ---- Start 
324-         self.timestep += 1 
325-         # Modification ---- End 
326-  
327-         input_vars = self.independent_vars 
328-         input_vars_to_param_map = self.var_to_var_param[self.output_vars[0]]                  

## These two statements align the 
329-         param_to_vars_map = {param : var for var, param in 

input_vars_to_param_map.items()}   ##   the input vars  
330-         vals_for_learnable_params = self.vals_for_learnable_params 
331-         for i,param in enumerate(self.vals_for_learnable_params): 
332-             ## For each param, sum the partials from every training data sample 

in batch 
333-             partial_of_loss_wrt_param = 0.0 
334-             for j in range(self.batch_size): 
335-                 vals_for_input_vars_dict =  dict(zip(input_vars, 

list(data_tuples_in_batch[j]))) 
336-                 partial_of_loss_wrt_param   +=   -  y_errors_in_batch[j] * 

vals_for_input_vars_dict[param_to_vars_map[param]] * deriv_sigmoids[j] 
337-             partial_of_loss_wrt_param /=  float(self.batch_size) 
338-              
339-             # Modification ---- Start 
340-             # Here I am using Equation set 3 from the hw description file 
341-             # The m_corrected and v_corrected are from Week 3's presentaion 

slide 118 
342-             # These values are then used to update 

self.vals_for_learnable_params[param] 
343-             # The bias is updated in teh same manner  
344-             self.m[param] = self.b1 * self.m[param] + (1-self.b1) * 

partial_of_loss_wrt_param 
345-             self.v[param] = self.b2 * self.v[param] + (1-self.b2) * 

(partial_of_loss_wrt_param ** 2) 
346-  
347-             m_corr = self.m[param] / (1 - (self.b1**self.timestep)) 
348-             v_corr = self.v[param] / (1 - (self.b2**self.timestep)) 
349-  
350-             self.vals_for_learnable_params[param] -= self.learning_rate * 

m_corr / ((v_corr + self.ep) ** 0.5) 
351-             self.bias -= self.learning_rate * m_corr / ((v_corr + self.ep) ** 

0.5) 



 
 

352-             # Modification ---- End 
353-  
354-     # NOTE: Code is taken from 

https://engineering.purdue.edu/kak/distCGP/ComputationalGraphPrimer-
1.1.4_CodeOnly.html 

355-     #       Most of this function is the same as Prof Avinash Kak's. 
356-     #       Modifications made are indicated by comments. 
357-     def backprop_and_update_params_multi_neuron_model(self, predictions, 

y_errors): 
358-          
359-         # Modification ---- Start 
360-         self.timestep += 1 
361-         # Modification ---- End 
362-  
363-         ## Eq. (24) on Slide 73 of my Week 3 lecture says we need to store 

backproped errors in each layer leading up to the last: 
364-         pred_err_backproped_at_layers =   [ {i : [None for j in range( 

self.layers_config[i] ) ]   
365-                                                                   for i in 

range(self.num_layers)} for _ in range(self.batch_size) ] 
366-         ## This will store "\delta L / \delta w" you see at the LHS of the 

equations on Slide 73: 
367-         partial_of_loss_wrt_params = {param : 0.0 for param in self.all_params} 
368-         ## For estimating the changes to the bias to be made on the basis of 

the derivatives of the Sigmoids: 
369-         bias_changes =   {i : [0.0 for j in range( self.layers_config[i] ) ]  

for i in range(1, self.num_layers)} 
370-         for b in range(self.batch_size): 
371-             pred_err_backproped_at_layers[b][self.num_layers - 1] = [ 

y_errors[b] ] 
372-             for back_layer_index in reversed(range(1,self.num_layers)):             

## For the 3-layer network, the first val for back_layer_index is 2 for the 3rd 
layer 

373-                 input_vals = self.forw_prop_vals_at_layers[back_layer_index -1]     
## This is a list of 8 two-element lists  --- since we have two nodes in the 2nd 
layer 

374-                 deriv_sigmoids =  
self.gradient_vals_for_layers[back_layer_index]   ## This is a list eight one-
element lists, one for each batch element 

375-                 vars_in_layer  =  self.layer_vars[back_layer_index]                 
## A list like ['xo'] 

376-                 vars_in_next_layer_back  =  self.layer_vars[back_layer_index - 
1]   ## A list like ['xw', 'xz'] 

377-                 vals_for_input_vars_dict =  dict(zip(vars_in_next_layer_back, 
self.forw_prop_vals_at_layers[back_layer_index - 1][b]))    

378-                 ## For the next statement, note that layer_params are stored in 
a dict like         



 
 

379-                 ##       {1: [['ap', 'aq', 'ar', 'as'], ['bp', 'bq', 'br', 
'bs']], 2: [['cp', 'cq']]} 

380-                 ## "layer_params[idx]" is a list of lists for the link weights 
in layer whose output nodes are in layer "idx" 

381-                 layer_params = self.layer_params[back_layer_index]          
382-                 transposed_layer_params = list(zip(*layer_params))                  

## Creating a transpose of the link matrix, See Eq. 30 on Slide 77 
383-                 for k,var1 in enumerate(vars_in_next_layer_back): 
384-                     for j,var2 in enumerate(vars_in_layer): 
385-                         pred_err_backproped_at_layers[b][back_layer_index - 

1][k] = sum([self.vals_for_learnable_params[transposed_layer_params[k][i]] 
386-                                                                                        

* pred_err_backproped_at_layers[b][back_layer_index][i] 
387-                                                                                                                   

for i in range(len(vars_in_layer))]) 
388-                 for j,var in enumerate(vars_in_layer): 
389-                     layer_params = self.layer_params[back_layer_index][j]           

##  ['cp', 'cq']   for the end layer 
390-                     input_vars_to_param_map = self.var_to_var_param[var]            

## These two statements align the    {'xw': 'cp', 'xz': 'cq'} 
391-                     param_to_vars_map = {param : var for var, param in 

input_vars_to_param_map.items()}   ##   and the input vars   {'cp': 'xw', 'cq': 
'xz'} 

392-  
393-                     ##  Update the partials of Loss wrt to the learnable 

parameters between the current layer 
394-                     ##  and the previous layer. You are accumulating these 

partials over the different training 
395-                     ##  data samples in the batch being processed.  For each 

training data sample, the formula 
396-                     ##  being used is shown in Eq. (29) on Slide 77 of my Week 

3 slides: 
397-                     for i,param in enumerate(layer_params): 
398-                         partial_of_loss_wrt_params[param]   +=   

pred_err_backproped_at_layers[b][back_layer_index][j] * \ 
399-                                                                         

vals_for_input_vars_dict[param_to_vars_map[param]] * deriv_sigmoids[b][j] 
400-                 ##  We will now estimate the change in the bias that needs to 

be made at each node in the previous layer 
401-                 ##  from the derivatives the sigmoid at the nodes in the 

current layer and the prediction error as 
402-                 ##  backproped to the previous layer nodes: 
403-                 for k,var1 in enumerate(vars_in_next_layer_back): 
404-                     for j,var2 in enumerate(vars_in_layer): 
405-                         if back_layer_index-1 > 0: 
406-                             bias_changes[back_layer_index-1][k] += 

pred_err_backproped_at_layers[b][back_layer_index - 1][k] * deriv_sigmoids[b][j]  
407-   



 
 

408-         ## Now update the learnable parameters.  The loop shown below carries 
out Adam 

409-         for param in partial_of_loss_wrt_params:  
410-             partial_of_loss_wrt_param = partial_of_loss_wrt_params[param] /  

float(self.batch_size)    
411-             # Modification ---- Start 
412-             # Here I am using Equation set 3 from the hw description file 
413-             # The m_corrected and v_corrected are from Week 3's presentaion 

slide 118 
414-             # These values are then used to update 

self.vals_for_learnable_params[param] 
415-             self.m[param] = self.b1 * self.m[param] + (1-self.b1) * 

partial_of_loss_wrt_param 
416-             self.v[param] = self.b2 * self.v[param] + (1-self.b2) * 

(partial_of_loss_wrt_param ** 2) 
417-  
418-             m_corr = self.m[param] / (1 - (self.b1 ** self.timestep)) 
419-             v_corr = self.v[param] / (1 - (self.b2 ** self.timestep)) 
420-              
421-             self.vals_for_learnable_params[param] += self.learning_rate * 

m_corr / ((v_corr + self.ep) ** 0.5) 
422-             # Modification ---- End         
423-  
424-         ##  Finally we update the biases at all the nodes that aggregate data:       
425-         for layer_index in range(1,self.num_layers):            
426-             for k in range(self.layers_config[layer_index]): 
427-                 # Modification ---- Start 
428-                 # The bias is updated in the same manner as the weights were 

updated 
429-                 # Again temp variable temp_bias_change for easy code 

readability  
430-                 temp_bias_change = (bias_changes[layer_index][k] / 

float(self.batch_size)) 
431-  
432-                 self.m_bias[layer_index][k] = self.b1 * 

self.m_bias[layer_index][k] + (1 - self.b1) * temp_bias_change 
433-                 self.v_bias[layer_index][k] = self.b2 * 

self.v_bias[layer_index][k] + (1 - self.b2) * (temp_bias_change ** 2) 
434-  
435-                 m_bias_corr = self.m_bias[layer_index][k] / (1 - (self.b1 ** 

self.timestep)) 
436-                 v_bias_corr = self.v_bias[layer_index][k] / (1 - (self.b2 ** 

self.timestep)) 
437-  
438-                 self.bias[layer_index][k] += self.learning_rate * m_bias_corr / 

((v_bias_corr + self.ep) ** 0.5) 
439-                 # Modification ---- End  
440-              



 
 

441-  
442- # %% [markdown] 
443- # Test One Neuron (SGD, SGD+, ADAM) 
444-  
445- # %% 
446- lr = 5e-3 
447-  
448- # %% 
449- # Train One Neuron - SGD 
450- oneN_sgd = ComputationalGraphPrimer_ReturnLoss(one_neuron_model = True, 

expressions = ['xw=ab*xa+bc*xb+cd*xc+ac*xd'], output_vars = ['xw'], dataset_size = 
5000,  

451-                                                learning_rate = lr, 
452-                                                training_iterations = 40000, 

batch_size = 8, display_loss_how_often = 100, debug = False,) 
453-  
454- oneN_sgd.parse_expressions() 
455- training_data = oneN_sgd.gen_training_data() 
456- loss_oneN_sgd = oneN_sgd.run_training_loop_one_neuron_model(training_data) 
457-  
458- # %% 
459- # Train One Neuron - SGD+ 
460- oneN_sgdP = ComputationalGraphPrimer_ReturnLoss_SGD_Plus(one_neuron_model = 

True, expressions = ['xw=ab*xa+bc*xb+cd*xc+ac*xd'], output_vars = ['xw'], 
dataset_size = 5000,  

461-                                                         learning_rate = lr, 
462-                                                         training_iterations = 

40000, batch_size = 8, display_loss_how_often = 100,debug = False,) 
463-  
464- oneN_sgdP.parse_expressions() 
465- training_data = oneN_sgdP.gen_training_data() 
466- oneN_sgdP.initializeMomentumStuff_OneNeuron(momentum=0.9) 
467- loss_oneN_sgdP = oneN_sgdP.run_training_loop_one_neuron_model(training_data) 
468-  
469- # %% 
470- # Train One Neuron - ADAM 
471- oneN_adam = ComputationalGraphPrimer_ReturnLoss_ADAM(one_neuron_model = True, 

expressions = ['xw=ab*xa+bc*xb+cd*xc+ac*xd'], output_vars = ['xw'], dataset_size = 
5000,  

472-                                                      learning_rate = lr, 
473-                                                      training_iterations = 

40000, batch_size = 8, display_loss_how_often = 100, debug = False,) 
474-  
475- oneN_adam.parse_expressions() 
476- training_data = oneN_adam.gen_training_data() 
477- oneN_adam.initializeADAMStuff_OneNeuron(beta1=0.9, beta2=0.99) 
478- loss_oneN_adam = oneN_adam.run_training_loop_one_neuron_model(training_data) 
479-  



 
 

480- # %% 
481- # Pot all the losses 
482- plt.figure()      
483- plt.plot(loss_oneN_sgd, label='SGD') 
484- plt.plot(loss_oneN_sgdP, label='SGD+')  
485- plt.plot(loss_oneN_adam, label='ADAM')  
486- plt.legend() 
487- plt.title(f"Iterations vs Training Loss lr = {lr}") 
488- plt.show() 
489-  
490- # %% [markdown] 
491- # Test Multi Neuron (SGD, SGD+, ADAM) 
492-  
493- # %% 
494- #lr = 9e-2 
495- lr = 1e-2 
496- #lr = 5e-2 
497- #lr = .01 
498-  
499- # %% 
500- multiN_sgd = ComputationalGraphPrimer_ReturnLoss(num_layers = 3, layers_config 

= [4,2,1], expressions = ['xw=ap*xp+aq*xq+ar*xr+as*xs', 
501-                                                                                                          

'xz=bp*xp+bq*xq+br*xr+bs*xs', 
502-                                                                                                          

'xo=cp*xw+cq*xz'], output_vars = ['xo'], dataset_size = 5000, 
503-                                                 learning_rate = lr, 
504-                                                 training_iterations = 20000, 

batch_size = 8, display_loss_how_often = 100, debug = False,) 
505-  
506- multiN_sgd.parse_multi_layer_expressions() 
507- training_data = multiN_sgd.gen_training_data() 
508- loss_multiN_sgd = 

multiN_sgd.run_training_loop_multi_neuron_model(training_data) 
509-  
510- # %% 
511- multiN_sgdP = ComputationalGraphPrimer_ReturnLoss_SGD_Plus(num_layers = 

3,layers_config = [4,2,1], expressions = ['xw=ap*xp+aq*xq+ar*xr+as*xs', 
512-                                                                                                                   

'xz=bp*xp+bq*xq+br*xr+bs*xs', 
513-                                                                                                                   

'xo=cp*xw+cq*xz'], output_vars = ['xo'], dataset_size = 5000, 
514-                                                             learning_rate = lr, 
515-                                                             training_iterations 

= 20000, batch_size = 8, display_loss_how_often = 100, debug = False,) 
516-  
517- multiN_sgdP.parse_multi_layer_expressions() 
518- training_data = multiN_sgdP.gen_training_data() 



 
 

519- multiN_sgdP.initializeMomentumStuff_MultiNeuron(momentum=0.9) 
520- loss_multi_SGD = 

multiN_sgdP.run_training_loop_multi_neuron_model(training_data) 
521-  
522- # %% 
523- multiN_adam = ComputationalGraphPrimer_ReturnLoss_ADAM(num_layers = 

3,layers_config = [4,2,1], expressions = ['xw=ap*xp+aq*xq+ar*xr+as*xs', 
524-                                                                                                               

'xz=bp*xp+bq*xq+br*xr+bs*xs', 
525-                                                                                                               

'xo=cp*xw+cq*xz'], output_vars = ['xo'], dataset_size = 5000, 
526-                                                         learning_rate = lr, 
527-                                                         training_iterations = 

20000, batch_size = 8, display_loss_how_often = 100, debug = False,) 
528-  
529- multiN_adam.parse_multi_layer_expressions() 
530- training_data = multiN_adam.gen_training_data() 
531- multiN_adam.initializeADAMStuff_MultiNeuron(beta1=0.9, beta2=0.99) 
532- loss_multi_Adam = 

multiN_adam.run_training_loop_multi_neuron_model(training_data) 
533-  
534- # %% 
535- # Pot all the losses 
536- plt.figure()      
537- plt.plot(loss_multiN_sgd, label='SGD') 
538- plt.plot(loss_multi_SGD, label='SGD+')  
539- plt.plot(loss_multi_Adam, label='Adam') 
540- plt.title(f"Iterations vs Training Loss lr = {lr}") 
541- plt.legend() 
542- plt.show() 
543-  
544- # %% [markdown] 
545- # ADAM - Hyperparamter Tuning - B1 and B2 
546-  
547- # %% 
548- # NOTE: The following code loops through all beta1 and beta2 values. 
549- #       The code then creates a new cgp and trains with the beta values 
550- #       The results are then saved to the results list 
551-  
552- B1 = [0.8 , 0.95, 0.99] 
553- B2 = [0.89, 0.9 , 0.95] 
554-  
555- i = 1 
556- results = [] 
557- for b1 in B1: 
558-     for b2 in B2: 
559-          



 
 

560-         testAdam = ComputationalGraphPrimer_ReturnLoss_ADAM(num_layers = 
3,layers_config = [4,2,1], expressions = ['xw=ap*xp+aq*xq+ar*xr+as*xs', 

561-                                                                                                               
'xz=bp*xp+bq*xq+br*xr+bs*xs', 

562-                                                                                                               
'xo=cp*xw+cq*xz'], output_vars = ['xo'], dataset_size = 5000, 

563-                                                         learning_rate = lr, 
564-                                                         training_iterations = 

20000, batch_size = 8, display_loss_how_often = 100, debug = False,) 
565-         testAdam.parse_multi_layer_expressions() 
566-         training_data = testAdam.gen_training_data() 
567-         testAdam.initializeADAMStuff_MultiNeuron(beta1=b1, beta2=b2) 
568-          
569-         # Start time measurement 
570-         start_time = time.time() 
571-          
572-         loss_testAdam = 

testAdam.run_training_loop_multi_neuron_model(training_data) 
573-          
574-         # End time measurement 
575-         end_time = time.time() 
576-         duration = end_time - start_time 
577-          
578-         # Save metrics results list 
579-         finalLoss = loss_testAdam[-1] 
580-         minLoss = min(loss_testAdam) 
581-          
582-         result = f"{i}\t{b1}\t{b2}\t{round(duration, 1)}\t{round(finalLoss, 

4)}\t{round(minLoss, 4)}" 
583-         results.append(result) 
584-         i+=1 
585-  
586- # %% 
587- # Results are printed 
588- print(f"Trial\tB1\tB2\tTime\tFinal-L\tMin-L") 
589- for r in results: 
590-     print(r) 
591-  

 

 
 


