
ECE 60146 Homework 3
Nikkhil Vijaya Sankar – nvijayas@purdue.edu

1- Exploring the Primer
Figure 1 shows the loss-vs-iterations plot produced by multi_neuron_classifer.py and Figure 2
shows the loss-vs-iterations plot produced by verify_with_torchnn.py in the multi neuron
configuration. From inspecting these plots, we can see that both models are learning since the
loss is continually decreasing. However, when we take a closer look at the values of the loss.
The torch.nn model performs worse in as its final loss value hovered around 6, while the
manually created multi neuron model’s loss hovered around 0.10. We also notice that in Figure
1 the loss didn’t improve after about 60 iterations suggesting that learning is complete.
However, in Figure 2 we can see that the loss is continually improving suggesting that more
iterations of learning can take place. We can also notice that torch.nn is more smooth in its loss
than the manual method.

Figure 1: loss-vs-iteration plot of multi_neuron_classifer.py

Figure 2: loss-vs-iteration plot of verify_with_torchnn.py (multi-neuron config)

Figure 3 and Figure 4 show the same plots as Figure 1 and Figure 2 but for the one-neuron
scenario. A similarity in Figures 3 and 4 is that both have decreasing loss suggesting that both
models are indeed learning. However, it’s the rate at which they are learning is the difference.
For instance, Figure 3’s loss is more linear whereas Figure 4’s loss is more exponential decay.
However, Figure 4’s model performs much worse as its loss hovers around 1 at the end of
training, but the loss for Figure 3’s model hovers around 0.20 at the end of training.
Nevertheless, using torch.nn is still better to use as it includes optimizations to better update
the parameters.

Figure 3: loss-vs-iteration plot of one_neuron_classifer.py

Figure 4: loss-vs-iteration plot of verify_with_torchnn.py (one-neuron config)

2- Description of SGD+ and Adam
a. SGD+

We all know that Stochastic Gradient Decent (SGD) is a popular method to optimize a loss
function in any machine learning model. SGD+ is an extension of SGD that uses the concept of
momentum to speed up convergence. It does so by increasing the values of the gradients of the
parameters. In SGD’s journey of finding the minimum of the loss’s hyperplane, if we realize that
we have been correctly descending to the bottom of the valley, then we can make a greater
jump to get to the bottom faster. This faster jump or the idea of taking a larger leap is called
momentum.

The typical update rule for SGD is as follows, p!"#  =  p!  −  lr  ⋅  g!"#. Here 𝑝$"# is the update
to be made, the current update 𝑝$, the learning rate 𝑙𝑟, and the next gradient 𝑔$"#.

To convert the mentioned equation to SGD+, we need to consider the previous update (the
step that was taken last iteration). We still want to make sure we consider the current update
as well, since if the current gradient is the opposite direction of the previous update, then we
know we went passed the minimum and we need to self-correct. Therefore, we take a fraction
of the previous update. The fractional amount of the previous update to consider is determined
by the variable called momentum. The concepts can be mathematically represented by the
following equations.

𝑣$"# = µ ⋅ 𝑣$ + 𝑔$"#
𝑝$"# = 𝑝$ − 𝑙𝑟 ⋅ 𝑣$"#

In these equations, the momentum is 𝜇, the previous update is 𝑣$, and 𝑣$"# can be seen as a
temporary variable.

When comparing the equations of SGD and SGD+, we can see that there is an additional step
before we modify the update in SGD+. That additional step is essentially, 𝜇 ⋅ 𝑣$. The value of 𝜇
can range from 0 to 1. A value of 1 means we consider the entire amount of the previous
update. Alternatively, a value of 0 means we don’t consider the previous update at all. Notice
that setting 𝜇 = 0 simplifies the equations to be the same as SGD.

b. ADAM
Adaptive Moment Estimation, or ADAM for short, is an improved optimizer and is known to
work very well. Adam combines the concepts of momentum and adaptability. We already know
that momentum helps reach convergence faster. It does so by checking the previous update
and if it points at the same direction as the current update, then it will take a larger jump. The
concept of adaptability addresses the issue of sparse gradients. It is often the case that
gradients are zeros, meaning there is not much to learn at a particular iteration in training.
However, in the rare instance that there is a non-zero gradient, then we know this particular
gradient contains vital information, and as a result we should give it more attention.

The following equations show mathematically what is mentioned in the previous paragraph.

𝑚$"# = β# ⋅ 𝑚$ + (1 − β#) ⋅ 𝑔$"#

𝑣$"# = β% ⋅ 𝑣$ + (1 − β%) ⋅ (𝑔$"#)%

𝑝$"# = 𝑝$ − 𝑙𝑟 ⋅
𝑚$"#7

8𝑣$"#7+𝜖

The first equation incorporates momentum by taking a running weighted average of the
gradients. As we can see, the weight of the previous gradients is determined by 𝛽#. Setting
		𝛽# = 0 results in not using momentum at all. The second equation incorporates adaptability
by taking a running weighted average of the gradient’s variance. Like the case with 𝛽#, setting
𝛽% = 0	will mean not considering the previous variances. The third equation is our parameter
update equation. The difference here from the original SGD update equation is that the
gradient term is replaced with &!"#'

()!"#'"*
 . The numerator of this fraction is essentially the gradient

with momentum. The denominator of the fraction handles the inverse relationship with
variance. The logic behind this is that when high variance is observed Adam needs to slow down
its learning. Additionally, when low variance is observed Adam needs to speed up learning
because the gradients don’t contain new knowledge to gain. Lastly, the 𝜖 is added to avoid a
divide by zero error: typically, 𝜖 = 1𝑒 − 8.

While this is the essence of Adam, an issue occurs in practice that requires us to make one
small change. In the initial iterations of training, 𝑚$ = 𝑣$ = 0. These sway the averages of the
mean and variance to 0 in the initial iterations. As a result, the following equations are used as
corrected values for 𝑚$ and 𝑣$.

𝑚corrected =
&

#12#k
 𝑣corrected =

)
#12%k

Here k indicates what iteration the training loop is in. The logic here is the following. In the
beginning stages of training (small k), the denominator will be a small value resulting in large
adjustments to 𝑚$ and 𝑣$. While we approach the later stages of training (large k), the
denominator will approach 1 and not correct our 𝑚$ and 𝑣$. This is perfect because it’s in the
beginning where we need correction to avoid the 0 bias caused by setting 𝑚$ = 𝑣$ = 0.

3- Implementation
a. One Neuron

Figure 5 – 7 show the iterations vs loss plot of the one neuron model at different learning rates
with 3 different optimizers: SGD, SGD+, and Adam. In regard to smoothness, it is very evident
that Adam has the smoothest loss plots. We can see this since the green line in all these plots
are very thin meaning there is less variation. SGD+ is also considerably smooth but not as
smooth as the Adam. However, the least smooth is SGD. Figure 5 shows that when the learning
rate is low, the SGD loss is very volatile and not smooth at all. Regarding convergence, we can

Figures 5: One Neuron Loss Plot (lr = 0.0001) Figures 6: One Neuron Loss Plot (lr = 0.001)

Figures 7: One Neuron Loss Plot (lr = 0.005)

see that with a small learning rate (0.0001) all the optimizers take longer to learn. While Adam
stabilizes at a loss slightly above 0.20 very quickly, SGD+ can continually decrease its loss ever
so slowly: shown in Figure 5. With a medium learning rate (0.001), SGD performs much better
than how it did with a slower learning rate (Figure 6). Adam can stabilize its loss much quicker
but doesn’t decrease the loss at all (Figure 6). However, SGD+ outperforms both optimizers by
getting to a loss below 0.15 (Figure 6). Lastly, with a high learning rate (0.005) we in fact see
divergence in SGD. This is likely due to SGD overshooting the minimum and never being able to
return back to the bottom of the valley (Figure 7). This is where we see the beauty of
momentum as SGD+ is able to remember the past gradients and continue its path to
convergence (Figure 7). Adam again stabilizes very quickly but is not able to improve its loss
(Figure 7).

b. Multi Neuron

 Figures 8: Multi Neuron Loss Plot (lr = 0.0001) Figures 9: Multi Neuron Loss Plot (lr = 0.01)

Figure 8 – 10 show the iterations vs loss plot of the multi neuron model at different learning
rates with 3 different optimizers: SGD, SGD+, and Adam. In regard to smoothness, a high
learning rate yielded the smoothest loss for all 3 optimizers (Figure 10). In general, Adam had
smooth loss curves except in the case of Figure 9 where Adam had larger variances towards the
end of training. SGD has overall the least smoothness. SGD did however smooth out at the end
of training in Figure 9. Regarding convergence, different learning rates didn’t change if a model
converged or not, except for the case in SGD+ with a small learning rate (Figure 8). This
observation is peculiar and could be a result of bad initialization weights. It is clear that a
learning rate of 0.001 with Adam yielded the lowest loss (Figure 9). Additionally, SGD and SGD+
performed the best with a higher learning rate of 0.01 (Figure 10). In fact, SGD’s loss starts to
decrease toward the end of training suggesting that the loss can be further improved with more
iterations (Figure 10).

c. Findings
A lot can be learned from the conducted experiments. The overall take from this is that

Adam tends to produce smoother loss curves which can be attributed to the consideration of
the second moment. Additionally, Adam may not converge to the lowest loss, but it will
stabilize the fastest. This is likely due to the combination of momentum and adaptability. If we
were to rank the optimizer, SGD+ will be the runner up as it too can converge quickly but not as
fast as Adam. This again is due to the consideration of momentum. The additional benefit of
momentum is that SGD+ is able to avoid divergence where ordinary SGD cannot. As seen in the
case of Figure 7, SGD overshot its estimation but since SGD+ is able to remember its previous
gradient it avoided that issue. This brings SGD to last place where it experiences high variance
and generally takes longer to converge.

It is important to mention that the different learning rates play a curial role in the
performance of these optimizers. Given enough effort, one can easily find the right learning

Figures 10: Multi Neuron Loss Plot (lr = 0.01)

rate that will sway one optimizer to perform better than the other. This only shows that
hyperparameter tuning is critical when training deep learning models.

d. Adam Optimizer Performance

Figure 11 shows the results of testing Adam optimizer with various beta 1 and beta 2 values.
From the results the duration of training with different beta values plays no significant role. All
the models finished training in about 8.8 to 9.1 seconds. The worst performing models occurred
in trials 8 and 9. This was when the beta 1 value was 0.99 and beta 2 values were 0.9 and 0.95.
The best performing model was trial 1 where beta 1 = 0.8 and beta 2 = 0.89. The second best
model was trial 4 with beta 1 = 0.95 and beta 2 = 0.89. It’s important to make clear that I
determine “best model” by looking at the lowest final loss. Based on these trends, it seems that
Adam performs better when both beta values are a little less than the normal 0.9 and 0.99
values that are traditionally used. This means Adam performs better when given slightly more
importance to the current first and second moments. That is essentially the effect that the beta
values play in Adam. The lower the beta values, the more weightage is given to the current
moments when averaging. Inversely, the higher the beta values, the less weightage is given to
the current moments when averaging.

4- Source Code
5- # %%
6- import sys
7- sys.path.append("/Users/nikkhil/Documents/ECE 60146/hw3/ComputationalGraphPrimer-

1.1.4/ComputationalGraphPrimer")
8-
9- import random
10- import numpy as np

Figures 11: Table of Tested B1 and B2 Values for Adam

11- import matplotlib.pyplot as plt
12- import operator
13- from ComputationalGraphPrimer import *
14- import time
15-
16- seed = 0
17- random.seed(seed)
18- np.random.seed(seed)
19-
20- # %% [markdown]
21- # Create Subclass that returns the loss
22-
23- # %%
24- # NOTE: This subclass is created so the loss is returned so the values can be used

for plotting
25- class ComputationalGraphPrimer_ReturnLoss(ComputationalGraphPrimer):
26- def __init__(self, *args, **kwargs):
27- super(ComputationalGraphPrimer_ReturnLoss, self).__init__(*args, **kwargs)
28-
29- # NOTE: Code is taken from

https://engineering.purdue.edu/kak/distCGP/ComputationalGraphPrimer-
1.1.4_CodeOnly.html

30- # The only modification made is the loss_running_record list is returned
and the generated plots are commented out

31- def run_training_loop_one_neuron_model(self, training_data):
32- self.vals_for_learnable_params = {param: random.uniform(0,1) for param in

self.learnable_params}
33- self.bias = random.uniform(0,1)
34-
35- class DataLoader:
36- def __init__(self, training_data, batch_size):
37- self.training_data = training_data
38- self.batch_size = batch_size
39- self.class_0_samples = [(item, 0) for item in

self.training_data[0]] ## Associate label 0 with each sample
40- self.class_1_samples = [(item, 1) for item in

self.training_data[1]] ## Associate label 1 with each sample
41-
42- def __len__(self):
43- return len(self.training_data[0]) + len(self.training_data[1])
44-
45- def _getitem(self):
46- cointoss = random.choice([0,1]) ## When

a batch is created by getbatch(), we want the
47- ##

samples to be chosen randomly from the two lists
48- if cointoss == 0:
49- return random.choice(self.class_0_samples)

50- else:
51- return random.choice(self.class_1_samples)
52-
53- def getbatch(self):
54- batch_data,batch_labels = [],[] ## First

list for samples, the second for labels
55- maxval = 0.0 ## For

approximate batch data normalization
56- for _ in range(self.batch_size):
57- item = self._getitem()
58- if np.max(item[0]) > maxval:
59- maxval = np.max(item[0])
60- batch_data.append(item[0])
61- batch_labels.append(item[1])
62- batch_data = [item/maxval for item in batch_data] ##

Normalize batch data
63- batch = [batch_data, batch_labels]
64- return batch
65-
66- data_loader = DataLoader(training_data, batch_size=self.batch_size)
67- loss_running_record = []
68- i = 0
69- avg_loss_over_iterations = 0.0 ##

Average the loss over iterations for printing out
70- ##

every N iterations during the training loop.
71- for i in range(self.training_iterations):
72- data = data_loader.getbatch()
73- data_tuples_in_batch = data[0]
74- class_labels_in_batch = data[1]
75- y_preds, deriv_sigmoids =

self.forward_prop_one_neuron_model(data_tuples_in_batch) ## FORWARD PROP of
data

76- loss = sum([(abs(class_labels_in_batch[i] - y_preds[i]))**2 for i in
range(len(class_labels_in_batch))]) ## Find loss

77- avg_loss_over_iterations += loss / float(len(class_labels_in_batch))
78- if i%(self.display_loss_how_often) == 0:
79- avg_loss_over_iterations /= self.display_loss_how_often
80- loss_running_record.append(avg_loss_over_iterations)
81- print("[iter=%d] loss = %.4f" % (i+1, avg_loss_over_iterations))

Display average loss
82- avg_loss_over_iterations = 0.0

Re-initialize avg loss
83- y_errors_in_batch = list(map(operator.sub, class_labels_in_batch,

y_preds))
84- self.backprop_and_update_params_one_neuron_model(data_tuples_in_batch,

y_preds, y_errors_in_batch, deriv_sigmoids) ## BACKPROP loss
85- #plt.figure()

86- #plt.plot(loss_running_record)
87- #plt.show()
88- return loss_running_record
89-
90- # NOTE: Code is taken from

https://engineering.purdue.edu/kak/distCGP/ComputationalGraphPrimer-
1.1.4_CodeOnly.html

91- # The only modification made is the loss_running_record list is returned
and the generated plots are commented out

92- def run_training_loop_multi_neuron_model(self, training_data):
93-
94- class DataLoader:
95- def __init__(self, training_data, batch_size):
96- self.training_data = training_data
97- self.batch_size = batch_size
98- self.class_0_samples = [(item, 0) for item in

self.training_data[0]] ## Associate label 0 with each sample
99- self.class_1_samples = [(item, 1) for item in

self.training_data[1]] ## Associate label 1 with each sample
100-
101- def __len__(self):
102- return len(self.training_data[0]) + len(self.training_data[1])
103-
104- def _getitem(self):
105- cointoss = random.choice([0,1]) ##

When a batch is created by getbatch(), we want the
106- ##

samples to be chosen randomly from the two lists
107- if cointoss == 0:
108- return random.choice(self.class_0_samples)
109- else:
110- return random.choice(self.class_1_samples)
111-
112- def getbatch(self):
113- batch_data,batch_labels = [],[] ##

First list for samples, the second for labels
114- maxval = 0.0 ##

For approximate batch data normalization
115- for _ in range(self.batch_size):
116- item = self._getitem()
117- if np.max(item[0]) > maxval:
118- maxval = np.max(item[0])
119- batch_data.append(item[0])
120- batch_labels.append(item[1])
121- batch_data = [item/maxval for item in batch_data] ##

Normalize batch data
122- batch = [batch_data, batch_labels]
123- return batch

124-
125- self.vals_for_learnable_params = {param: random.uniform(0,1) for param

in self.learnable_params}
126- self.bias = {i : [random.uniform(0,1) for j in range(

self.layers_config[i])] for i in range(1, self.num_layers)}
127- data_loader = DataLoader(training_data, batch_size=self.batch_size)
128- loss_running_record = []
129- i = 0
130- avg_loss_over_iterations = 0.0

Average the loss over iterations for printing out
131-

every N iterations during the training loop.
132- for i in range(self.training_iterations):
133- data = data_loader.getbatch()
134- data_tuples = data[0]
135- class_labels = data[1]
136- self.forward_prop_multi_neuron_model(data_tuples)

FORW PROP works by side-effect
137- predicted_labels_for_batch =

self.forw_prop_vals_at_layers[self.num_layers-1] ## Predictions from FORW
PROP

138- y_preds = [item for sublist in predicted_labels_for_batch for
item in sublist] ## Get numeric vals for predictions

139- loss = sum([(abs(class_labels[i] - y_preds[i]))**2 for i in
range(len(class_labels))]) ## Calculate loss for batch

140- loss_avg = loss / float(len(class_labels))
Average the loss over batch

141- avg_loss_over_iterations += loss_avg
Add to Average loss over iterations

142- if i%(self.display_loss_how_often) == 0:
143- avg_loss_over_iterations /= self.display_loss_how_often
144- loss_running_record.append(avg_loss_over_iterations)
145- print("[iter=%d] loss = %.4f" % (i+1,

avg_loss_over_iterations)) ## Display avg loss
146- avg_loss_over_iterations = 0.0

Re-initialize avg-over-iterations loss
147- y_errors_in_batch = list(map(operator.sub, class_labels, y_preds))
148- self.backprop_and_update_params_multi_neuron_model(y_preds,

y_errors_in_batch)
149- #plt.figure()
150- #plt.plot(loss_running_record)
151- #plt.show()
152- return loss_running_record
153-
154- # %% [markdown]
155- # Create SGD+ (one & multi neuron)
156-
157- # %%

158- # NOTE: Create a subclass of ComputationalGraphPrimer - SGD+
159- # In this class the backprop functions are modified to use SGD+
160- class

ComputationalGraphPrimer_ReturnLoss_SGD_Plus(ComputationalGraphPrimer_ReturnLoss):
161- def __init__(self, *args, **kwargs):
162- super(ComputationalGraphPrimer_ReturnLoss_SGD_Plus,

self).__init__(*args, **kwargs)
163-
164- # NOTE: Function created to set up all variables needed for carrying out

momentum
165- def initializeMomentumStuff_OneNeuron(self, momentum):
166- self.mu = momentum
167- # Previous updates for weights - set everything to 0 at first
168- self.param_updates = {key: 0.0 for key in self.learnable_params}
169- # Previous update for bias - set to 0 at first
170- self.bias_update = 0.0
171-
172- # NOTE: Function created to set up all variables needed for carrying out

momentum
173- def initializeMomentumStuff_MultiNeuron(self, momentum):
174- self.muMulti = momentum
175- # Previous updates for weights - set everything to 0 at first
176- self.param_updates = {key: 0.0 for key in self.learnable_params}
177- # Previous update for bias - set to 0 at first
178- self.bias_updates = {i: [0.0 for _ in range(self.layers_config[i])] for

i in range(1, self.num_layers)}
179-
180- # NOTE: Code is taken from

https://engineering.purdue.edu/kak/distCGP/ComputationalGraphPrimer-
1.1.4_CodeOnly.html

181- # Most of this function is the same as Prof Avinash Kak's.
182- # Modifications made are indicated by comments.
183- def backprop_and_update_params_one_neuron_model(self, data_tuples_in_batch,

predictions, y_errors_in_batch, deriv_sigmoids):
184- input_vars = self.independent_vars
185- input_vars_to_param_map = self.var_to_var_param[self.output_vars[0]]

These two statements align the
186- param_to_vars_map = {param : var for var, param in

input_vars_to_param_map.items()} ## the input vars
187- vals_for_learnable_params = self.vals_for_learnable_params
188- for i,param in enumerate(self.vals_for_learnable_params):
189- ## For each param, sum the partials from every training data sample

in batch
190- partial_of_loss_wrt_param = 0.0
191- for j in range(self.batch_size):
192- vals_for_input_vars_dict = dict(zip(input_vars,

list(data_tuples_in_batch[j])))

193- partial_of_loss_wrt_param += - y_errors_in_batch[j] *
vals_for_input_vars_dict[param_to_vars_map[param]] * deriv_sigmoids[j]

194- partial_of_loss_wrt_param /= float(self.batch_size)
195- # Modification ---- Start
196- # Here I am using the past parameter update and momentum to slighly

modify the gradient
197- # This is then used to update self.vals_for_learnable_params[param]
198- # Equation set 2 from the hw description file is being implemented

here
199- self.param_updates[param] = self.mu * self.param_updates[param] -

self.learning_rate * partial_of_loss_wrt_param
200- self.vals_for_learnable_params[param] += self.param_updates[param]
201- # Modification ---- End
202-
203- y_error_avg = sum(y_errors_in_batch) / float(self.batch_size)
204- deriv_sigmoid_avg = sum(deriv_sigmoids) / float(self.batch_size)
205-
206- # Modification ---- Start
207- # Like the weights the bias is also being updated in the same manner
208- # Again equation set 2 from the hw description file is being

implemented here
209- self.bias_update = self.mu * self.bias_update + self.learning_rate *

y_error_avg * deriv_sigmoid_avg
210- self.bias += self.bias_update
211- # Modification ---- End
212-
213- # NOTE: Code is taken from

https://engineering.purdue.edu/kak/distCGP/ComputationalGraphPrimer-
1.1.4_CodeOnly.html

214- # Most of this function is the same as Prof Avinash Kak's.
215- # Modifications made are indicated by comments.
216- def backprop_and_update_params_multi_neuron_model(self, predictions,

y_errors):
217- ## Eq. (24) on Slide 73 of my Week 3 lecture says we need to store

backproped errors in each layer leading up to the last:
218- pred_err_backproped_at_layers = [{i : [None for j in range(

self.layers_config[i])]
219- for i in

range(self.num_layers)} for _ in range(self.batch_size)]
220- ## This will store "\delta L / \delta w" you see at the LHS of the

equations on Slide 73:
221- partial_of_loss_wrt_params = {param : 0.0 for param in self.all_params}
222- ## For estimating the changes to the bias to be made on the basis of

the derivatives of the Sigmoids:
223- bias_changes = {i : [0.0 for j in range(self.layers_config[i])]

for i in range(1, self.num_layers)}
224- for b in range(self.batch_size):

225- pred_err_backproped_at_layers[b][self.num_layers - 1] = [
y_errors[b]]

226- for back_layer_index in reversed(range(1,self.num_layers)):
For the 3-layer network, the first val for back_layer_index is 2 for the 3rd
layer

227- input_vals = self.forw_prop_vals_at_layers[back_layer_index -1]
This is a list of 8 two-element lists --- since we have two nodes in the 2nd
layer

228- deriv_sigmoids =
self.gradient_vals_for_layers[back_layer_index] ## This is a list eight one-
element lists, one for each batch element

229- vars_in_layer = self.layer_vars[back_layer_index]
A list like ['xo']

230- vars_in_next_layer_back = self.layer_vars[back_layer_index -
1] ## A list like ['xw', 'xz']

231- vals_for_input_vars_dict = dict(zip(vars_in_next_layer_back,
self.forw_prop_vals_at_layers[back_layer_index - 1][b]))

232- ## For the next statement, note that layer_params are stored in
a dict like

233- ## {1: [['ap', 'aq', 'ar', 'as'], ['bp', 'bq', 'br',
'bs']], 2: [['cp', 'cq']]}

234- ## "layer_params[idx]" is a list of lists for the link weights
in layer whose output nodes are in layer "idx"

235- layer_params = self.layer_params[back_layer_index]
236- transposed_layer_params = list(zip(*layer_params))

Creating a transpose of the link matrix, See Eq. 30 on Slide 77
237- for k,var1 in enumerate(vars_in_next_layer_back):
238- for j,var2 in enumerate(vars_in_layer):
239- pred_err_backproped_at_layers[b][back_layer_index -

1][k] = sum([self.vals_for_learnable_params[transposed_layer_params[k][i]]
240-

* pred_err_backproped_at_layers[b][back_layer_index][i]
241-

for i in range(len(vars_in_layer))])
242- for j,var in enumerate(vars_in_layer):
243- layer_params = self.layer_params[back_layer_index][j]

['cp', 'cq'] for the end layer
244- input_vars_to_param_map = self.var_to_var_param[var]

These two statements align the {'xw': 'cp', 'xz': 'cq'}
245- param_to_vars_map = {param : var for var, param in

input_vars_to_param_map.items()} ## and the input vars {'cp': 'xw', 'cq':
'xz'}

246-
247- ## Update the partials of Loss wrt to the learnable

parameters between the current layer
248- ## and the previous layer. You are accumulating these

partials over the different training

249- ## data samples in the batch being processed. For each
training data sample, the formula

250- ## being used is shown in Eq. (29) on Slide 77 of my Week
3 slides:

251- for i,param in enumerate(layer_params):
252- partial_of_loss_wrt_params[param] +=

pred_err_backproped_at_layers[b][back_layer_index][j] * \
253-

vals_for_input_vars_dict[param_to_vars_map[param]] * deriv_sigmoids[b][j]
254- ## We will now estimate the change in the bias that needs to

be made at each node in the previous layer
255- ## from the derivatives the sigmoid at the nodes in the

current layer and the prediction error as
256- ## backproped to the previous layer nodes:
257- for k,var1 in enumerate(vars_in_next_layer_back):
258- for j,var2 in enumerate(vars_in_layer):
259- if back_layer_index-1 > 0:
260- bias_changes[back_layer_index-1][k] +=

pred_err_backproped_at_layers[b][back_layer_index - 1][k] * deriv_sigmoids[b][j]
261-
262- ## Now update the learnable parameters. The loop shown below carries

out SGD mandated averaging
263- for param in partial_of_loss_wrt_params:
264- partial_of_loss_wrt_param = partial_of_loss_wrt_params[param] /

float(self.batch_size)
265- # Modification ---- Start
266- # Here I am using the past parameter update and momentum to slighly

modify the gradient
267- # This is then used to update self.vals_for_learnable_params[param]
268- # Equation set 2 from the hw description file is being implemented

here
269- self.param_updates[param] = self.muMulti *

self.param_updates[param] - self.learning_rate * partial_of_loss_wrt_param
270- self.vals_for_learnable_params[param] += self.param_updates[param]
271- # Modification ---- End
272-
273- ## Finally we update the biases at all the nodes that aggregate data:
274- for layer_index in range(1,self.num_layers):
275- for k in range(self.layers_config[layer_index]):
276- # Modification ---- Start
277- # Like the weights the bias is also being updated in the same

manner
278- # Again equation set 2 from the hw description file is being

implemented here
279- # A temporary variable 'temp_bias_change' is created to avoid

having 1 long line of code
280- temp_bias_change = bias_changes[layer_index][k] /

float(self.batch_size)

281- self.bias_updates[layer_index][k] = self.muMulti *
self.bias_updates[layer_index][k] + self.learning_rate * temp_bias_change

282- self.bias[layer_index][k] +=
self.bias_updates[layer_index][k]

283- # Modification ---- End
284-
285- # %% [markdown]
286- # Create ADAM (one & multi neuron)
287-
288- # %%
289- # NOTE: Create a subclass of ComputationalGraphPrimer - ADAM
290- class

ComputationalGraphPrimer_ReturnLoss_ADAM(ComputationalGraphPrimer_ReturnLoss):
291- def __init__(self, *args, **kwargs):
292- super(ComputationalGraphPrimer_ReturnLoss_ADAM, self).__init__(*args,

**kwargs)
293-
294- # NOTE: Function created to set up all variables needed for carrying out

adam
295- # Epsilon is hard coded to be 1e-8 as it is the standard mentioned in

PyTorch documentation
296- def initializeADAMStuff_OneNeuron(self, beta1, beta2, epsilon=1e-8):
297- self.b1 = beta1
298- self.b2 = beta2
299- self.ep = epsilon
300- self.timestep = 0
301- self.m = {param: 0 for param in self.learnable_params}
302- self.v = {param: 0 for param in self.learnable_params}
303-
304- # NOTE: Function created to set up all variables needed for carrying out

adam
305- # Epsilon is hard coded to be 1e-8 as it is the standard mentioned in

PyTorch documentation
306- def initializeADAMStuff_MultiNeuron(self, beta1, beta2, epsilon=1e-8):
307- self.b1 = beta1
308- self.b2 = beta2
309- self.ep = epsilon
310- self.timestep = 0
311- # For weights
312- self.m = {param: 0 for param in self.learnable_params}
313- self.v = {param: 0 for param in self.learnable_params}
314- # For bias
315- self.m_bias = {layer: [0 for _ in range(self.layers_config[layer])] for

layer in range(1, self.num_layers)}
316- self.v_bias = {layer: [0 for _ in range(self.layers_config[layer])] for

layer in range(1, self.num_layers)}
317-

318- # NOTE: Code is taken from
https://engineering.purdue.edu/kak/distCGP/ComputationalGraphPrimer-
1.1.4_CodeOnly.html

319- # Most of this function is the same as Prof Avinash Kak's.
320- # Modifications made are indicated by comments.
321- def backprop_and_update_params_one_neuron_model(self, data_tuples_in_batch,

predictions, y_errors_in_batch, deriv_sigmoids):
322-
323- # Modification ---- Start
324- self.timestep += 1
325- # Modification ---- End
326-
327- input_vars = self.independent_vars
328- input_vars_to_param_map = self.var_to_var_param[self.output_vars[0]]

These two statements align the
329- param_to_vars_map = {param : var for var, param in

input_vars_to_param_map.items()} ## the input vars
330- vals_for_learnable_params = self.vals_for_learnable_params
331- for i,param in enumerate(self.vals_for_learnable_params):
332- ## For each param, sum the partials from every training data sample

in batch
333- partial_of_loss_wrt_param = 0.0
334- for j in range(self.batch_size):
335- vals_for_input_vars_dict = dict(zip(input_vars,

list(data_tuples_in_batch[j])))
336- partial_of_loss_wrt_param += - y_errors_in_batch[j] *

vals_for_input_vars_dict[param_to_vars_map[param]] * deriv_sigmoids[j]
337- partial_of_loss_wrt_param /= float(self.batch_size)
338-
339- # Modification ---- Start
340- # Here I am using Equation set 3 from the hw description file
341- # The m_corrected and v_corrected are from Week 3's presentaion

slide 118
342- # These values are then used to update

self.vals_for_learnable_params[param]
343- # The bias is updated in teh same manner
344- self.m[param] = self.b1 * self.m[param] + (1-self.b1) *

partial_of_loss_wrt_param
345- self.v[param] = self.b2 * self.v[param] + (1-self.b2) *

(partial_of_loss_wrt_param ** 2)
346-
347- m_corr = self.m[param] / (1 - (self.b1**self.timestep))
348- v_corr = self.v[param] / (1 - (self.b2**self.timestep))
349-
350- self.vals_for_learnable_params[param] -= self.learning_rate *

m_corr / ((v_corr + self.ep) ** 0.5)
351- self.bias -= self.learning_rate * m_corr / ((v_corr + self.ep) **

0.5)

352- # Modification ---- End
353-
354- # NOTE: Code is taken from

https://engineering.purdue.edu/kak/distCGP/ComputationalGraphPrimer-
1.1.4_CodeOnly.html

355- # Most of this function is the same as Prof Avinash Kak's.
356- # Modifications made are indicated by comments.
357- def backprop_and_update_params_multi_neuron_model(self, predictions,

y_errors):
358-
359- # Modification ---- Start
360- self.timestep += 1
361- # Modification ---- End
362-
363- ## Eq. (24) on Slide 73 of my Week 3 lecture says we need to store

backproped errors in each layer leading up to the last:
364- pred_err_backproped_at_layers = [{i : [None for j in range(

self.layers_config[i])]
365- for i in

range(self.num_layers)} for _ in range(self.batch_size)]
366- ## This will store "\delta L / \delta w" you see at the LHS of the

equations on Slide 73:
367- partial_of_loss_wrt_params = {param : 0.0 for param in self.all_params}
368- ## For estimating the changes to the bias to be made on the basis of

the derivatives of the Sigmoids:
369- bias_changes = {i : [0.0 for j in range(self.layers_config[i])]

for i in range(1, self.num_layers)}
370- for b in range(self.batch_size):
371- pred_err_backproped_at_layers[b][self.num_layers - 1] = [

y_errors[b]]
372- for back_layer_index in reversed(range(1,self.num_layers)):

For the 3-layer network, the first val for back_layer_index is 2 for the 3rd
layer

373- input_vals = self.forw_prop_vals_at_layers[back_layer_index -1]
This is a list of 8 two-element lists --- since we have two nodes in the 2nd
layer

374- deriv_sigmoids =
self.gradient_vals_for_layers[back_layer_index] ## This is a list eight one-
element lists, one for each batch element

375- vars_in_layer = self.layer_vars[back_layer_index]
A list like ['xo']

376- vars_in_next_layer_back = self.layer_vars[back_layer_index -
1] ## A list like ['xw', 'xz']

377- vals_for_input_vars_dict = dict(zip(vars_in_next_layer_back,
self.forw_prop_vals_at_layers[back_layer_index - 1][b]))

378- ## For the next statement, note that layer_params are stored in
a dict like

379- ## {1: [['ap', 'aq', 'ar', 'as'], ['bp', 'bq', 'br',
'bs']], 2: [['cp', 'cq']]}

380- ## "layer_params[idx]" is a list of lists for the link weights
in layer whose output nodes are in layer "idx"

381- layer_params = self.layer_params[back_layer_index]
382- transposed_layer_params = list(zip(*layer_params))

Creating a transpose of the link matrix, See Eq. 30 on Slide 77
383- for k,var1 in enumerate(vars_in_next_layer_back):
384- for j,var2 in enumerate(vars_in_layer):
385- pred_err_backproped_at_layers[b][back_layer_index -

1][k] = sum([self.vals_for_learnable_params[transposed_layer_params[k][i]]
386-

* pred_err_backproped_at_layers[b][back_layer_index][i]
387-

for i in range(len(vars_in_layer))])
388- for j,var in enumerate(vars_in_layer):
389- layer_params = self.layer_params[back_layer_index][j]

['cp', 'cq'] for the end layer
390- input_vars_to_param_map = self.var_to_var_param[var]

These two statements align the {'xw': 'cp', 'xz': 'cq'}
391- param_to_vars_map = {param : var for var, param in

input_vars_to_param_map.items()} ## and the input vars {'cp': 'xw', 'cq':
'xz'}

392-
393- ## Update the partials of Loss wrt to the learnable

parameters between the current layer
394- ## and the previous layer. You are accumulating these

partials over the different training
395- ## data samples in the batch being processed. For each

training data sample, the formula
396- ## being used is shown in Eq. (29) on Slide 77 of my Week

3 slides:
397- for i,param in enumerate(layer_params):
398- partial_of_loss_wrt_params[param] +=

pred_err_backproped_at_layers[b][back_layer_index][j] * \
399-

vals_for_input_vars_dict[param_to_vars_map[param]] * deriv_sigmoids[b][j]
400- ## We will now estimate the change in the bias that needs to

be made at each node in the previous layer
401- ## from the derivatives the sigmoid at the nodes in the

current layer and the prediction error as
402- ## backproped to the previous layer nodes:
403- for k,var1 in enumerate(vars_in_next_layer_back):
404- for j,var2 in enumerate(vars_in_layer):
405- if back_layer_index-1 > 0:
406- bias_changes[back_layer_index-1][k] +=

pred_err_backproped_at_layers[b][back_layer_index - 1][k] * deriv_sigmoids[b][j]
407-

408- ## Now update the learnable parameters. The loop shown below carries
out Adam

409- for param in partial_of_loss_wrt_params:
410- partial_of_loss_wrt_param = partial_of_loss_wrt_params[param] /

float(self.batch_size)
411- # Modification ---- Start
412- # Here I am using Equation set 3 from the hw description file
413- # The m_corrected and v_corrected are from Week 3's presentaion

slide 118
414- # These values are then used to update

self.vals_for_learnable_params[param]
415- self.m[param] = self.b1 * self.m[param] + (1-self.b1) *

partial_of_loss_wrt_param
416- self.v[param] = self.b2 * self.v[param] + (1-self.b2) *

(partial_of_loss_wrt_param ** 2)
417-
418- m_corr = self.m[param] / (1 - (self.b1 ** self.timestep))
419- v_corr = self.v[param] / (1 - (self.b2 ** self.timestep))
420-
421- self.vals_for_learnable_params[param] += self.learning_rate *

m_corr / ((v_corr + self.ep) ** 0.5)
422- # Modification ---- End
423-
424- ## Finally we update the biases at all the nodes that aggregate data:
425- for layer_index in range(1,self.num_layers):
426- for k in range(self.layers_config[layer_index]):
427- # Modification ---- Start
428- # The bias is updated in the same manner as the weights were

updated
429- # Again temp variable temp_bias_change for easy code

readability
430- temp_bias_change = (bias_changes[layer_index][k] /

float(self.batch_size))
431-
432- self.m_bias[layer_index][k] = self.b1 *

self.m_bias[layer_index][k] + (1 - self.b1) * temp_bias_change
433- self.v_bias[layer_index][k] = self.b2 *

self.v_bias[layer_index][k] + (1 - self.b2) * (temp_bias_change ** 2)
434-
435- m_bias_corr = self.m_bias[layer_index][k] / (1 - (self.b1 **

self.timestep))
436- v_bias_corr = self.v_bias[layer_index][k] / (1 - (self.b2 **

self.timestep))
437-
438- self.bias[layer_index][k] += self.learning_rate * m_bias_corr /

((v_bias_corr + self.ep) ** 0.5)
439- # Modification ---- End
440-

441-
442- # %% [markdown]
443- # Test One Neuron (SGD, SGD+, ADAM)
444-
445- # %%
446- lr = 5e-3
447-
448- # %%
449- # Train One Neuron - SGD
450- oneN_sgd = ComputationalGraphPrimer_ReturnLoss(one_neuron_model = True,

expressions = ['xw=ab*xa+bc*xb+cd*xc+ac*xd'], output_vars = ['xw'], dataset_size =
5000,

451- learning_rate = lr,
452- training_iterations = 40000,

batch_size = 8, display_loss_how_often = 100, debug = False,)
453-
454- oneN_sgd.parse_expressions()
455- training_data = oneN_sgd.gen_training_data()
456- loss_oneN_sgd = oneN_sgd.run_training_loop_one_neuron_model(training_data)
457-
458- # %%
459- # Train One Neuron - SGD+
460- oneN_sgdP = ComputationalGraphPrimer_ReturnLoss_SGD_Plus(one_neuron_model =

True, expressions = ['xw=ab*xa+bc*xb+cd*xc+ac*xd'], output_vars = ['xw'],
dataset_size = 5000,

461- learning_rate = lr,
462- training_iterations =

40000, batch_size = 8, display_loss_how_often = 100,debug = False,)
463-
464- oneN_sgdP.parse_expressions()
465- training_data = oneN_sgdP.gen_training_data()
466- oneN_sgdP.initializeMomentumStuff_OneNeuron(momentum=0.9)
467- loss_oneN_sgdP = oneN_sgdP.run_training_loop_one_neuron_model(training_data)
468-
469- # %%
470- # Train One Neuron - ADAM
471- oneN_adam = ComputationalGraphPrimer_ReturnLoss_ADAM(one_neuron_model = True,

expressions = ['xw=ab*xa+bc*xb+cd*xc+ac*xd'], output_vars = ['xw'], dataset_size =
5000,

472- learning_rate = lr,
473- training_iterations =

40000, batch_size = 8, display_loss_how_often = 100, debug = False,)
474-
475- oneN_adam.parse_expressions()
476- training_data = oneN_adam.gen_training_data()
477- oneN_adam.initializeADAMStuff_OneNeuron(beta1=0.9, beta2=0.99)
478- loss_oneN_adam = oneN_adam.run_training_loop_one_neuron_model(training_data)
479-

480- # %%
481- # Pot all the losses
482- plt.figure()
483- plt.plot(loss_oneN_sgd, label='SGD')
484- plt.plot(loss_oneN_sgdP, label='SGD+')
485- plt.plot(loss_oneN_adam, label='ADAM')
486- plt.legend()
487- plt.title(f"Iterations vs Training Loss lr = {lr}")
488- plt.show()
489-
490- # %% [markdown]
491- # Test Multi Neuron (SGD, SGD+, ADAM)
492-
493- # %%
494- #lr = 9e-2
495- lr = 1e-2
496- #lr = 5e-2
497- #lr = .01
498-
499- # %%
500- multiN_sgd = ComputationalGraphPrimer_ReturnLoss(num_layers = 3, layers_config

= [4,2,1], expressions = ['xw=ap*xp+aq*xq+ar*xr+as*xs',
501-

'xz=bp*xp+bq*xq+br*xr+bs*xs',
502-

'xo=cp*xw+cq*xz'], output_vars = ['xo'], dataset_size = 5000,
503- learning_rate = lr,
504- training_iterations = 20000,

batch_size = 8, display_loss_how_often = 100, debug = False,)
505-
506- multiN_sgd.parse_multi_layer_expressions()
507- training_data = multiN_sgd.gen_training_data()
508- loss_multiN_sgd =

multiN_sgd.run_training_loop_multi_neuron_model(training_data)
509-
510- # %%
511- multiN_sgdP = ComputationalGraphPrimer_ReturnLoss_SGD_Plus(num_layers =

3,layers_config = [4,2,1], expressions = ['xw=ap*xp+aq*xq+ar*xr+as*xs',
512-

'xz=bp*xp+bq*xq+br*xr+bs*xs',
513-

'xo=cp*xw+cq*xz'], output_vars = ['xo'], dataset_size = 5000,
514- learning_rate = lr,
515- training_iterations

= 20000, batch_size = 8, display_loss_how_often = 100, debug = False,)
516-
517- multiN_sgdP.parse_multi_layer_expressions()
518- training_data = multiN_sgdP.gen_training_data()

519- multiN_sgdP.initializeMomentumStuff_MultiNeuron(momentum=0.9)
520- loss_multi_SGD =

multiN_sgdP.run_training_loop_multi_neuron_model(training_data)
521-
522- # %%
523- multiN_adam = ComputationalGraphPrimer_ReturnLoss_ADAM(num_layers =

3,layers_config = [4,2,1], expressions = ['xw=ap*xp+aq*xq+ar*xr+as*xs',
524-

'xz=bp*xp+bq*xq+br*xr+bs*xs',
525-

'xo=cp*xw+cq*xz'], output_vars = ['xo'], dataset_size = 5000,
526- learning_rate = lr,
527- training_iterations =

20000, batch_size = 8, display_loss_how_often = 100, debug = False,)
528-
529- multiN_adam.parse_multi_layer_expressions()
530- training_data = multiN_adam.gen_training_data()
531- multiN_adam.initializeADAMStuff_MultiNeuron(beta1=0.9, beta2=0.99)
532- loss_multi_Adam =

multiN_adam.run_training_loop_multi_neuron_model(training_data)
533-
534- # %%
535- # Pot all the losses
536- plt.figure()
537- plt.plot(loss_multiN_sgd, label='SGD')
538- plt.plot(loss_multi_SGD, label='SGD+')
539- plt.plot(loss_multi_Adam, label='Adam')
540- plt.title(f"Iterations vs Training Loss lr = {lr}")
541- plt.legend()
542- plt.show()
543-
544- # %% [markdown]
545- # ADAM - Hyperparamter Tuning - B1 and B2
546-
547- # %%
548- # NOTE: The following code loops through all beta1 and beta2 values.
549- # The code then creates a new cgp and trains with the beta values
550- # The results are then saved to the results list
551-
552- B1 = [0.8 , 0.95, 0.99]
553- B2 = [0.89, 0.9 , 0.95]
554-
555- i = 1
556- results = []
557- for b1 in B1:
558- for b2 in B2:
559-

560- testAdam = ComputationalGraphPrimer_ReturnLoss_ADAM(num_layers =
3,layers_config = [4,2,1], expressions = ['xw=ap*xp+aq*xq+ar*xr+as*xs',

561-
'xz=bp*xp+bq*xq+br*xr+bs*xs',

562-
'xo=cp*xw+cq*xz'], output_vars = ['xo'], dataset_size = 5000,

563- learning_rate = lr,
564- training_iterations =

20000, batch_size = 8, display_loss_how_often = 100, debug = False,)
565- testAdam.parse_multi_layer_expressions()
566- training_data = testAdam.gen_training_data()
567- testAdam.initializeADAMStuff_MultiNeuron(beta1=b1, beta2=b2)
568-
569- # Start time measurement
570- start_time = time.time()
571-
572- loss_testAdam =

testAdam.run_training_loop_multi_neuron_model(training_data)
573-
574- # End time measurement
575- end_time = time.time()
576- duration = end_time - start_time
577-
578- # Save metrics results list
579- finalLoss = loss_testAdam[-1]
580- minLoss = min(loss_testAdam)
581-
582- result = f"{i}\t{b1}\t{b2}\t{round(duration, 1)}\t{round(finalLoss,

4)}\t{round(minLoss, 4)}"
583- results.append(result)
584- i+=1
585-
586- # %%
587- # Results are printed
588- print(f"Trial\tB1\tB2\tTime\tFinal-L\tMin-L")
589- for r in results:
590- print(r)
591-

