
ECE 601: Homework 10
Wei Xu

Email: xu1639@purdue.edu
Due date: 11:59 PM, Apr. 25, 2024

(Spring 2024)

1 Programming Tasks

1.1 Dataset

Note: Some of the code for this subsection is borrowed from the DLStudio package
(https://engineering.purdue.edu/kak/distDLS/).

The code for loading data sets is shown below. The data sets are provided with pkl files, which
are all dictionaries, and can be loaded using pickle.load method in the load dataset function.
There are 10,000 samples in total, and the proportion is 7:2:1 for training, evaluation, and testing
sets respectively. Specifically, the * dict.pkl files contain ’id’, ’title’, ’context’, ’question’,
’answers’, while the * processed.pkl files contain ’input ids’, ’attention mask’,
’start positions’, and ’end positions’.

1 # load datasets

2 def load_dataset(path=’./ dataset ’):

3 with open(’{}/ train_dict.pkl’.format(path), ’rb’) as f:

4 train_dict = pickle.load(f)

5 f.close ()

6 with open(’{}/ eval_dict.pkl’.format(path), ’rb’) as f:

7 eval_dict = pickle.load(f)

8 f.close ()

9 with open(’{}/ test_dict.pkl’.format(path), ’rb’) as f:

10 test_dict = pickle.load(f)

11 f.close ()

12 with open(’{}/ train_data_processed.pkl’.format(path), ’rb’) as f:

13 train_processed = pickle.load(f)

14 f.close ()

15 with open(’{}/ eval_data_processed.pkl’.format(path), ’rb’) as f:

16 eval_processed = pickle.load(f)

17 f.close ()

18 with open(’{}/ test_data_processed.pkl’.format(path), ’rb’) as f:

19 test_processed = pickle.load(f)

20 f.close ()

21 # print keys

22 print(train_dict.keys())

23 print(eval_dict.keys())

24 print(test_dict.keys())

25 print(train_processed.keys())

26 print(eval_processed.keys())

27 print(test_processed.keys())

28 return train_dict , eval_dict , test_dict , train_processed ,

↪→ eval_processed , test_processed

1

mailto:xu1639@purdue.edu
https://engineering.purdue.edu/kak/distDLS/

1.2 BERT for Q&A

Note: Some of the code for this subsection is borrowed from the DLStudio package
(https://engineering.purdue.edu/kak/distDLS/).

The code for fine-tuning a model is shown below. In the train model function, the model
(’bert-base-uncased’) is initialized through BertForQuestionAnswering.from pretrained. The
model structure can be inspected by printing model. modules. The training arguments are set
through TrainingArguments. In this experiment, the number of epochs is 10, the batch size
for training is 8, and the batch size for evaluation is 8. The log is printed every single epoch.
The training and evaluation dataset loaders are created through Dataset.from pandas with the
* processed sets. Then train the model using Trainer. And save the model after finishing train-
ing. The training output of the first 5 epochs can be found below the code snippet.

1 # fine tune model

2 def train_model(train_processed , eval_processed):

3 # initialize model

4 model_name = ’bert -base -uncased ’

5 model= BertForQuestionAnswering.from_pretrained(model_name)

6 print(model._modules)

7 # set training arguments

8 training_args = TrainingArguments(output_dir=’./ results ’, # output

↪→ directory

9 use_mps_device=False ,

10 num_train_epochs =10, # total

↪→ number of training epochs

11 per_device_train_batch_size =8, #

↪→ batch size per device

↪→ during training

12 per_device_eval_batch_size =8, #

↪→ batch size for evaluation

13 weight_decay =0.01, # strength of

↪→ weight decay

14 logging_strategy=’epoch’,

15 logging_steps =1

16)

17 # create dataset instance

18 train_dataset = Dataset.from_pandas(pd.DataFrame(train_processed))

19 eval_dataset = Dataset.from_pandas(pd.DataFrame(eval_processed))

20 # train model

21 trainer = Trainer(model=model , # the instantiated Transformers

↪→ model to be fine -tuned

22 args=training_args , # training arguments , defined

↪→ above

23 train_dataset=train_dataset , # training dataset

24 eval_dataset=eval_dataset # evaluation dataset

25)

26 trainer.train()

27 # save trainer instance

28 trainer.save_model(’./ results/last_model ’)

Outputs:

{’loss ’: 2.0602 , ’grad_norm ’: 34.05586242675781 , ’learning_rate ’: 4.5e-05,

↪→ ’epoch ’: 1.0}

2

https://engineering.purdue.edu/kak/distDLS/

{’loss ’: 0.9359 , ’grad_norm ’: 36.63857650756836 , ’learning_rate ’: 4e-05, ’

↪→ epoch ’: 2.0}

{’loss ’: 0.4943 , ’grad_norm ’: 23.20585060119629 , ’learning_rate ’: 3.5e-05,

↪→ ’epoch ’: 3.0}

{’loss ’: 0.2907 , ’grad_norm ’: 44.92435836791992 , ’learning_rate ’: 3e-05, ’

↪→ epoch ’: 4.0}

{’loss ’: 0.2036 , ’grad_norm ’: 46.06318664550781 , ’learning_rate ’: 2.5e-05,

↪→ ’epoch ’: 5.0}

...

{’train_runtime ’: 1687.3029 , ’train_samples_per_second ’: 41.486 , ’

↪→ train_steps_per_second ’: 5.186, ’train_loss ’: 0.43363596627371653 , ’

↪→ epoch ’: 10.0}

The training loss keeps decreasing and the learning rate is decaying for more precise results.

1.3 Testing and evaluation metrics

Note: Some of the code for this subsection is borrowed from the DLStudio package
(https://engineering.purdue.edu/kak/distDLS/).

The code for testing the model and calculating metrics is shown below. Call test model to ex-
ecute this process. The testing set is loaded through Dataset.from pandas. The fine-tuned model
is loaded through BertForQuestionAnswering.from pretrained from the saved model. The to-
kenizer is created through BertTokenizer.from pretrained. The prediction can be obtained by
trainer.predict.

It is noticed that the predictions are all lowercase and in the subword-level tokenization.
The preprocessing is needed. First, convert the prediction from subword-level tokenization to
word-level tokenization by subword2word. This function simply removes ##. Secondly, normalize
the ground truth by normalize string. This function converts all letters to lowercase ASCII
characters and splits the words and symbols to match the prediction format. The degree symbol ◦

in normalize string can not display well in the code snippet, so ^{\circ} is used to represent it.
The Exact Match and F1-score metrics are calculated by compute exact match and f1 score

respectively. The inputs are the prediction and ground truth after preprocessing.
15 samples and the (individual and overall) metrics can be found below the code snippet.

1 # convert Unicode to ASCII

2 def unicode2ascii(s):

3 return ’’.join(

4 c for c in unicodedata.normalize(’NFD’, s)

5 if unicodedata.category(c) != ’Mn’

6)

7

8 # normalize sentence

9 def normalize_string(s):

10 s = unicode2ascii(s.lower ().strip ())

11 s = re.sub(r"([,.!?%$\-\’\’\"\"\(\) ^{\ circ }])", r" \1 ", s)

12 s = re.sub(r"[^a-zA-Z0 -9 ,.!?%$\-\’\’\"\"\(\) ^{\ circ }]+", r" ", s)

13 s = re.sub(r’^\s+|\s+$’, ’’, s)

14 s = re.sub(r" ^{\ circ} ", r"^{\ circ}", s)

15 return s

16

17 # convert subword -level token to word -level token

18 def subword2word(s):

19 s = re.sub(r" ##", r"", s)

3

https://engineering.purdue.edu/kak/distDLS/

20 return s

21

22 # compute Exact Match

23 def compute_exact_match(prediction , truth):

24 return int(prediction == truth)

25

26 # compute F1-score

27 def f1_score(prediction , truth):

28 pred_tokens = prediction.split ()

29 truth_tokens = truth.split()

30 # if either the prediction or the truth is no-answer then F1 = 1 if

↪→ they agree , 0 otherwise

31 if len(pred_tokens) == 0 or len(truth_tokens) == 0:

32 return int(pred_tokens == truth_tokens)

33 else:

34 common_tokens = set(pred_tokens) & set(truth_tokens)

35 # if there are no common tokens then F1 = 0

36 if len(common_tokens) == 0:

37 return 0

38 else:

39 prec = len(common_tokens) / len(pred_tokens)

40 rec = len(common_tokens) / len(truth_tokens)

41 return 2 * (prec * rec) / (prec + rec)

42

43 # test model

44 def test_model(test_dict , test_processed):

45 # create dataset instance

46 test_dataset = Dataset.from_pandas(pd.DataFrame(test_processed))

47 # load trained model

48 model = BertForQuestionAnswering.from_pretrained(’./ results/

↪→ last_model ’)

49 trainer = Trainer(model=model)

50 # Initialize the tokenizer

51 tokenizer = BertTokenizer.from_pretrained(’bert -base -uncased ’)

52 # test trained model

53 x = trainer.predict(test_dataset)

54 # retrieve offset mapping of prediction

55 start_pos , end_pos = x.predictions

56 start_pos = np.argmax(start_pos , axis =1)

57 end_pos = np.argmax(end_pos , axis =1)

58 # create lists to save metrics

59 EM_list = []

60 F1_list = []

61 # print predictions and calculate metrics

62 for k, (i, j) in enumerate(zip(start_pos , end_pos)):

63 # convert indices to tokens

64 tokens = tokenizer.convert_ids_to_tokens(test_processed[’

↪→ input_ids ’][k])

65 # preprocess prediction and ground truth

66 prediction = subword2word(’ ’.join(tokens[i:j+1]))

67 truth = normalize_string(test_dict[’answers ’][k][’text’][0])

68 print(’Question:’, test_dict[’question ’][k])

69 print(’Answer:’, prediction)

70 print(’Correct Answer:’, truth)

4

71 em = compute_exact_match(prediction , truth)

72 f1 = f1_score(prediction , truth)

73 print(’Exact Match:’, em)

74 print(’F1 Score:’, f1)

75 EM_list.append(em)

76 F1_list.append(f1)

77 print(’---’)

78 # print overall metrics

79 print(’\n’)

80 print(’Exact Match: average: {}; median: {}’.format(statistics.mean

↪→ (EM_list), statistics.median(EM_list)))

81 print(’F1 Score: average: {}; median: {}’.format(statistics.mean(

↪→ F1_list), statistics.median(F1_list)))

Outputs:

...

Question: What type of imaging was used to study the relationship between

↪→ humans and dogs?

Answer: mri

Correct Answer: magnetic resonance imaging

Normalized Correct Answer: magnetic resonance imaging

Exact Match: 0

F1 Score: 0

Question: How much money were possible changes to the Mexico City section

↪→ of the film rumored to have saved the production?

Answer: $ 20 million

Correct Answer: $20 million

Normalized Correct Answer: $ 20 million

Exact Match: 1

F1 Score: 1.0

Question: Where did the Chinese government decide that parents who had

↪→ lost children could go for free treatment?

Answer: fertility clinics

Correct Answer: fertility clinics

Normalized Correct Answer: fertility clinics

Exact Match: 1

F1 Score: 1.0

Question: What is the ultimate goal for Theravadins?

Answer: nibbana

Correct Answer: N i b b n a

Normalized Correct Answer: nibbana

Exact Match: 1

F1 Score: 1.0

Question: What university was Lok -Ham Chan a professor at?

Answer: university of washington

Correct Answer: the University of Washington

Normalized Correct Answer: the university of washington

Exact Match: 0

F1 Score: 0.8571428571428571

5

Question: Who was the Mongol prince?

Answer: sakya pandita

Correct Answer: Godan

Normalized Correct Answer: godan

Exact Match: 0

F1 Score: 0

Question: How many people were buried in the collapsed schools?

Answer: 1 , 700

Correct Answer: 1,700

Normalized Correct Answer: 1 , 700

Exact Match: 1

F1 Score: 1.0

Question: Who mentored contestants in the fourteenth and fifteenth seasons

↪→ of American Idol?

Answer: randy jackson

Correct Answer: Scott Borchetta

Normalized Correct Answer: scott borchetta

Exact Match: 0

F1 Score: 0

Question: Thomas Stritch was an editor of which publican from Notre Dame?

Answer: matthew fitzsimons , frederick crosson

Correct Answer: Review of Politics

Normalized Correct Answer: review of politics

Exact Match: 0

F1 Score: 0

Question: Paperback of the Year award from Bestsellers magazine was

↪→ awarded when?

Answer: 1962

Correct Answer: 1962

Normalized Correct Answer: 1962

Exact Match: 1

F1 Score: 1.0

Question: Gray color is often called what when referring to dogs?

Answer: blue

Correct Answer: blue

Normalized Correct Answer: blue

Exact Match: 1

F1 Score: 1.0

Question: How many persons were still unaccounted for in Yingxiu?

Answer: around 3 , 000

Correct Answer: around 9,000

Normalized Correct Answer: around 9 , 000

Exact Match: 0

F1 Score: 0.75

Question: How were the semi -finalists divided in season four?

Answer: gender

Correct Answer: by gender

6

Normalized Correct Answer: by gender

Exact Match: 0

F1 Score: 0.6666666666666666

Question: Who was the host of American Idol in its fourteenth season?

Answer: ryan seacrest

Correct Answer: Ryan Seacrest

Normalized Correct Answer: ryan seacrest

Exact Match: 1

F1 Score: 1.0

Question: In what borough is Godiva based?

Answer: manhattan

Correct Answer: Manhattan

Normalized Correct Answer: manhattan

Exact Match: 1

F1 Score: 1.0

...

Exact Match: average: 0.572; median: 1.0

F1 Score: average: 0.7179283755599364; median: 1.0

Generally, the predictions are precise. There are three cases. (1) Some answers are accurate.
For example, the prediction for the question (”How much money were possible changes to the
Mexico City section of the film rumored to have saved the production?”) is ”$ 20 million”, which
is the same with the (normalized) correct answer; the prediction for the question (”Where did the
Chinese government decide that parents who had lost children could go for free treatment?”) is
”fertility clinics”, which is the same with the (normalized) correct answer. (2) Some other answers
are good enough but have bad metrics. For example, the prediction for the question (”What type
of imaging was used to study the relationship between humans and dogs?”) is ”mri”, which the
abbreviation of the (normalized) correct answer ”magnetic resonance imaging” (so in my opinion,
this prediction can also be considered as a correct answer); the prediction for the question (”What
university was Lok-Ham Chan a professor at?”) is ”university of washington”, which only has one
less ”the” than the (normalized) correct answer (this can also be considered as a correct answer).
(3) Some answers are incorrect. For example, the prediction for the question (”Who was the Mongol
prince?”) is ”sakya pandita”, while the correct answer should be ”godan”; the prediction for the
question (”Who was the Mongol prince?”) is ”sakya pandita”, while the correct answer should be
”godan”.

The average Exact Match is 0.572, meaning 57.2% predictions are exactly correct. The
average F1-score is 0.718, which is a not-bad level. The medians for the metrics are both 1.0,
meaning at least a half answers are perfect.

However, considering the case (2), in which the answers are good enough but have bad
metrics, the real performance of the model should be better than what the metrics tell.

1.4 Comparison

Note: Some of the code for this subsection is borrowed from the DLStudio package
(https://engineering.purdue.edu/kak/distDLS/).

The code for comparison with another fine-tuned model is shown below. The compare model

function loads ’distilbert-base-cased-distilled-squad’ model from Hugging Face. Then run
it over the testing set and calculate the Exact Match and F1-score metrics.

7

https://engineering.purdue.edu/kak/distDLS/

15 samples and the (individual and overall) metrics can be found below the code snippet.

1 # compare with another open -source fine -tuned model

2 def compare_model(test_dict):

3 # load model

4 question_answerer = pipeline(’question -answering ’, model=’

↪→ distilbert -base -cased -distilled -squad ’)

5 # create lists to save metrics

6 EM_list = []

7 F1_list = []

8 # print predictions and calculate metrics

9 for i in range(len(test_dict[’question ’])):

10 result = question_answerer(question=test_dict[’question ’][i],

↪→ context=test_dict[’context ’][i])

11 print(’Question:’, test_dict[’question ’][i])

12 print(’Answer:’, result[’answer ’])

13 print(’Correct:’, test_dict[’answers ’][i][’text’][0])

14 em = compute_exact_match(result[’answer ’], test_dict[’answers ’

↪→][i][’text’][0])

15 f1 = f1_score(result[’answer ’], test_dict[’answers ’][i][’text’

↪→][0])

16 print(’Exact Match:’, em)

17 print(’F1 Score:’, f1)

18 EM_list.append(em)

19 F1_list.append(f1)

20 print(’---’)

21 # print overall metrics

22 print(’\n’)

23 print(’Exact Match: average: {}; median: {}’.format(statistics.mean

↪→ (EM_list), statistics.median(EM_list)))

24 print(’F1 Score: average: {}; median: {}’.format(statistics.mean(

↪→ F1_list), statistics.median(F1_list)))

Outputs:

...

Question: What type of imaging was used to study the relationship between

↪→ humans and dogs?

Answer: magnetic resonance imaging

Correct: magnetic resonance imaging

Exact Match: 1

F1 Score: 1.0

Question: How much money were possible changes to the Mexico City section

↪→ of the film rumored to have saved the production?

Answer: $20 million

Correct: $20 million

Exact Match: 1

F1 Score: 1.0

Question: Where did the Chinese government decide that parents who had

↪→ lost children could go for free treatment?

Answer: fertility clinics

Correct: fertility clinics

Exact Match: 1

F1 Score: 1.0

8

Question: What is the ultimate goal for Theravadins?

Answer: N i b b n a

Correct: N i b b n a

Exact Match: 1

F1 Score: 1.0

Question: What university was Lok -Ham Chan a professor at?

Answer: University of Washington

Correct: the University of Washington

Exact Match: 0

F1 Score: 0.8571428571428571

Question: Who was the Mongol prince?

Answer: Godan

Correct: Godan

Exact Match: 1

F1 Score: 1.0

Question: How many people were buried in the collapsed schools?

Answer: 1,700

Correct: 1,700

Exact Match: 1

F1 Score: 1.0

Question: Who mentored contestants in the fourteenth and fifteenth seasons

↪→ of American Idol?

Answer: Scott Borchetta

Correct: Scott Borchetta

Exact Match: 1

F1 Score: 1.0

Question: Thomas Stritch was an editor of which publican from Notre Dame?

Answer: The Review of Politics

Correct: Review of Politics

Exact Match: 0

F1 Score: 0.8571428571428571

Question: Paperback of the Year award from Bestsellers magazine was

↪→ awarded when?

Answer: 1962

Correct: 1962

Exact Match: 1

F1 Score: 1.0

Question: Gray color is often called what when referring to dogs?

Answer: blue

Correct: blue

Exact Match: 1

F1 Score: 1.0

Question: How many persons were still unaccounted for in Yingxiu?

Answer: 9,000

Correct: around 9,000

9

Exact Match: 0

F1 Score: 0.6666666666666666

Question: How were the semi -finalists divided in season four?

Answer: by gender

Correct: by gender

Exact Match: 1

F1 Score: 1.0

Question: Who was the host of American Idol in its fourteenth season?

Answer: Ryan Seacrest

Correct: Ryan Seacrest

Exact Match: 1

F1 Score: 1.0

Question: In what borough is Godiva based?

Answer: Manhattan

Correct: Manhattan

Exact Match: 1

F1 Score: 1.0

...

Exact Match: average: 0.769; median: 1.0

F1 Score: average: 0.8906788305864256; median: 1.0

The same three cases also occur, but the overall performance is better. It pays attention to
the case of letters and does not need to normalize the ground truth before calculating the metrics.
In terms of the metrics, the average of Exact Match is 0.769, and the average of F1-score is 0.891.
They are both higher than the model fine-tuned by myself. And no surprise that the medians for
the metrics are both 1.0.

2 Complete Source Code

The degree symbol ◦ in normalize string can not display well in the code snippet, so {̂\circ} is
used to represent it.

1 import numpy as np

2 import random

3 import torch

4 import os

5 import argparse

6 import pickle

7 import pandas as pd

8 import unicodedata

9 import re

10 import statistics

11 from transformers import BertForQuestionAnswering , TrainingArguments ,

↪→ Trainer , BertTokenizer , pipeline

12 from datasets import Dataset

13

14 # set ramdom seed

15 def random_seed_setting(seed):

16 random.seed(seed)

17 torch.manual_seed(seed)

10

18 torch.cuda.manual_seed(seed)

19 np.random.seed(seed)

20 torch.backends.cudnn.deterministic = True

21 torch.backends.cudnn.benchmarks = False

22 os.environ[’PYTHONHASHSEED ’] = str(seed)

23

24 # load datasets

25 def load_dataset(path=’./ dataset ’):

26 with open(’{}/ train_dict.pkl’.format(path), ’rb’) as f:

27 train_dict = pickle.load(f)

28 f.close ()

29 with open(’{}/ eval_dict.pkl’.format(path), ’rb’) as f:

30 eval_dict = pickle.load(f)

31 f.close ()

32 with open(’{}/ test_dict.pkl’.format(path), ’rb’) as f:

33 test_dict = pickle.load(f)

34 f.close ()

35 with open(’{}/ train_data_processed.pkl’.format(path), ’rb’) as f:

36 train_processed = pickle.load(f)

37 f.close ()

38 with open(’{}/ eval_data_processed.pkl’.format(path), ’rb’) as f:

39 eval_processed = pickle.load(f)

40 f.close ()

41 with open(’{}/ test_data_processed.pkl’.format(path), ’rb’) as f:

42 test_processed = pickle.load(f)

43 f.close ()

44 # print keys

45 print(train_dict.keys())

46 print(eval_dict.keys())

47 print(test_dict.keys())

48 print(train_processed.keys())

49 print(eval_processed.keys())

50 print(test_processed.keys())

51 return train_dict , eval_dict , test_dict , train_processed ,

↪→ eval_processed , test_processed

52

53 # fine tune model

54 def train_model(train_processed , eval_processed):

55 # initialize model

56 model_name = ’bert -base -uncased ’

57 model= BertForQuestionAnswering.from_pretrained(model_name)

58 print(model._modules)

59 # set training arguments

60 training_args = TrainingArguments(output_dir=’./ results ’, # output

↪→ directory

61 use_mps_device=False ,

62 num_train_epochs =10, # total

↪→ number of training epochs

63 per_device_train_batch_size =8, #

↪→ batch size per device

↪→ during training

64 per_device_eval_batch_size =8, #

↪→ batch size for evaluation

11

65 weight_decay =0.01, # strength of

↪→ weight decay

66 logging_strategy=’epoch’,

67 logging_steps =1

68)

69 # create dataset instance

70 train_dataset = Dataset.from_pandas(pd.DataFrame(train_processed))

71 eval_dataset = Dataset.from_pandas(pd.DataFrame(eval_processed))

72 # train model

73 trainer = Trainer(model=model , # the instantiated Transformers

↪→ model to be fine -tuned

74 args=training_args , # training arguments , defined

↪→ above

75 train_dataset=train_dataset , # training dataset

76 eval_dataset=eval_dataset # evaluation dataset

77)

78 trainer.train()

79 # save trainer instance

80 trainer.save_model(’./ results/last_model ’)

81

82 # convert Unicode to ASCII

83 def unicode2ascii(s):

84 return ’’.join(

85 c for c in unicodedata.normalize(’NFD’, s)

86 if unicodedata.category(c) != ’Mn’

87)

88

89 # normalize sentence

90 def normalize_string(s):

91 s = unicode2ascii(s.lower ().strip ())

92 s = re.sub(r"([,.!?%$\-\’\’\"\"\(\) ^{\ circ }])", r" \1 ", s)

93 s = re.sub(r"[^a-zA-Z0 -9 ,.!?%$\-\’\’\"\"\(\) ^{\ circ }]+", r" ", s)

94 s = re.sub(r’^\s+|\s+$’, ’’, s)

95 s = re.sub(r" ^{\ circ} ", r"^{\ circ}", s)

96 return s

97

98 # convert subword -level token to word -level token

99 def subword2word(s):

100 s = re.sub(r" ##", r"", s)

101 return s

102

103 # compute Exact Match

104 def compute_exact_match(prediction , truth):

105 return int(prediction == truth)

106

107 # compute F1-score

108 def f1_score(prediction , truth):

109 pred_tokens = prediction.split ()

110 truth_tokens = truth.split()

111 # if either the prediction or the truth is no-answer then F1 = 1 if

↪→ they agree , 0 otherwise

112 if len(pred_tokens) == 0 or len(truth_tokens) == 0:

113 return int(pred_tokens == truth_tokens)

114 else:

12

115 common_tokens = set(pred_tokens) & set(truth_tokens)

116 # if there are no common tokens then F1 = 0

117 if len(common_tokens) == 0:

118 return 0

119 else:

120 prec = len(common_tokens) / len(pred_tokens)

121 rec = len(common_tokens) / len(truth_tokens)

122 return 2 * (prec * rec) / (prec + rec)

123

124 # test model

125 def test_model(test_dict , test_processed):

126 # create dataset instance

127 test_dataset = Dataset.from_pandas(pd.DataFrame(test_processed))

128 # load trained model

129 model = BertForQuestionAnswering.from_pretrained(’./ results/

↪→ last_model ’)

130 trainer = Trainer(model=model)

131 # Initialize the tokenizer

132 tokenizer = BertTokenizer.from_pretrained(’bert -base -uncased ’)

133 # test trained model

134 x = trainer.predict(test_dataset)

135 # retrieve offset mapping of prediction

136 start_pos , end_pos = x.predictions

137 start_pos = np.argmax(start_pos , axis =1)

138 end_pos = np.argmax(end_pos , axis =1)

139 # create lists to save metrics

140 EM_list = []

141 F1_list = []

142 # print predictions and calculate metrics

143 for k, (i, j) in enumerate(zip(start_pos , end_pos)):

144 # convert indices to tokens

145 tokens = tokenizer.convert_ids_to_tokens(test_processed[’

↪→ input_ids ’][k])

146 # preprocess prediction and ground truth

147 prediction = subword2word(’ ’.join(tokens[i:j+1]))

148 truth = normalize_string(test_dict[’answers ’][k][’text’][0])

149 print(’Question:’, test_dict[’question ’][k])

150 print(’Answer:’, prediction)

151 print(’Correct Answer:’, test_dict[’answers ’][k][’text’][0])

152 print(’Normalized Correct Answer:’, truth)

153 em = compute_exact_match(prediction , truth)

154 f1 = f1_score(prediction , truth)

155 print(’Exact Match:’, em)

156 print(’F1 Score:’, f1)

157 EM_list.append(em)

158 F1_list.append(f1)

159 print(’---’)

160 # print overall metrics

161 print(’\n’)

162 print(’Exact Match: average: {}; median: {}’.format(statistics.mean

↪→ (EM_list), statistics.median(EM_list)))

163 print(’F1 Score: average: {}; median: {}’.format(statistics.mean(

↪→ F1_list), statistics.median(F1_list)))

164

13

165 # compare with another open -source fine -tuned model

166 def compare_model(test_dict):

167 # load model

168 question_answerer = pipeline(’question -answering ’, model=’

↪→ distilbert -base -cased -distilled -squad ’)

169 # create lists to save metrics

170 EM_list = []

171 F1_list = []

172 # print predictions and calculate metrics

173 for i in range(len(test_dict[’question ’])):

174 result = question_answerer(question=test_dict[’question ’][i],

↪→ context=test_dict[’context ’][i])

175 print(’Question:’, test_dict[’question ’][i])

176 print(’Answer:’, result[’answer ’])

177 print(’Correct:’, test_dict[’answers ’][i][’text’][0])

178 em = compute_exact_match(result[’answer ’], test_dict[’answers ’

↪→][i][’text’][0])

179 f1 = f1_score(result[’answer ’], test_dict[’answers ’][i][’text’

↪→][0])

180 print(’Exact Match:’, em)

181 print(’F1 Score:’, f1)

182 EM_list.append(em)

183 F1_list.append(f1)

184 print(’---’)

185 # print overall metrics

186 print(’\n’)

187 print(’Exact Match: average: {}; median: {}’.format(statistics.mean

↪→ (EM_list), statistics.median(EM_list)))

188 print(’F1 Score: average: {}; median: {}’.format(statistics.mean(

↪→ F1_list), statistics.median(F1_list)))

189

190 if __name__ == ’__main__ ’:

191 # ’1’ -- fine tune model

192 # ’2’ -- test fine -tuned model

193 # ’3’ -- compare with another fine -tuned model

194 parser = argparse.ArgumentParser ()

195 parser.add_argument(’-t’, ’--task’, type=str , default=’1’,\

196 help=’choose a task’, choices =[’1’,’2’,’3’])

197 args = parser.parse_args ()

198

199 # set random seed

200 seed = 60146

201 random_seed_setting(seed)

202

203 train_dict , eval_dict , test_dict , train_processed , eval_processed ,

↪→ test_processed = load_dataset ()

204 if args.task == ’1’:

205 train_model(train_processed , eval_processed)

206 if args.task == ’2’:

207 test_model(test_dict , test_processed)

208 if args.task == ’3’:

209 compare_model(test_dict)

14

	Programming Tasks
	Dataset
	BERT for Q&A
	Testing and evaluation metrics
	Comparison

	Complete Source Code

