BME646 and ECE60146: Homework 2

Spring 2024
Due Date: 11:59pm, Jan 22, 2024
TA: Akshita Kamsali (akamsali@purdue.edu)

Turn in typed solutions via BrightSpace. Additional instructions can be
found at BrightSpace. Late submissions will be accepted with penalty: -10
points per-late-day, up to 5 days.

1 Introduction

The goal of this homework is to introduce you to the pieces needed to im-
plement an image dataloader for training or testing your deep neural net-
works. To that end, this homework will help you familiarize yourself with the
image representations as provided by PIL, Numpy, and PyTorch libraries.
It will also make you more familiar with the idea of data augmentation.
Upon completing this homework, you will be able to construct your own
image dataloader for training deep neural networks using the torchvision
library. For more information regarding the image representations and the
usage of the torchvision library, you can refer to Prof. Kak’s tutorial [5].
Note that this homework contains a “theory” task (Sec. 2) followed by the
programming tasks (Sec. 3).

2 Understanding Pixel Value Scaling and Normal-
ization

As you know from the Week 2 lecture by Prof. Kak, image data consists
fundamentally of integers in the range 0 to 255 what a neural network likes
to see at its input are floating point numbers between -1.0 and 1.0. Pixel
value scaling refers to mapping the integer values to the floating point (0, 1.0)
range and pixel value normalization refers to a further transformation of the
pixel values so that they span the floating-point (—1.0,1.0) range.

Your goal here is to compare manual pixel-value scaling using the call
in Line (12) on Slide 26 with the more “automated” pixel-value scaling as
provided by tvt.ToTensor as shown in Lines (15) and (16) on Slide 28.

For this comparative study, create two different versions of a simulated
batch of images as shown at the bottom of Slide 19, one in which the pixel
values are limited to the range 0 through 32 and other in which the pixel



values span the full one-byte range. Your first batch would be a simulation
of a color photo recorded under conditions of poor illumination. And your
second batch would be more or less the same as in Slide 19.

For each batch, compare the values you get with the manual approach
with the values you get with the based on tvt.ToTensor and report your
results.

If you wish, in each case, you can follow pixel-value scaling with pixel-
value normalization using the statements shown on Slide 34.

2.1 Try it yourself

Load the .npy file provided to you. You may investigate the image by
checking the minimum and maximum values. Next, print the maximum
value in the image. Finally, divide the given image by max value and 255.
What do you observe?

3 Programming Tasks

3.1 Setting Up Your Conda Environment

Before writing any code, you will first need to set up an Anaconda [1] envi-
ronment, in which PyTorch and install other necessary packages. You should
familiarize yourself with the basics of using conda for package management.
Nonetheless, what is outlined below will help you get started:

1. A very useful cheatsheet on the conda commands can be found here
[2].

2. If you are used to using pip, execute the following to download Ana-
conda:
sudo pip install conda

For alternatives to pip, follow the instructions here [3] for installation.

3. Create your ECE60146 conda environment:
conda create --name ece60146 python=3.10

4. Activate your new conda environment:

conda activate ece60146



5. Install the necessary packages (e.g. PyTorch, torchvision) for your
solutions

conda install pytorch==1.10.0 torchvision==0.11.0 cudatoolkit=10.2
-c pytorch

Note that the command above is specifically for a GPU-enabled instal-
lation of PyTorch version 1.10 and is only an example. Depending on
your own hardware specifications and the drivers installed, the com-
mand will vary. You can find more about such commands for installing
PyTorch here [4]. Most issues regarding installation can be resolved
through stakoverflow solutions.

While GPU capabilities are not required for this homework, you will
need thm for later homeworks.

6. After you have created the conda environment and installed the all
the dependencies, use the following command to export a snapshot of
the package dependencies in your current conda environment:

conda env export > environment.yml

7. Submit your environment.yml file to demonstrate that your conda
enviroment has been properly set up.

3.2 Becoming Familiar with torchvision.transforms

This task is about the Data Augmentation material on Slide 37 through 47
of the Week 2 slides on torchvision. Review those slides carefully and
execute the following steps:

1. Take a photo of a Laptop on a Desk with your cellphone camera while
you are standing directly in front of the sign and the camera is pointing
straight at it. Alternatively, you can also take a picture of any flat
surfaced object such as book, tablet, portrait, etc. placed vertically
on a desk or wall.

2. Take another photo of the same object, but this time from a very
oblique angle — you may either move just the camera or your entire
self to create this effect.

Example: I have chosen a white board leaning against a wall. The
images are in figures la and 1b correspond to front and oblique views.



(a) Front image (b) Oblique image

Figure 1: Example of images of a flat surfaced object to take.

3. Now experiment with applying the callable instance tvt .RandomAffine
and the function tvt.functional.perspective () that are mentioned
on Slides 46 and 47 of Week 2 to see if you can transform one image
into the other.

4. Note that for measuring the similarity between two images of the ob-
ject, you can measure the distance between the two corresponding
histograms, as explained on Slides 65 through 73.

5. One possible way of solving this problem is to keep trying different
affine (or projective) parameters in a loop until you find the parameters
that will make one image look reasonably similar to the other.

6. In your report, first plot your front and oblique images side-by-side.
Subsequently, display your best transformed image, that is the most
similar to the target image, using either the affine or projective pa-
rameters. Also, plot the final histograms of the images and report the
Wasserstein distance .

Explain in one or two paragraphs on how you have solved this task.

3.3 Creating Your Own Dataset Class

Now that you have become familiar with implementing transforms using
torchvision, the next step is to learn how to create a custom dataset class
that is based on the torch.utils.data.Dataset class for your own images.
Your custom dataset class will store the meta information about your dataset
and implement the method that loads and augments your images.

The code snippet below provides a minimal example of a custom dataset
within the PyTorch framework:

[
|‘ import torch



20

class MyDataset (torch.utils.data.Dataset):

def __init__(self, root):
super () . __init__()
# Obtain meta information (e.g. list of file names)
# Initialize data augmentation transforms, etc.

pass

def __len__{(self):
# Return the total number of images
# the number is a place holder only

return 100

def __getitem__(self, index):
# Read an image at index and perform augmentations
# Return the tuple: (augmented tensor, integer label)
# these dimension numbers are for illustrative purpose
only.
return torch.rand((3, 256, 256)), random.randint (0, 10)

Before proceeding, take ten images with your cellphone camera of any
object, you may wish to continue with the same object. Now, store them
together within a single folder. Now, based on the code snippet above,
implement a custom dataset class that handles your own images. More
specifically, your __getitem__ method should:

1. Read from disk the image corresponding to the input index as a PIL

image.

. Subsequently, assuming that you are using your custom dataset to

train a classifier, augment your image with any three different trans-
forms of your choice that you think will make your classifier more
robust. Note that a suitable transform could be either color-related
or geometry-related. Note that you should use tvt.Compose to chain
your augmentations into a single callable instance.

. Finally, return a tuple, with the first item being the tensor represen-

tation of your augmented image and the second the class label. For
now, you can just use a random integer as your class label.

The code below demonstrates the expected usage of your custom dataset
class:

1| # Based on the previous minimal example

2

my_dataset = MyDataset(’./path/to/your/folder’)
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print (len(my_dataset)) # 100

index =

print (my_dataset [index] [0] .shape, my_dataset [index][1])
# torch.Size([3, 256, 256]) 6

index = 50
print (my_dataset [index] [0] .shape, my_dataset[index] [1])
# torch.Size([3, 256, 256]) 8

In your report, for at least three of your own images, plot the original version
side-by-side with its augmented version. Also briefly explain the rationale
behind your chosen augmentation transforms.

3.4 Generating Data in Parallel

For reasons that will become clear later in this class, training a deep neural
network in practice requires the training samples to be fed in batches. Since
calling __getitem__ will return you a single training sample, you now need
to build a dataloader class that will yield you a batch of training samples
per iteration. More importantly, by using a dataloader, the loading and
augmentation of your training samples is done efficiently in a multi-threaded
fashion.

For the programming part, wrap an instance of your custom dataset
class within the torch.utils.data.Dataloader class so that your images
for training can be processed in parallel and are returned in batches.

In your report, set your batch size to 4 and plot all 4 images together
from the same batch as returned by your dataloader.

Additionally, compare and discuss the performance gain by using the
multi-threaded DataLoader v.s. just using Dataset. First, record the time
needed to load and augment 1000 random images in your dataset (with
replacement) by calling my_dataset.__getitem__ 1000 times. Then, record
the time needed by my_dataloader to process 1000 random images. Note
that for this comparison to work, you should set both your batch_size and
num_workers to values greater than 1. You must report the times for atleast
2 different batchsizes and two different number of workers. In your report,
tabulate your findings on the timings and experiment with different settings
of the batch_size and num_workers parameters.

3.5 Random seed

Reproducibility is crucial in deep learning to ensure consistent results. In
this section, we will explore the impact of setting random seeds on the



behavior of data loaders.

First, without setting the seed, set the batch size to 2 and plot all 2
images together from the same batch as returned by your data loader with
shuffle set to true. Plot only one batch with two images and exit the batch
iterator. Now, rerun the iterator. Do you see the same two images in the
first iteration? Why or why not?
batch_size = 2

dataloader = DataLoader(my_dataset, batch_size=batch_size,
shuffle=True)

# Plot the first batch of images

for batch in dataloader:
images, labels = batch
# Plot images (only two images for brevity)
break

# Rerun the iterator

for batch in dataloader:
images, labels = batch
# Check if the same two images are in the first iteration
break

Next, at the top just below your import library statements, set your
random seed to '60146’ (See Week 2 lecture’s slides 72 and 73). Follow
the previous exercise of printing the images in the first batch only in two
different iterations. What do you see now?

4 Submission Instructions

Include a typed report explaining how did you solve the given programming
tasks.

1. Turn in a zipped file, it should include (a) a typed self-contained pdf
report with source code and results and (b) source code files (ONLY
.py files are accepted) (c) .yaml file of your conda environment Rename
your .zip file as hw2_<First Name><Last Name>.zip and follow the
same file naming convention for your pdf report too.

2. For all homeworks, you are encouraged to use .ipynb for development
and the report. If you use .ipynb, please convert it to .py and submit
that as source code.

3. You can resubmit a homework assignment as many times as you want
up to the deadline. FEach submission will overwrite any previous



submission. If you are submitting late, do it only once on
BrightSpace. Otherwise, we cannot guarantee that your latest sub-
mission will be pulled for grading and will not accept related regrade
requests.

4. The sample solutions from previous years are for reference only. Your
code and final report must be your own work.

5. Your pdf must include a description of

Your explanation to the theory question as described in Sec. 2.
Your observations in Sec. 2.1

The various plots and descriptions as instructed by the subsec-
tions in Sec. 3 and 3.5.

Your source code. Make sure that your source code files are
adequately commented and cleaned up.

To help better provide feedback, make sure to number your
figures, tables and refer them accordingly in your reports.
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