
ECE60146: Homework 2
Manish Kumar Krishne Gowda, 0033682812

(Spring 2024)

1 Introduction

In this assignment,programming tasks related to torchvision, random tensors, numpy and tensor
interconversion, histograms, image transformations, etc. were performed using Python. It is in-
tended to provide an insight on image handling and image processing using pytorch module. The
modules covered in this homework will provide a base for working with deep neural networks like
converting images to tensor data type (which is the default pytorch format for working with deep
neural networks), manipulating the available image input to better train the network, etc.

2 Understanding Pixel Value Scaling and Normalization

from google.colab import drive

drive.mount(’/content/drive’)

%cd /content/drive/MyDrive/ece60146_hw2/

from PIL import Image # pillow fork

import os

import time

import torch

import torchvision.transforms as tvt

import numpy as np

import random #for random seed

import matplotlib.pyplot as plt #matplotlib for visualisation

from scipy.stats import wasserstein_distance

def manual_scaling(images):

images_scaled = images/images.max().float()

return images_scaled

def tvt_scaling(images):

images_scaled = torch.zeros_like(images).float()

for i in range(images.shape[0]):

images_scaled[i] = tvt.ToTensor ()(np.transpose(images[i].numpy(), (1,2,0)))

return images_scaled

images_v1 = torch.randint(0, 32 , (4, 3, 5, 9)).type(torch.uint8) #version1 images

-> pixel values limited to (0,32)

images_v2 = torch.randint(0, 256 , (4, 3, 5, 9)).type(torch.uint8) #version2 images

-> pixel values in full one byte range

#v1 manual pixel scaling vs automated (tvt.ToTensor) comparison

manual_images_v1 = manual_scaling(images_v1)

auto_images_v1 = tvt_scaling(images_v1)

print("v1 image first batch comparison output : ")

print(( manual_images_v1[0] == auto_images_v1[0]))

#v2 manual pixel scaling vs automated (tvt.ToTensor) comparison

manual_images_v2 = manual_scaling(images_v2)

auto_images_v2 = tvt_scaling(images_v2)

print("v2 image first batch comparison output : ")
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print(( manual_images_v2[0] == auto_images_v2[0]))

As per the task instructions manual pixel-value scaling using max() function is compared
with a more “automated” pixel-value scaling as provided by tvt.ToTensor() method. Two dif-
ferent versions images v1 and images v2 of a simulated batch of images were created using
torch.randint method. Here images v1 image pixels are limited to the range 0 through 31, while
images v2 image pixels spans the full one-byte range (i.e. 0 through 255). For both these images,
values we get with the manual approach of scaling with the values we get with tvt.ToTensor
approach of scaling are compared. Specifically, the function manual scaling() performs scaling of
former type, using the maximum pixel value in the image (obtained using max() function). The
function tvt scaling() performs the latter automated version of scaling.

The output of the manual scaling comparison is shown in Figure 1 while output of the
automated scaling comparison is shown in Figure 2

Figure 1: Low Illumination Image Comparison Results

For the Low Illumination Image (i.e. image with pixels restricted to the range (0,32)), the
manual and automated scaling yield different results in each pixel (except in the pixels that are
equal to zero in the original image, the scaling in both cases will lead to a value of zero. Thus we can
see sparse ”True” values in the comparision output). This is because, while max() function scales
the image by the maximum pixel value in the image matrix, the tvt.ToTensor always scales by
255, irrespective of the max value. Similarly the Full pixel range Image Comparison Results yields
”True” in all pixel comparisions. But, its interesting to note that for the images v1 matrix which
this comparion is based on, the max pixel value is 255. If the torch.randint function samples a
matrix where the max pixel value is not 255 (say 254 or 253 or less), then the scaling in the two
types will yield different results. To show the output in minimal space, only the first channel of
each image is compared.

2.1 Investigation of provided npy image

test_img_np_array = np.load(’images/test_image.npy’)

plt.imshow(test_img_np_array)
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Figure 2: Full pixel range Image Comparison Results

print(f’max value in given npy image = {np.amax(test_img_np_array)}’) #print max

value in the np array

print(f’min value in given npy image = {np.amin(test_img_np_array)}’) #print min

value in the nd array

images_scale_max = manual_scaling(torch.from_numpy(np.transpose(test_img_np_array

,(2,0,1)))) #manual scaling scales the

image by the max value i.e. 219

images_scale_255 = tvt.ToTensor ()(test_img_np_array) #avoiding tvt_scaling

function as it iterates through the

batches

print("manual scaling output : ")

print(images_scale_max[0])

print()

print("tvt.ToTensor scaling output : ")

print(images_scale_255[0])

#alternatively we can use foll. lines for direct operations on np array

#print(test_img_np_array[0]/np.amax(test_img_np_array))

#print(test_img_np_array[0]/255)s

The given image was investigated and the results are shown in Figure 3. In order to perform
the scaling of the given npy matrix by the max value and again by the max possible value (i.e.
255), the given numpy matrix was transformed to the tensor datatype using from numpy inbuilt
method and the function logics defined for the previous task was reused. The observed results are
consistent with the scaling explained in previous section.

In most practical image datasets encountered in deep learning, the images will span a full
range (0,255) for each channel. Hence both manual scaling and tvt.ToTensor based scaling can be
used. However, the tvt.ToTensor based scaling is more efficient and is preferred as we work with
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large image datasets.

3 Programming Tasks

3.1 Setting Up Your Conda Environment

This task is skippped as I am working with google colab. Google Colab comes with many pre-
installed libraries and packages, including some commonly used ones in the data science and ma-
chine learning community. I can use the built-in package management system in Colab to install
additional packages using commands like !pip install

3.2 Becoming Familiar with torchvision.transforms

#3.2 Becoming Familiar with torchvision.transforms

calculator_direct = Image.open(’images/calculator_direct.jpeg’)

calculator_oblique = Image.open(’images/calculator_oblique.jpeg’)

my_bins = 10

fig , axes = plt.subplots(1, 2, figsize=(6, 5), sharey=False)

axes[0].imshow(calculator_direct)

axes[1].imshow(calculator_oblique)

plt.show()

#calculating histograms

hist_calculator_direct = torch.histc(tvt.ToTensor ()(calculator_direct), bins=

my_bins , min=0.0, max=1.0)

hist_calculator_direct = hist_calculator_direct.div(hist_calculator_direct.sum())

hist_calculator_oblique = torch.histc(tvt.ToTensor ()(calculator_oblique), bins=

my_bins , min=0.0, max=1.0)

hist_calculator_oblique = hist_calculator_oblique.div(hist_calculator_oblique.sum

())

no_transfomer = tvt.RandomAffine(degrees=(0,0))

img_without_transform = no_transfomer(calculator_oblique)

x_shear = np.linspace(-40 , 40 , 9)

y_shear = np.linspace(-40 , 40 , 9)

min_affine_dist = 1e10 #setting value to inf for initial comparison

#calculating Wasserstein Dist

def cal_wasserstein_dist(calculator_trans_img , num_bins = 10):

hist_calculator_trans_img = torch.histc(tvt.ToTensor ()(calculator_trans_img),

bins=num_bins , min=0.0, max=1.0)

hist_calculator_trans_img = hist_calculator_trans_img.div(

hist_calculator_trans_img.sum())

w_dist = wasserstein_distance(hist_calculator_direct.cpu().numpy (),

hist_calculator_trans_img.cpu().numpy ()

)

return w_dist ,hist_calculator_trans_img

#Looping throgh different degrees and shear values

for degree in range(-60 ,60 ,20):

for i, x_shear_idx in enumerate(x_shear):

for j, y_shear_idx in enumerate(y_shear):

affine_transformer = tvt.RandomAffine(degrees=(degree ,degree), translate=(0,

0),scale=(1,1),shear = [x_shear_idx
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, x_shear_idx+5, y_shear_idx ,

y_shear_idx+5])

transformed_img = affine_transformer(calculator_oblique)

w_dist ,hist_calculator_trans_img = cal_wasserstein_dist(transformed_img ,

num_bins=my_bins)

if w_dist < min_affine_dist:

min_affine_dist = w_dist

best_affine_img = transformed_img

selected_deg = degree

selected_x_shear = x_shear_idx

selected_y_shear = y_shear_idx

hist_trans_img_affine = hist_calculator_trans_img

min_pers_dist = 1e9

W, H = calculator_direct.size

for i in range(15):

startpoints , endpoints = tvt.RandomPerspective ().get_params(W, H, 0.3)

transformed_img = tvt.functional.perspective(calculator_direct , startpoints ,

endpoints)

w_dist ,hist_calculator_trans_img = cal_wasserstein_dist(transformed_img ,num_bins

=my_bins)

# Comparing the Wassertein distance with the minimum value

if w_dist < min_pers_dist:

min_pers_dist = w_dist

best_pers_img = transformed_img

selected_startpoints = startpoints

selected_endpoints = endpoints

hist_trans_img_pers = hist_calculator_trans_img

w_dist_obliqe ,_ = cal_wasserstein_dist(calculator_oblique ,num_bins=my_bins)

print("the selected affine transformer parameters are : degree={}, x_shear =[{},{}]

& y_shear =[{},{}]".format(selected_deg ,

selected_x_shear ,selected_x_shear+5,

selected_y_shear ,selected_y_shear+5))

print("the selected perspective transformer parameters are : startpoints={}

endpoints={}".format(selected_startpoints

,selected_endpoints))

print("wasserstein_dist bw orig direct image and orig oblique img = {}".format(

w_dist_obliqe))

print("wasserstein_dist bw orig direct image and affine transformed img = {}".

format(min_affine_dist))

print("wasserstein_dist bw orig direct image and perspective transformed img = {}"

.format(min_pers_dist))

# Plot Best Image after Affine Transform

fig , axes = plt.subplots(1, 4, figsize=(8, 5), sharey=True)

axes[0].imshow(calculator_direct)

axes[0].set_title(’Orig Direct Img’)

axes[1].imshow(calculator_oblique)

axes[1].set_title(’Orig Oblique Img’)

axes[2].imshow(best_affine_img)

axes[2].set_title(’Best Aff -Trans Img’)

axes[3].imshow(best_pers_img)

axes[3].set_title(’Best Persp -Trans Img’)

plt.show()

#histogram plots

x = range(my_bins)

fig , axes = plt.subplots(1, 4, figsize=(8, 5), sharey=False)

axes[0].bar(x, hist_calculator_direct , align=’center ’)
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axes[1].bar(x, hist_calculator_oblique , align=’center ’)

axes[2].bar(x, hist_trans_img_affine , align=’center ’)

axes[3].bar(x, hist_trans_img_pers , align=’center ’)

axes[0].set_title(’Hist Direct Img’)

axes[1].set_title(’Hist Oblique Img’)

axes[2].set_title(’Hist Affine. Img’)

axes[3].set_title(’Hist Persp. Img’)

An image of a calculator placed against a black wall was used for this task. Sallable instance
tvt.RandomAffine and the function tvt.functional.perspective() mentioned on Slides 46 and
47 of Week 2 were experimented with to find the best transformed version of the original image.

For affine transformation, different degrees and shear values were tested in a for loop. Trans-
lation and scale values were kept default, as the oblique image can be found to be almost similar
size to the original image.

For Perspective transformation, the function RandomPerspective was used to sample ran-
dom start and end points for the original image and the perspective transformation was obtained.

In both cases Wasserstein distance was used as comparision metric between the original image
and the transformed image. Finally, the transformed image with the least Wasserstein distance
among the all the transformed images was taken to be the best image for each type. The affine
transformer parameters of selected shear and degrees, the perspective transformer parameters of the
selected start and end points and the selected Wasserstein distance of the final selected image are
captured and reported. Note that the startpoints and endpoints for Perspective transformer is a List
containing [top-left, top-right, bottom-right, bottom-left] for the original image and transformed
image respectively. Further, the histogram of the images are calculated using torch.histc function.
All Affine Homographies are Projective Homographies, but not the other way around. This could
explain a possible reason for better performance of the perspective transformer. The results are
shown in Figure 4 and Figure 5.

3.3 Creating Your Own Dataset Class

#3.3 Creating Your Own Dataset Class

class MyDataset(torch.utils.data.Dataset):

def __init__(self , root):

super().__init__ ()

# Obtain file names

# perform data augmentation transforms , etc.

self.root_dir = root

self.image_paths = os.listdir(self.root_dir)

self.transforms = tvt.Compose([tvt.ToTensor (),

tvt.RandomGrayscale(p=0.5),

tvt.RandomResizedCrop(256 , scale=(0.9, 1.0)),

tvt.GaussianBlur(5, sigma=(0.5, 2.0))])

def __len__(self):

# Return the total number of images

return len(self.image_paths)

def __getitem__(self , index):

# Read an image at index and perform augmentations

# Return the tuple : ( augmented tensor , integer label )

# Get the path of the image

# As we have only 10 images , we used "index % 10" to cover the cases when

index >= 10

index = index % len(self.image_paths)

6



image_name = self.image_paths[index]

full_image_path = os.path.join(self.root_dir , image_name)

my_image = Image.open(full_image_path)

transformed_image = self.transforms(my_image)

return (transformed_image , index)

#test input demo

my_dataset = MyDataset(root = ’/content/drive/MyDrive/ece60146_hw2/images/

ten_images ’)

print(len(my_dataset))

index = 10

print(my_dataset[index][0].shape , my_dataset[index][1])

index = 55

print(my_dataset[index][0].shape , my_dataset[index][1])

# PLot three original images with augement versions

fig , axes = plt.subplots(3, 2, figsize=(10, 12), sharey=True)

rand_indices = np.random.randint(0, len(my_dataset), 3) #obtain 3 random images

from our image set

for i in range(0,3):

index = rand_indices[i]

img , label = my_dataset[index]

original_image = Image.open(os.path.join(my_dataset.root_dir , my_dataset.

image_paths[index]))

resized_image = original_image.resize ((256 , 256))

axes[i][0].imshow(resized_image)

axes[i][0].set_title(’Original Image ’)

axes[i][1].imshow(np.array(img).transpose(1,2,0))

axes[i][1].set_title(’Augmented Image ’)

10 images were captured using camera and are presented in the report folder. Three transforms,
namely RandomResizedCrop, RandomGrayscale, and GaussianBlur were used on the orig-
inal images. The first is a popular transform used to normalize the input image size while training
neural networks. The other two are used to add random noise effects on the original images, pro-
viding addinal data to train our network on, so that it persorms well on unseen inputs. Output of
3 images are shown in Figure 6

3.4 Generating Data in Parallel

batch_size = 4

my_dataloader = torch.utils.data.DataLoader(dataset=my_dataset , batch_size=

batch_size , shuffle=True , num_workers = 2

)

iterator = iter(my_dataloader) #iter is a special function defined in Dataloader

class , hence it is not overridden in

MyDataset class

batch = next(iterator)

fig , axes = plt.subplots(1, batch_size , figsize=(12, 8), sharey=True)

for i in range(0,batch_size):

image_in_batch = batch[0][i]

axes[i].imshow(np.array(image_in_batch).transpose(1,2,0))

plt.show()

#comparing the performance gain by using the multi -threaded DataLoader v.s. just

using Dataset

num_iters = 1000

batch_size_list = [32 ,64]
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num_workers_list = [2, 4]

#performance gain by using the MyDataset __get_item__

rand_indices = np.random.randint(len(my_dataset), size = num_iters)

start_time = time.time()

for i in rand_indices:

rand_image , label = my_dataset[i]

end_time = time.time()

elapsed_time = end_time - start_time

print(f’Time taken to process {num_iters} images in the dataset using __get_item__

: {elapsed_time} seconds\n’)

#performance gain by using the multi -threaded DataLoader

for bsize in batch_size_list :

for nworkers in num_workers_list:

print(f’Performance of dataloader with batch size {bsize} and {nworkers}

num_workers:’)

dataloader = torch.utils.data.DataLoader(dataset=my_dataset ,

batch_size=bsize , shuffle=True , num_workers = nworkers)

iterator = iter(dataloader)

start_time = time.time()

for i in range(int(num_iters/bsize)):

try:

image , label = next(iterator)

except StopIteration:

iterator = iter(dataloader)

image , label = next(iterator)

end_time = time.time()

elapsed_time = end_time - start_time

print(f’Time taken to process {num_iters} images in the dataset using

Dataloder: {elapsed_time} seconds ]\n’

)

Output of 4 images together from the same batch as returned by the dataloader is shown
in Figure 7. Time taken to process 1000 images in the dataset using get item was found to be
83.28334498405457 seconds. The Time taken to process 1000 images using Dataloader class iterator
is reported in the Table. It is observed that the processing time decreases when using a larger batch
size. Additionally, it should be noted that if the number of threads used for processing exceeds
the batch size, there is a decrease in performance. The batch size use will be more apparant with
larger image sizes.

batch size num workers time taken

32 2 35.016271
32 4 36.15959
64 2 16.19922
64 4 17.402995

3.5 Random Seed

batch_size = 2

dataloader = torch.utils.data.DataLoader(my_dataset , batch_size = batch_size ,

shuffle = True)

#Plot the first batch of images

for batch in dataloader :

images ,labels = batch
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fig , axes = plt.subplots(1, batch_size , figsize=(8, 8), sharey=True)

for i in range(0,batch_size):

image_in_batch = images[i]

axes[i].imshow(np.array(image_in_batch).transpose(1,2,0))

plt.show()

break

# Rerun the iterator

for batch in dataloader :

images ,labels = batch

fig , axes = plt.subplots(1, batch_size , figsize=(8, 8), sharey=True)

for i in range(0,batch_size):

image_in_batch = images[i]

axes[i].imshow(np.array(image_in_batch).transpose(1,2,0))

plt.show()

break

seed = 60146

random.seed(seed)

torch.manual_seed(seed)

torch.cuda.manual_seed(seed)

np.random.seed(seed)

torch.backends.cudnn.deterministic=True

torch.backends.cudnn.benchmarks=False

os.environ[’PYTHONHASHSEED ’] = str(seed)

batch_size = 2

dataloader = torch.utils.data.DataLoader(my_dataset , batch_size = batch_size ,

shuffle = True)

#Plot the first batch of images

for batch in dataloader :

images ,labels = batch

fig , axes = plt.subplots(1, batch_size , figsize=(8, 8), sharey=True)

for i in range(0,batch_size):

image_in_batch = images[i]

axes[i].imshow(np.array(image_in_batch).transpose(1,2,0))

plt.show()

break

# Rerun the iterator

for batch in dataloader :

images ,labels = batch

fig , axes = plt.subplots(1, batch_size , figsize=(8, 8), sharey=True)

for i in range(0,batch_size):

image_in_batch = images[i]

axes[i].imshow(np.array(image_in_batch).transpose(1,2,0))

plt.show()

break

In this task the use of Random seed is investigated. For both cases the two images obtained in
subsequent trials of the iterator from the same batch is different. This is because in the second
sample of the dataloader, the dataloader shuffles the input and returns a different sample of the
1000 random images. The use of ”random seed” however is to reproduce the results across different
platforms. For example, an iterator call with the random seed enabled, immediately after the seed
set will output the same images. This is briefly shown in the code. The output of the iterator with
and without seed setting can be seen in Figure 8 and 9.
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4 Conclusion

Data augmentation proves beneficial for expanding the training dataset, particularly in scenarios
with limited training data. The study reveals successful mapping of straight images to oblique ones
through Projective transformation. Moreover, custom datasets can be tailored to specific data
formats and efficiently processed in mini-batches using an appropriate batch size and number of
workers within a Dataloader class. This not only accelerates the training process but also enhances
its stability.
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Figure 3: Given npy file investigation results (Task 2.1)
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Figure 4: Original and Transformed Images

Figure 5: Histograms of the Original and Transformed Images
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Figure 6: Output of original and augmented images
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Figure 7: 4 images of same batch

Figure 8: Image output without Random Seed
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Figure 9: Image output with Random Seed set
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