ECE 60146 Homework 3
Nikkhil Vijaya Sankar — nvijayas@purdue.edu

1- Exploring the Primer

Figure 1 shows the loss-vs-iterations plot produced by multi_neuron_classifer.py and Figure 2
shows the loss-vs-iterations plot produced by verify_with_torchnn.py in the multi neuron
configuration. From inspecting these plots, we can see that both models are learning since the
loss is continually decreasing. However, when we take a closer look at the values of the loss.
The torch.nn model performs worse in as its final loss value hovered around 6, while the
manually created multi neuron model’s loss hovered around 0.10. We also notice that in Figure
1 the loss didn’t improve after about 60 iterations suggesting that learning is complete.
However, in Figure 2 we can see that the loss is continually improving suggesting that more
iterations of learning can take place. We can also notice that torch.nn is more smooth in its loss
than the manual method.

0.30 1

0.25 4

0.15 A

0.05 +

0.00 4

T T

T T T T T T T
0 50 100 150 200 250 300 350 400

Figure 1: loss-vs-iteration plot of multi_neuron_classifer.py

14 4

12 A

10 A

0 50 100 150 200 250 300 350 400

Figure 2: loss-vs-iteration plot of verify_with_torchnn.py (multi-neuron config)

Figure 3 and Figure 4 show the same plots as Figure 1 and Figure 2 but for the one-neuron
scenario. A similarity in Figures 3 and 4 is that both have decreasing loss suggesting that both
models are indeed learning. However, it’s the rate at which they are learning is the difference.
For instance, Figure 3’s loss is more linear whereas Figure 4’s loss is more exponential decay.
However, Figure 4’s model performs much worse as its loss hovers around 1 at the end of
training, but the loss for Figure 3’s model hovers around 0.20 at the end of training.
Nevertheless, using torch.nn is still better to use as it includes optimizations to better update
the parameters.

0.30 A

0.20 A

0.05 A

0.00 A

0 50 100 150 200 250 300 350 400

Figure 3: loss-vs-iteration plot of one_neuron_classifer.py

2.0 A

1.5 4

1.0

0.5 1

0.0 1

0 50 100 150 200 250 300 350 400

Figure 4: loss-vs-iteration plot of verify_with_torchnn.py (one-neuron config)

2- Description of SGD+ and Adam
a. SGD+

We all know that Stochastic Gradient Decent (SGD) is a popular method to optimize a loss
function in any machine learning model. SGD+ is an extension of SGD that uses the concept of
momentum to speed up convergence. It does so by increasing the values of the gradients of the
parameters. In SGD’s journey of finding the minimum of the loss’s hyperplane, if we realize that
we have been correctly descending to the bottom of the valley, then we can make a greater
jump to get to the bottom faster. This faster jump or the idea of taking a larger leap is called
momentum.

The typical update rule for SGD is as follows, pyyqy = pt — Ir - g41. Here ps, 4 is the update
to be made, the current update p;, the learning rate Ir, and the next gradient g;, 1.

To convert the mentioned equation to SGD+, we need to consider the previous update (the
step that was taken last iteration). We still want to make sure we consider the current update
as well, since if the current gradient is the opposite direction of the previous update, then we
know we went passed the minimum and we need to self-correct. Therefore, we take a fraction
of the previous update. The fractional amount of the previous update to consider is determined
by the variable called momentum. The concepts can be mathematically represented by the
following equations.

Verr = W Ve + Gegn

De+1 = Pe — Ir - veyq
In these equations, the momentum is u, the previous update is v;, and v;,; can be seen as a
temporary variable.

When comparing the equations of SGD and SGD+, we can see that there is an additional step
before we modify the update in SGD+. That additional step is essentially, u - v;. The value of u
can range from 0 to 1. A value of 1 means we consider the entire amount of the previous
update. Alternatively, a value of 0 means we don’t consider the previous update at all. Notice
that setting u = 0 simplifies the equations to be the same as SGD.

b. ADAM

Adaptive Moment Estimation, or ADAM for short, is an improved optimizer and is known to
work very well. Adam combines the concepts of momentum and adaptability. We already know
that momentum helps reach convergence faster. It does so by checking the previous update
and if it points at the same direction as the current update, then it will take a larger jump. The
concept of adaptability addresses the issue of sparse gradients. It is often the case that
gradients are zeros, meaning there is not much to learn at a particular iteration in training.
However, in the rare instance that there is a non-zero gradient, then we know this particular
gradient contains vital information, and as a result we should give it more attention.

The following equations show mathematically what is mentioned in the previous paragraph.
Meyr = B me + (1= B1) * esr

Vepr = Bz v + (1= B2) - (ges1)?

Pt+1 =pt—lr-L
VUt+1 T €
The first equation incorporates momentum by taking a running weighted average of the
gradients. As we can see, the weight of the previous gradients is determined by f3;. Setting
B1 = 0 results in not using momentum at all. The second equation incorporates adaptability
by taking a running weighted average of the gradient’s variance. Like the case with f3;, setting
B> = 0 will mean not considering the previous variances. The third equation is our parameter
update equation. The difference here from the original SGD update equation is that the

M1
with momentum. The denominator of the fraction handles the inverse relationship with
variance. The logic behind this is that when high variance is observed Adam needs to slow down
its learning. Additionally, when low variance is observed Adam needs to speed up learning
because the gradients don’t contain new knowledge to gain. Lastly, the € is added to avoid a
divide by zero error: typically, € = 1e — 8.

gradient term is replaced with . The numerator of this fraction is essentially the gradient

While this is the essence of Adam, an issue occurs in practice that requires us to make one
small change. In the initial iterations of training, m; = v; = 0. These sway the averages of the
mean and variance to 0 in the initial iterations. As a result, the following equations are used as

corrected values for m; and v;.
m v
Meorrected = 1—Bk VUcorrected — 1—315
1

Here k indicates what iteration the training loop is in. The logic here is the following. In the
beginning stages of training (small k), the denominator will be a small value resulting in large
adjustments to m; and v;. While we approach the later stages of training (large k), the
denominator will approach 1 and not correct our m; and v;. This is perfect because it’s in the
beginning where we need correction to avoid the 0 bias caused by setting m; = v, = 0.

3- Implementation
a. One Neuron

Iterations vs Training Loss Ir = 0.0001 Iterations vs Training Loss Ir = 0.001

—— sGD
0.30 0.35 A SGD+
—— ADAM
0.5 - 0.30 -
0.25 -
0.20 -
0.20 -
0.15 -
0.15 -
0.10 -
0.10 -
0.05 - — SGD 0.05 -
—— SGD+
0.00 - —— ADAM 0.00 -
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400

Figures 5: One Neuron Loss Plot (Ir = 0.0001)

Iterations vs Training Loss Ir = 0.005

—— sSGD
—— SGD+

0.4] — ADAM

0.3

0.2

0.1

0.0
0 50 100 150 200 250 300 350 400

Figures 7: One Neuron Loss Plot (Ir = 0.005)

Figure 5 — 7 show the iterations vs loss plot of the one neuron model at different learning rates
with 3 different optimizers: SGD, SGD+, and Adam. In regard to smoothness, it is very evident
that Adam has the smoothest loss plots. We can see this since the green line in all these plots
are very thin meaning there is less variation. SGD+ is also considerably smooth but not as
smooth as the Adam. However, the least smooth is SGD. Figure 5 shows that when the learning
rate is low, the SGD loss is very volatile and not smooth at all. Regarding convergence, we can

Figures 6: One Neuron Loss Plot (Ir = 0.001)

0.4 1

0.3 1

0.2 1

0.1+

0.0 1

see that with a small learning rate (0.0001) all the optimizers take longer to learn. While Adam
stabilizes at a loss slightly above 0.20 very quickly, SGD+ can continually decrease its loss ever
so slowly: shown in Figure 5. With a medium learning rate (0.001), SGD performs much better
than how it did with a slower learning rate (Figure 6). Adam can stabilize its loss much quicker
but doesn’t decrease the loss at all (Figure 6). However, SGD+ outperforms both optimizers by
getting to a loss below 0.15 (Figure 6). Lastly, with a high learning rate (0.005) we in fact see
divergence in SGD. This is likely due to SGD overshooting the minimum and never being able to
return back to the bottom of the valley (Figure 7). This is where we see the beauty of
momentum as SGD+ is able to remember the past gradients and continue its path to
convergence (Figure 7). Adam again stabilizes very quickly but is not able to improve its loss
(Figure 7).

b. Multi Neuron

Iterations vs Training Loss Ir = 0.0001 Iterations vs Training Loss Ir = 0.001

P\M 0.40 A — SGD
- SGD+
M{m /_,/\'/\MN WMM"’\)WM‘)\N 0.35 A jf/v — Adam
{\/M 0.30 -
P hofinAntur | v
0.20
0.15 A
0.10
— SGD 0.05 -
—— SGD+
— Adam 0.00
(I) 2I5 SIO 7I5 160 12IS 150 17I5 Z(I)O (I) 2'5 5l0 7I5 160 155 15lO 17I5 260
Figures 8: Multi Neuron Loss Plot (Ir = 0.0001) Figures 9: Multi Neuron Loss Plot (Ir = 0.01)

Iterations vs Training Loss Ir = 0.01

— SGD
0.30 1 \ —— SGD+

L o o

0.25 4

0.20 4

0.15 A

0.10 A

0.05 A

0.00 A

0 25 50 75 100 125 150 175 200

Figures 10: Multi Neuron Loss Plot (Ir = 0.01)

Figure 8 — 10 show the iterations vs loss plot of the multi neuron model at different learning
rates with 3 different optimizers: SGD, SGD+, and Adam. In regard to smoothness, a high
learning rate yielded the smoothest loss for all 3 optimizers (Figure 10). In general, Adam had
smooth loss curves except in the case of Figure 9 where Adam had larger variances towards the
end of training. SGD has overall the least smoothness. SGD did however smooth out at the end
of training in Figure 9. Regarding convergence, different learning rates didn’t change if a model
converged or not, except for the case in SGD+ with a small learning rate (Figure 8). This
observation is peculiar and could be a result of bad initialization weights. It is clear that a
learning rate of 0.001 with Adam yielded the lowest loss (Figure 9). Additionally, SGD and SGD+
performed the best with a higher learning rate of 0.01 (Figure 10). In fact, SGD’s loss starts to
decrease toward the end of training suggesting that the loss can be further improved with more
iterations (Figure 10).

c. Findings

A lot can be learned from the conducted experiments. The overall take from this is that
Adam tends to produce smoother loss curves which can be attributed to the consideration of
the second moment. Additionally, Adam may not converge to the lowest loss, but it will
stabilize the fastest. This is likely due to the combination of momentum and adaptability. If we
were to rank the optimizer, SGD+ will be the runner up as it too can converge quickly but not as
fast as Adam. This again is due to the consideration of momentum. The additional benefit of
momentum is that SGD+ is able to avoid divergence where ordinary SGD cannot. As seen in the
case of Figure 7, SGD overshot its estimation but since SGD+ is able to remember its previous
gradient it avoided that issue. This brings SGD to last place where it experiences high variance
and generally takes longer to converge.

It is important to mention that the different learning rates play a curial role in the
performance of these optimizers. Given enough effort, one can easily find the right learning

rate that will sway one optimizer to perform better than the other. This only shows that
hyperparameter tuning is critical when training deep learning models.

d. Adam Optimizer Performance

Figure 11 shows the results of testing Adam optimizer with various beta 1 and beta 2 values.
From the results the duration of training with different beta values plays no significant role. All
the models finished training in about 8.8 to 9.1 seconds. The worst performing models occurred
in trials 8 and 9. This was when the beta 1 value was 0.99 and beta 2 values were 0.9 and 0.95.
The best performing model was trial 1 where beta 1 = 0.8 and beta 2 = 0.89. The second best
model was trial 4 with beta 1 = 0.95 and beta 2 = 0.89. It’s important to make clear that |
determine “best model” by looking at the lowest final loss. Based on these trends, it seems that
Adam performs better when both beta values are a little less than the normal 0.9 and 0.99
values that are traditionally used. This means Adam performs better when given slightly more
importance to the current first and second moments. That is essentially the effect that the beta
values play in Adam. The lower the beta values, the more weightage is given to the current
moments when averaging. Inversely, the higher the beta values, the less weightage is given to
the current moments when averaging.

Final-L
. 0952

.1974

.13

. 1006

=1
.

==
Q

~
o
N

. 1887
. 1908
. 1996
.2403
. 2005

(s I~ T T~ T o~ T~ T~ R~ R)
(s I T T T T T I I)
(o I~ T T o T o T T R o I LS)

© 00NN O UL B WN =
O 00 00 00 00 W W 00 0

Figures 11: Table of Tested B1 and B2 Values for Adam

4- Source Code

5_

6— import sys

7— sys. .append("/Users/nikkhil/Documents/ECE 60146/hw3/ComputationalGraphPrimer-

1.1.4/ComputationalGraphPrimer")

8_
9- import random
10— import numpy as np

11-import matplotlib.pyplot as plt
12—-import operator

13- from ComputationalGraphPrimer import *
14— import time

17-random.
18-np.random.

NOTE

25-class ComputationalGraphPrimer_ReturnLoss(ComputationalGraphPrimer):
def __init_ (self, * , Kk):
super(ComputationalGraphPrimer_ReturnLoss, self).__init_ (%

NOTE

def run_training_Tloop_one_neuron_model(self,
self. = { : random.
self.learnable_params}
self. = random. (0,1)

class Dataloader:
def __init_ (self,

self.
self.
self.

[0]]
self.

[1]]

__len__(self):

return len(self. [0]) + len(self.

_getitem(self):
= random. ([0,11)

if = (¢
return random.

else:
return random.

getbatch(self):

= 0.0

for _ in range(self.
= self._getitem()
if np. ([0]) >
= np. ([o])
.append ([a])
.append ([1])
/ for

return

= Dataloader(=self.batch_size)

= [I

range(self.training_iterations):
= .getbatch()
= [0]
= [1]

’

self.forward_prop_one_neuron_model(

= sum([(abs([i] - [i]))*x2 for

range(len(1)
+= / float(len(

if i%(self.display_loss_how_often) == 0:
/= self.display_loss_how_often

.append ()
print("[iter=%d] loss = %.4f" % (i+1,

= 0.0

= list(map(operator.sub,

self.backprop_and_update_params_one_neuron_model(

)

’

return

NOTE

def run_training_loop_multi_neuron_model(self,

class Dataloader:
def __init_ (self,

self.
self.
self.

[0]]
self.

[1]]

def __len__ (self):

return len(self. [0]) + len(self.

_getitem(self):
= random. ([0,11)

if == 0:
return random.
else:
return random.

getbatch(self):

= 0.0

for _ in range(self.
= self._getitem()
if np. ([0]) > :
= np. ([o])
.append ([a])
.append ([1])
for

return

124-

125- self. : random. (0,1) for
in self.learnable_params}

126- self. = {i : [random. (0,1) for j in range(
self.layers_config[i]) 1 for i in range(1, self.num_layers)}

127- = Dataloader(, =self.batch_size)

128- = [l

129-

130-

131-

132- for i in range(self.training_iterations):
133- = .getbatch()

134- = [0]

135- = [1]

136- self.forward_prop_multi_neuron_model(

137- =
self.forw_prop_vals_at_layers[self.num_layers-1]

138- for in
in
139- = sum([(abs([i] - [i]))**2 for i in
range(len(1)
140- = / fTloat(len())

141-

142- if i%(self.display_loss_how_often) == 0:
143- /= self.display_loss_how_often
144- .append ()
145- print("[iter=%d] 1loss = %.4f" % (i+l,

))
146- = 0.0

147- = list(map(operator.sub,

148- self.backprop_and_update_params_multi_neuron_model(
)

149-

150-

151-

152- return

153-

154-

155-

156-

157-

158- NOTE

159-

160- class
ComputationalGraphPrimer_ReturnLoss_SGD_Plus(ComputationalGraphPrimer_ReturnLoss):

161- def __init_ (self, x* , k%) &

162- super(ComputationalGraphPrimer_ReturnLoss_SGD_Plus,
self).__init_ (%) kK)

163-

164- NOTE

165- def initializeMomentumStuff_OneNeuron(self,

166- self. =

167-

168- self. : in self.learnable_params}
169-

170- self.

171-

172- NOTE

173- def initializeMomentumStuff_MultiNeuron(self,

174- self. =

175-

176- self. : 0.0 for in self.learnable_params}
177-

178- self. = {i: [0.0 for _ in range(self.layers_config[i])] for
in range(1, self.num_layers)}

179-
180- NOTE

def backprop_and_update_params_one_neuron_model(self,
’ ;):
= self.independent_vars
= self.var_to_var_param[self.output_vars[0]]

{ for in
.items()}

= self.
in enumerate(self.

= 0.0
in range(self.batch_size):
= dict(zip(
[i1)))

193- ne =
[11 %

194- /= float(self.batch_size)

195-

196-

197-
198-

199- self.] = self.mu x self.
self.learning_rate *

200- self.] += self.

201-

202-

203-) / float(self.batch_size)

204-) / float(self.batch_size)

205-

206-

207-

208-

209- = self. * self. + self.learning_rate *

210- += self.
211-
212-
213-

214-

215-

216- def backprop_and_update_params_multi_neuron_model(self,
):

217-

218- [{i : [None for j in range(
self.layers_config[il) 1

219- for in
range(self.num_layers)} for _ in range(self.batch_size)]

220-

221- : in self.all_params}
222-

223- = {i: [0.0 for j in range(self.layers_config[i]) 1
for i in range(1, self.num_layers)}
224~ for b in range(self.batch_size):

[b] [self.num_layers - 1]

in reversed(range(1,self.num_layers)):
= self.forw_prop_vals_at_layers]|
228-
self.gradient_vals_for_layers|
229- . layer_vars|
230- self.layer_vars|
1]
231- dict(zip(
self.forw_prop_vals_at_layers| - 11[bl))
232-
233-

234~

235- = self.layer_params [

236- = list(zip(x*

237- in enumerate(
238- in enumerate(
239-
sum([self.

240-

*
241-

for i in range(len(
242- for j, in enumerate():
243- = self.layer_params [

244- = self.var_to_var_param|

245- : for

249-

250-

251- in enumerate(
252-

253-

254-

255-

256-

257- in enumerate(

258- in enumerate(

259- i -1 > 0:

260-

261-
262-

263- for in
264-

float(self.batch_size)
265-
266—

267-
268-

269- [I = self.
self.] - self.learning_rate x*
270- [
271-
272-
273-
274~ for in range(1,self.num_layers):
275- for k in range(self.layers_configl
276-
277-

278-
279-

280-
float(self.batch_size)

281- [1[k] = self.
self. 1[k] + self.learning_rate *

282- Ikl +=
self.

283-

284-

285-

286—

287-

288-

289- NOTE

290- class
ComputationalGraphPrimer_ReturnLoss_ADAM(ComputationalGraphPrimer_ReturnLoss):

pASKES def __init_ (self, x* , k%) &

292- super(ComputationalGraphPrimer_ReturnLoss_ADAM, self)._ init_ (x
ok

293-

294-

295-

296- def initializeADAMStuff_OneNeuron(self,

297- self.

298- self.

299- self.

300- self.

301- self. : in self.learnable_params}
302- self. : in self.learnable_params}
303-

304- NOTE

305-

306— initializeADAMStuff_MultiNeuron(self,

307- self.

308- self.

309- self.

310- self. =0

311-

312- self. : 0 for in self.learnable_params}

313- self. : 0 for in self.learnable_params}

314-

315- self. = { : [0 for _ in range(self.layers_configl
in range(1, num_layers) }

316- self. = : [0 for _ in range(self.layers_configl
in range(1, num_layers) }

317-

def backprop_and_update_params_one_neuron_model(self,
, ;) E

= self.independent_vars
= self.var_to_var_param[self.output_vars[0]]

{ for in
.items()}
= self.

in enumerate(self.

= 0.0
for j in range(self.batch_size):
= dict(zip(
[i1)))
e -
[1T %
/= Tfloat(self.batch_size)

(1 - (self.blxkself.
(1 - (self.b2xkself.

17/
17/

self. self.learning_rate *
+ self.ep) *xk 0.5)
self. self.learning_rate x* ((+ self.ep) *x

355-
356-
357- def backprop_and_update_params_multi_neuron_model(self,
):
358-
359-
360-
361-
362-
363-

364- [{i : [None for j in range(
self.layers_config[il) 1

365- for in
range(self.num_layers)} for _ in range(self.batch_size)]

366-

367- : in self.all_params}
368-

369- = {i: [0.0 for j in range(self.layers_config[i]) 1
for i in range(1, self.num_layers)}
370- for b in range(self.batch_size):
371- [b] [self.num_layers — 1] = [
[b] 1

372- in reversed(range(1,self.num_layers)):

= self.forw_prop_vals_at_layers]|

374-
self.gradient_vals_for_layers]|

375- self.layer_vars|

376- self.layer_vars|
1]

377- dict(zip(
self.forw_prop_vals_at_layers| - 11[b]))

378-

= self.layer_params[
= list(zip(x*

in enumerate(
in enumerate(

sum([self.

for i in range(len(
388- for j, in enumerate():
389- = self.layer_params [

390- = self.var_to_var_param[

391- : for

enumerate (

in enumerate(
in enumerate(
-1 > 0:

- 1] [k] =*

408-

409—- for in

410-
float(self.batch_size)

411-

412-

413-

414-
415-

416—
(
417-
418- ; *k self.
419- ; *k self.
420—-
421- .] += self.learning_rate x*

422-
423-
424-

425- in range(1,self.num_layers):
426- for k in range(self.layers_configl

427-

428-

429-

430-
float(self.batch_size))

431-

432- self. [
self. Ikl + (1 - self.

433- self. [
self. Ikl + (1 - self.

434—-

435- self.
self.

436- self.
self.

437-

438- self. [1[k] += self.learning_rate *
((+ self.ep) %k 0.5)

439-

440—-

= ComputationalGraphPrimer_ReturnLoss (

= ['xw=abxxa+bckxb+cdkxc+ackxd'],

= 8,

.parse_expressions()
.gen_training_data()
= .run_training_Tloop_one_neuron_model(

= ComputationalGraphPrimer_ReturnLoss_SGD_Plus (
= ['xw=abxxa+bcxxb+cdxxc+ackxd'],
= 5000,

= 8,

.parse_expressions()

= .gen_training_data()
.initializeMomentumStuff_OneNeuron (=0.9)

= .run_training_loop_one_neuron_model(

= ComputationalGraphPrimer_ReturnLoss_ADAM(

= ['xw=abxxa+bckxb+cdkxc+ackxd'],

= 8,

.parse_expressions()

= .gen_training_data()
.initializeADAMStuff_OneNeuron(=0.9, =0.99)

= .run_training_loop_one_neuron_model(

480-
481-
482- .figure()
483- .plot(='SGD"')
484- .plot(='SGD+")
485- .plot(="ADAM"')
486- . legend()
487- .title(f"Iterations vs Training Loss 1lr =
488- . show()
489-
490-
491-
492-
493-
494-
495-
496-
497-
498-
499-
500- = ComputationalGraphPrimer_ReturnLoss (
= [4,2,1], = ['xw=apkxp+agkxg+arkxr+askxs',
501-
'xz=bp*xxp+bgxxq+brkxr+bskxs',
502-
'Xo=Ccpkxw+cqkxz'],
503-
504-
= 8, = 100,
505-
506— .parse_multi_layer_expressions()
507- = .gen_training_data()
508- =
.run_training_Tloop_multi_neuron_model(
509-
510-
511- = ComputationalGraphPrimer_ReturnLoss_SGD_Plus (
3, = [4,2,1], = ['xw=apkxp+agxxqg+arkxr+as*xs',
512-
'xz=bp*xxp+bgxxq+brkxr+bskxs',
513-
'Xo=Ccpkxw+cqkxz'],
514-
515-
= 20000,
516-
517- .parse_multi_Tlayer_expressions()
518- = .gen_training_datal()

519- .initializeMomentumStuff MultiNeuron(
520- =
.run_training_Tloop_multi_neuron_model(

521-
522-
523- = ComputationalGraphPrimer_ReturnLoss_ADAM(=

3, = [4,2,1], = ['xw=apkxp+agxxqg+arkxr+as*xs',
524-

'xz=bpxxp+bgxxq+brkxr+bskxs',
525-

'Xo=Ccpkxw+cqkxz'],
526-
527-

20000, = 8,
528-
529- .parse_multi_layer_expressions()
530- = .gen_training_data()
531- .initializeADAMStuff MultiNeuron(=0.9,
532- =

.run_training_Tloop_multi_neuron_model(

533-
534-
535-
536- .figure()

537- .plot(='SGD")
538- .plot(='SGD+")
539- .plot(, ='Adam")
540- .title(f"Iterations vs Training Loss 1lr =
541- . legend()

542- .show()

543-

544-

545-

546-

547-

548-

549-

550-

551-

552- [0.8 , 0.95, 0.99]

553- [0.89, 0.9 , 0.95]

554-

555-

556-

557-

558-

559-

560- = ComputationalGraphPrimer_ReturnLoss_ADAM(

5 = [4,2,1], = ['xw=apkxp+agkxg+arkxr+askxs',

561-

'xz=bpxxp+bgxxq+brkxr+bskxs',
562-

'Xo=Ccpkxw+cqkxz'],

563-
564-

20000, = 8, = 100,
565- .parse_multi_Tlayer_expressions()
566— = .gen_training_data()
567- .initializeADAMStuff MultiNeuron(
568-

569-

570- = time.time()

571-

572- =
.run_training_Tloop_multi_neuron_model(

573-

574-

575- time.time()

576- =

577-

578-

579- =

580- = min(

581-

582- = f'{iNt{b1\t{b2}\t{round(» 1)\ t{round(

4) I\ t{round(, 43"

583- .append (

584-

585-

586—

587-

588- print(f"Trial\tB1\tB2\tTime\tFinal-L\tMin-L")
589- for in :

590- print(r)

591-

