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Section 2 

 
Compare the scaing method used in slide 26 and 28: 
 
If the batch of images which the pixel value are limited to range from 0 to 32 are used, the 
scaling results using slide 26 and 28 are different (as shown in fig1). But if the batch of 
images which the pixel value are range from 0 to 255 are used, the scaling results using 
slide 26 and 28 are the same (as shown in fig2). 
 
This suggests that tvt.ToTensor() will always scale the images by dividing 255 which is the 
maximum possible pixel value in uint8 format no matter the maximum value in the image. 
But if we manually scale the image, we will scale the images by diving the maximum value in 
the images which is not necessary 255. This explain the difference when using the image 
with the pixel value limited to range from 0 to 32. 
 
The code for the implementation is shown in fig3. 
 

 
Fig1 – result for pixel value range from 0 to 32 

 

 

Fig2 – result for pixel value range from 0 to 255 
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Fig3 

 
 

Section 2.1 

 
The results for dividing max value and 255 are the same since the maximum value in this 
image is 255. 
 
The comparison result is shown in fig4 and the code for implementation is shown in fig5. 
 

 

Fig4 
 



 

Fig5 
 

 

Section 3.1 

 
The conda environment has been set up and the environment.yml is attached. Note that 
since I use mac with gpu does not support cuda, the cudatoolkit cannot be installed.   
 
 

Section 3.2 

 
Fig6 shows the front and oblique images that I took. 
 

     

(a)Front image                         (b) Oblique image 
                   Fig6 
 

 



I will try to transform the front image to the oblique image using tvt.RandomAffine(). The 
result is shown in Fig7 which have the comparison with the oblique image.  
 

     

(a) Best transform image            (b) Oblique image(target image) 
                   Fig7 

 
The histograms of the images shown in Fig7 are shown in Fig8 (The histogram have 20 bins 
in the range of [0.0,1.0]). The Wasserstein distance between the histograms of targeted 
and best transform image is 0.0059. Note that the Wasserstein distance between the 
histograms of front and oblique image (the original images) is 0.0081. 
 

     

(a) Histogram of best transform image        (b) Histogram of target image 
                  Fig8 

 
 
How to find the “best” transform image: 
 
For the best transform image shown in Fig7, I have use tvt.RandomAffine(degrees=(-9.0,-
9.0),scale=(0.9,0.9)) . Specifically, the best degree parameter that I use is -9.0 and the best 
scaling parameter that I use is 0.9. Other parameters are as default. 
 
To find the best transform image, I have used the grid search: degrees parameter is search 
from range [-45,45] and the scale parameter is search from range [0.9,1.2]. All the 
combination will be tried and the one which gives the minimum Wasserstein distance 



between histograms of the targeted and transform images will be considered the best 
parameters set.  
 
The code for implementation is shown in Fig9. 
 

 

 
Fig9 

 
 
 
 
 
 
 
 
 
 



The function tvt.RandomPerspective() has also been tried. The following figure shows the 
code and the result. 

 

 
 
 

Section 3.3 

  
The class MyDataset is defined. I have chose 3 image transform: tvt.RandomRotation, 
tvt.ColorJitter, tvt.RandomAffine. 
 
The reason to choose tvt.RandomRotation: This function will rotate the image by a certain 
degree. This is a geometry-related transform. People might observe the object at different 
angles but the classification of this object should not change. This function can make 
classifier robust to this scenario.   
 
The reason to choose tvt.ColorJitter: This function will randomly change the brightness, 
contrast, saturation and hue of an image. This is a color-related transform. People might 
observe the object in different brightness or environment but the classification of this object 
should not change. This function can make classifier robust to this scenario.   
 
The reason to choose tvt.RandomAffine: This is a geometry-related transform. People 
might observe the object in different viewpoint but the classification of this object should 
not change. This function can make classifier robust to this scenario.   
 
Table 1 compare the original and augmented images for 3 different object. 
 



Original image Augmented image 

  

  

  

Table1 
 

The code for implement MyDataset class is shown in Fig10 and the test case is shown in 
Fig11. 
 



 
Fig10 

 

 
Fig11 

 
 



Section 3.4 

 
Using DataLoader to get a batch of images with batch size 4. Note that to use Dataloader, 
the image need to convert to tensor (I previously use PIL image as input and output). Also 
the images need to be the same size. 
 
Fig12 shows the 4 images returned by my dataloader and Fig13 shows the code to implement 
this. 
 

 
Fig12 

 

 
Fig13 

 
 
Compare the performance using multi-threaded DataLoader and using Dataset: 
 
First I will compute the time to return 1000 images by calling my_dataset.__getitem__ 
directly. Note that I only use tvt.ColorJitter transform in this and the following experiment. 
The intention is to save time but this will still be the fair comparison. 
 
Fig14 shows the code and the running time. The time to return 1000 images by calling 
my_dataset.__getitem__ directly is 179.02 sec 
 



 

Fig14 
 
Next I will compute the time by using Dataloader. I will first fix the batch size to be 4 and 
change the number of workers. Fig15 shows the code and the run time. The run time is also 
summarize in table2.  
 

 
Fig15 

 

Batch size Number of workers Running time(s) 

4 2 21.25 

4 4 14.99 

4 6 15.78 

Table2 
 
It is expected that using Dataloader is much faster than using __getitem__ directly. This is 
due to the parallelism. Also, if the number of worker is smaller than the batch size, as the 
number of workers increase, the running time decrease. But when the number of worker is 
larger than the batch size, the running time will not decrease as the number of worker 
increase. 
 
Finally, I will fix the number of workers to be 6 and increase the batch size. Fig16 shows the 
code and the run time. The run time is also summarize in table3. 



 
Fig16 

 
 

 

Number of workers Batch size Running time(s) 

6 2 13.98 

6 4 14.10 

6 8 14.48 

6 10 13.97 

Table3 
 

 
As the batch size increase, the running time remain approximately the same if the number 
of workers is fixed. When the batch size is too big, we might run into insufficient memory 
problem (this issue is shown in fig16 when I set the batch size to be 50). 
 
 

Section 3.5 

 
By running the code shown in Fig17. Without setting the seed, the return from the iterator 
are not the same for two different time (result shown in Fig18). 
 
The reason that we have different results in different times is we shuffle the data differently 
in different time. Without setting the seed, we will expect the shuffle results will be different. 
 



 
Fig17 

 

 
Fig18 

 
 
 



By setting the seed below the import (as shown in Fig19) and also setting the seed before 
running the iterator (as shown in Fig20). The return images will remain the same (as shown 
in Fig21). 
 

 
Fig19 

 

 
Fig20 

 



 
Fig21 


