ECE 601: Homework 10
Wei Xu
Email: xul639Qpurdue.edu
Due date: 11:59 PM, Apr. 25, 2024
(Spring 2024)

1 Programming Tasks

1.1 Dataset

Note: Some of the code for this subsection is borrowed from the DLStudio package
(https://engineering.purdue.edu/kak/dist DLS /).

The code for loading data sets is shown below. The data sets are provided with pk1 files, which

are all dictionaries, and can be loaded using pickle.load method in the load _dataset function.
There are 10,000 samples in total, and the proportion is 7:2:1 for training, evaluation, and testing
sets respectively. Specifically, the *_dict.pkl files contain >id’, title’, ’context’, ’question’,
>answers’, while the *_processed.pkl files contain ’input_ids’, ’attention mask’,
’start_positions’, and ’end_positions’.

© 00 O Ot = W N

N DN DN DNDDNDNDNDDN = = e s e s
O O UL i W = O © 0O Uik WN — O

load datasets
def load_dataset (path=’./dataset’):

with open(’{}/train_dict.pkl’.format(path), ’rb’) as f:
train_dict = pickle.load(f)
f.close()

with open(’{}/eval_dict.pkl’.format(path), ’rb’) as f:
eval_dict = pickle.load(f)
f.close()

with open(’{}/test_dict.pkl’.format(path), ’rb’) as f:
test_dict = pickle.load(f)

f.close()

with open(’{}/train_data_processed.pkl’.format (path), ’rb’) as f:
train_processed = pickle.load(f)
f.close()

with open(’{}/eval_data_processed.pkl’.format(path), ’rb’) as f:
eval_processed = pickle.load(f)
f.close()

with open(’{}/test_data_processed.pkl’.format (path), ’rb’) as f:
test_processed = pickle.load(f)
f.close ()

print keys

print(train_dict.keys ())

print (eval_dict.keys())

print (test_dict.keys())

print (train_processed.keys())

print (eval_processed.keys ())

print (test_processed.keys ())

return train_dict, eval_dict, test_dict, train_processed,
— eval_processed, test_processed

mailto:xu1639@purdue.edu
https://engineering.purdue.edu/kak/distDLS/

1.2 BERT for Q&A

Note: Some of the code for this subsection is borrowed from the DLStudio package
(https://engineering.purdue.edu/kak /dist DLS/)).

The code for fine-tuning a model is shown below. In the train model function, the model
(’bert-base-uncased’) is initialized through BertForQuestionAnswering.from pretrained. The
model structure can be inspected by printing model. modules. The training arguments are set
through TrainingArguments. In this experiment, the number of epochs is 10, the batch size
for training is 8, and the batch size for evaluation is 8. The log is printed every single epoch.
The training and evaluation dataset loaders are created through Dataset.from pandas with the
*_processed sets. Then train the model using Trainer. And save the model after finishing train-
ing. The training output of the first 5 epochs can be found below the code snippet.

1 |# fine tune model
2 |def train_model(train_processed, eval_processed):
3 # initialize model
4 model_name = ’bert-base-uncased’
5 model= BertForQuestionAnswering.from_pretrained(model_name)
6 print (model. _modules)
7 # set training arguments
8 training_args = TrainingArguments (output_dir=’./results’, # output
— directory
9 use_mps_device=False,
10 num_train_epochs=10, # total
<~ number of training epochs
11 per_device_train_batch_size=8, #
— batch size per device
—~ during training
12 per_device_eval_batch_size=8, #
— batch size for evaluation
13 weight_decay=0.01, # strength of
— weight decay
14 logging_strategy=’epoch’,
15 logging_steps=1
16)
17 # create dataset instance
18 train_dataset = Dataset.from_pandas(pd.DataFrame(train_processed))
19 eval_dataset = Dataset.from_pandas(pd.DataFrame(eval_processed))
20 # train model
21 trainer = Trainer (model=model, # the instantiated Transformers
— model to be fine-tuned
22 args=training_args, # training arguments, defined
— above
23 train_dataset=train_dataset, # training dataset
24 eval_dataset=eval_dataset # evaluation dataset
25)
26 trainer.train ()
27 # save trainer instance
28 trainer.save_model (’./results/last_model’)
Outputs:

{’loss’: 2.0602, ’grad_norm’: 34.05586242675781, °’learning_rate’: 4.5e-05,
— ’epoch’: 1.0}

https://engineering.purdue.edu/kak/distDLS/

{’loss’: 0.9359, ’grad_norm’: 36.63857650756836, ’learning_rate’: 4e-05, °’
<~ epoch’: 2.0}

{’loss’: 0.4943, ’grad_norm’: 23.20585060119629, ’learning_rate’: 3.5e-05,
— ’epoch’: 3.0}

{’loss’: 0.2907, ’grad_norm’: 44.92435836791992, ’learning_rate’: 3e-05,
— epoch’: 4.0}

{’loss’: 0.2036, ’grad_norm’: 46.06318664550781, ’learning_rate’: 2.5e-05,
— ’epoch’: 5.0}

{’train_runtime’: 1687.3029, ’train_samples_per_second’: 41.486,
> train_steps_per_second’: 5.186, ’train_loss’: 0.43363596627371653, °’
— epoch’: 10.0}

The training loss keeps decreasing and the learning rate is decaying for more precise results.

1.3 Testing and evaluation metrics

Note: Some of the code for this subsection is borrowed from the DLStudio package
(https://engineering.purdue.edu/kak /dist DLS /).

The code for testing the model and calculating metrics is shown below. Call test_model to ex-
ecute this process. The testing set is loaded through Dataset.from _pandas. The fine-tuned model
is loaded through BertForQuestionAnswering.from pretrained from the saved model. The to-
kenizer is created through BertTokenizer.from pretrained. The prediction can be obtained by
trainer.predict.

It is noticed that the predictions are all lowercase and in the subword-level tokenization.
The preprocessing is needed. First, convert the prediction from subword-level tokenization to
word-level tokenization by subword2word. This function simply removes ##. Secondly, normalize
the ground truth by normalize_string. This function converts all letters to lowercase ASCII
characters and splits the words and symbols to match the prediction format. The degree symbol °
in normalize _string can not display well in the code snippet, so ~{\circ} is used to represent it.

The Exact Match and F1-score metrics are calculated by compute_exact_match and £1_score
respectively. The inputs are the prediction and ground truth after preprocessing.

15 samples and the (individual and overall) metrics can be found below the code snippet.

1 |# convert Unicode to ASCII

2 |def unicode2ascii(s):

3 return ’’.join(

4 ¢ for ¢ in unicodedata.normalize(’NFD’, s)

5 if unicodedata.category(c) != ’Mn’

6)

7

8 |# normalize sentence

9 |def normalize_string(s):

10 s = unicode2ascii(s.lower () .strip())

11 s = re.sub(xr" ([,.'?248\-\>\>\"\"\(\) "{\circ}t])", r" \1 ", s)
12 s = re.sub(r"["a-zA-Z0-9,.'2%$\-\>\’\"\"\(\) "{\circ}]+", r" ", s)
13 s = re.sub(r’ " \s+|[\s+$’, ’’, s)

14 s = re.sub(r" “{\circ} ", r""{\circl}", s)

15 return s

16

17 | # convert subword-level token to word-level token

18 |def subword2word(s):

19 s = re.sub(r" ##", r"", s)

https://engineering.purdue.edu/kak/distDLS/

20
21
22
23
24
25
26
27
28

return s

compute Exact Match
def compute_exact_match(prediction,
return int(prediction == truth)

compute Fl-score
def f1_score(prediction, truth):

pred_tokens = prediction.split()
truth_tokens = truth.split ()

1if either the prediction or the truth is no-answer then F1 = 1 if
<~ they agree, 0O otherwise
if len(pred_tokens) == 0 or len(truth_tokens) == 0:
return int(pred_tokens == truth_tokens)
else:
common_tokens = set(pred_tokens) & set(truth_tokens)
if there are no common tokens then F1 = 0
if len(common_tokens) == 0:
return O
else:
prec = len(common_tokens) / len(pred_tokens)
rec = len(common_tokens) / len(truth_tokens)

return 2 * (prec * rec) / (prec + rec)

test model
def test_model(test_dict, test_processed):
create dataset instance
test_dataset = Dataset.from_pandas(pd.DataFrame(test_processed))
load trained model
model = BertForQuestionAnswering.from_pretrained(’./results/
— last_model’)
trainer = Trainer (model=model)
Initialize the tokenizer
tokenizer = BertTokenizer.from_pretrained(’bert-base-uncased’)
test trained model
X = trainer.predict(test_dataset)
retrieve offset mapping of prediction
start_pos, end_pos = x.predictions
start_pos = np.argmax(start_pos, axis=1)
end_pos = np.argmax(end_pos, axis=1)
create lists to save metrics
EM_list = []
Fi_list = []
print predictions and calculate metrics
for k, (i, j) in enumerate(zip(start_pos, end_pos)):
convert indices to tokens
tokens = tokenizer.convert_ids_to_tokens(test_processedl[’
— input_ids’][k])
preprocess prediction and ground truth
prediction = subword2word(’ ’.join(tokens[i:j+1]))
truth = normalize_string(test_dict[’answers’][k][’text’][0])
print (’Question:’, test_dict[’question’][k])
print (’Answer:’, prediction)
print (’Correct Answer:’, truth)

{}’ . format (statistics.mean

{}’ . format(statistics.mean(

71 em compute_exact_match(prediction, truth)
72 f1 = fi1_score(prediction, truth)
73 print (’Exact Match:’, em)
74 print (°’F1 Score:’, f1)
75 EM_list.append(em)
76 Fl1_list.append(£f1)
77 print (°---7)
78 # print overall metrics
79 print (’\n’)
80 print (’Exact Match: average: {}; median:
« (EM_list), statistics.median(EM_1list)))
81 print (°’F1 Score: average: {}; median:
< F1_list), statistics.median(F1_1list)))
Outputs:

Question: What type of imaging was used to study the relationship between
~— humans and dogs?

Answer: mri

Correct Answer:
Normalized Correct Answer:

Exact Match
F1 Score: O

Question:

magnetic resonance imaging

: 0

magnetic resonance imaging

How much money were possible changes to the Mexico City section

<~ of the film rumored to have saved the production?

Answer:

Exact Match
F1 Score: 1

Question:

Answer:

Correct Answer:
Normalized Correct Answer:

$ 20 million
Correct Answer:
Normalized Correct Answer:

$20 million

$ 20 million
I

.0

fertility clinics
fertility clinics

Exact Match: 1

F1 Score:
Question:
Answer:

1.0

Nibb na
nibbana

Exact Match: 1

F1 Score:
Question:
Answer:

Correct Answer:
Normalized Correct Answer:

1.0

the University of Washington

Exact Match: O

F1 Score:

0.8571428571428571

Where did the Chinese government decide that parents who had
— lost children could go for free treatment?
fertility clinics

What is the ultimate goal for Theravadins?
nibbana
Correct Answer:
Normalized Correct Answer:

What university was Lok-Ham Chan a professor at?
university of washington

the university of washington

Question: Who was the Mongol prince?

Answer: sakya pandita

Correct Answer: Godan

Normalized Correct Answer: godan

Exact Match: O

F1 Score: O

Question: How many people were buried in the collapsed schools?

Answer: 1 , 700

Correct Answer: 1,700

Normalized Correct Answer: 1 , 700

Exact Match: 1

F1 Score: 1.0

Question: Who mentored contestants in the fourteenth and fifteenth seasons
<~ of American Idol?

Answer: randy jackson

Correct Answer: Scott Borchetta

Normalized Correct Answer: scott borchetta

Exact Match: O

F1 Score: O

Question: Thomas Stritch was an editor of which publican from Notre Dame?

Answer: matthew fitzsimons , frederick crosson

Correct Answer: Review of Politics

Normalized Correct Answer: review of politics

Exact Match: O

F1 Score: O

Question: Paperback of the Year award from Bestsellers magazine was
— awarded when?

Answer: 1962

Correct Answer: 1962

Normalized Correct Answer: 1962

Exact Match: 1

F1 Score: 1.0

Question: Gray color is often called what when referring to dogs?

Answer: blue

Correct Answer: blue

Normalized Correct Answer: blue

Exact Match: 1

F1 Score: 1.0

Question: How many persons were still unaccounted for in Yingxiu?

Answer: around 3 , 000

Correct Answer: around 9,000

Normalized Correct Answer: around 9 , 000

Exact Match: O

F1 Score: 0.75

Question: How were the semi-finalists divided in season four?

Answer: gender

Correct Answer: by gender

Normalized Correct Answer: by gender
Exact Match: O
F1 Score: 0.6666666666666666

Question: Who was the host of American Idol in its fourteenth season?
Answer: ryan seacrest

Correct Answer: Ryan Seacrest

Normalized Correct Answer: ryan seacrest

Exact Match: 1

F1 Score: 1.0

Question: In what borough is Godiva based?
Answer: manhattan

Correct Answer: Manhattan

Normalized Correct Answer: manhattan

Exact Match: 1

F1 Score: 1.0

Exact Match: average: 0.572; median: 1.0
F1 Score: average: 0.7179283755599364; median: 1.0

Generally, the predictions are precise. There are three cases. (1) Some answers are accurate.
For example, the prediction for the question ("How much money were possible changes to the
Mexico City section of the film rumored to have saved the production?”) is ” ” which
is the same with the (normalized) correct answer; the prediction for the question (”Where did the
Chinese government decide that parents who had lost children could go for free treatment?”) is
7 "7 which is the same with the (normalized) correct answer. (2) Some other answers
are good enough but have bad metrics. For example, the prediction for the question (”What type
of imaging was used to study the relationship between humans and dogs?”) is ”mri”, which the
abbreviation of the (normalized) correct answer ”magnetic resonance imaging” (so in my opinion,
this prediction can also be considered as a correct answer); the prediction for the question (" What
university was Lok-Ham Chan a professor at?”) is ” 7, which only has one
less "the” than the (normalized) correct answer (this can also be considered as a correct answer).
(3) Some answers are incorrect. For example, the prediction for the question (”Who was the Mongol
prince?”) is ” ” while the correct answer should be ”godan”; the prediction for the
question ("Who was the Mongol prince?”) is ” ”_ while the correct answer should be
”godan”.

The average Exact Match is 0.572, meaning 57.2% predictions are exactly correct. The
average Fl-score is 0.718, which is a not-bad level. The medians for the metrics are both 1.0,
meaning at least a half answers are perfect.

However, considering the case (2), in which the answers are good enough but have bad
metrics, the real performance of the model should be better than what the metrics tell.

1.4 Comparison

Note: Some of the code for this subsection is borrowed from the DLStudio package
(https://engineering.purdue.edu/kak/dist DLS /).

The code for comparison with another fine-tuned model is shown below. The compare model
function loads *distilbert-base-cased-distilled-squad’ model from Hugging Face. Then run
it over the testing set and calculate the Exact Match and F1-score metrics.

https://engineering.purdue.edu/kak/distDLS/

15 samples and the (individual and overall) metrics can be found below the code snippet.

1 |# compare with another open-source fine-tuned model
2 |def compare_model (test_dict):
3 # load model
4 question_answerer = pipeline(’question-answering’, model=’
< distilbert-base-cased-distilled-squad’)
5 # create lists to save metrics
6 EM_list = []
7 Fi_list = []
8 # print predictions and calculate metrics
9 for i in range(len(test_dict[’question’])):
10 result = question_answerer (question=test_dict[’question’][i],
— context=test_dict[’context’][i])
11 print (’Question:’, test_dict[’question’][i])
12 print (’Answer:’, result[’answer’])
13 print (’Correct:’, test_dict[’answers’][i]l[’text’][0])
14 em = compute_exact_match(result[’answer’], test_dict[’answers’
— 1[il[’text’]1[01)
15 f1 = f1_score(result[’answer’], test_dict[’answers’][i]l[’text’
— 1[01)
16 print (’Exact Match:’, em)
17 print (’F1 Score:’, £f1)
18 EM_list.append(em)
19 Fi1_list.append(£f1)
20 print (’---")
21 # print overall metrics
22 print (’\n’)
23 print (’Exact Match: average: {}; median: {}’.format(statistics.mean
~— (EM_list), statistics.median(EM_1list)))
24 print (’F1 Score: average: {}; median: {}’.format(statistics.mean(
< F1_list), statistics.median(F1_1list)))
Outputs:

Question: What type of imaging was used to study the relationship between
<~ humans and dogs?

Answer: magnetic resonance imaging

Correct: magnetic resonance imaging

Exact Match: 1

F1 Score: 1.0

Question: How much money were possible changes to the Mexico City section
<~ of the film rumored to have saved the production?

Answer: $20 million

Correct: $20 million

Exact Match: 1

F1 Score: 1.0

Question: Where did the Chinese government decide that parents who had
~— lost children could go for free treatment?

Answer: fertility clinics

Correct: fertility clinics

Exact Match: 1

F1 Score: 1.0

Question: What is the ultimate goal for Theravadins?

Answer: Nibb na

Correct: Nibb na

Exact Match: 1

F1 Score: 1.0

Question: What university was Lok-Ham Chan a professor at?

Answer: University of Washington

Correct: the University of Washington

Exact Match: O

F1 Score: 0.8571428571428571

Question: Who was the Mongol prince?

Answer: Godan

Correct: Godan

Exact Match: 1

F1 Score: 1.0

Question: How many people were buried in the collapsed schools?

Answer: 1,700

Correct: 1,700

Exact Match: 1

F1 Score: 1.0

Question: Who mentored contestants in the fourteenth and fifteenth seasons
<~ of American Idol?

Answer: Scott Borchetta

Correct: Scott Borchetta

Exact Match: 1

F1 Score: 1.0

Question: Thomas Stritch was an editor of which publican from Notre Dame?

Answer: The Review of Politics

Correct: Review of Politics

Exact Match: O

F1 Score: 0.8571428571428571

Question: Paperback of the Year award from Bestsellers magazine was
~— awarded when?

Answer: 1962

Correct: 1962

Exact Match: 1

F1 Score: 1.0

Question: Gray color is often called what when referring to dogs?

Answer: blue

Correct: blue

Exact Match: 1

F1 Score: 1.0

Question: How many persons were still unaccounted for in Yingxiu?

Answer: 9,000

Correct: around 9,000

Exact Match: O

F1 Score: 0.6666666666666666

Question: How were the semi-finalists divided in season four?
Answer: by gender

Correct: by gender

Exact Match: 1

F1 Score: 1.0

Question: Who was the host of American Idol in its fourteenth season?
Answer: Ryan Seacrest

Correct: Ryan Seacrest

Exact Match: 1

F1 Score: 1.0

Question: In what borough is Godiva based?

Answer: Manhattan

Correct: Manhattan

Exact Match: 1

F1 Score: 1.0

Exact Match: average: 0.769; median: 1.0
F1 Score: average: 0.8906788305864256; median: 1.0

The same three cases also occur, but the overall performance is better. It pays attention to
the case of letters and does not need to normalize the ground truth before calculating the metrics.
In terms of the metrics, the average of Exact Match is 0.769, and the average of Fl-score is 0.891.
They are both higher than the model fine-tuned by myself. And no surprise that the medians for
the metrics are both 1.0.

2 Complete Source Code

The degree symbol © in normalize_string can not display well in the code snippet, so {\circ} is
used to represent it.

import numpy as np

import random

import torch

import os

import argparse

import pickle

import pandas as pd

import unicodedata

import re

import statistics

from transformers import BertForQuestionAnswering, TrainingArguments,
— Trainer , BertTokenizer , pipeline

12 | from datasets import Dataset

13

14 |# set ramdom seed

15 |def random_seed_setting(seed):

16 random.seed (seed)

17 torch.manual_seed(seed)

© 0 N O Otk W

— =
= O

10

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60

61
62

63

64

torch.cuda.manual_seed(seed)
np.random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmarks = False
os.environ[’PYTHONHASHSEED’] = str(seed)

load datasets
def load_dataset (path=’./dataset’):
with open(’{}/train_dict.pkl’.format(path), ’rb’) as f:
train_dict = pickle.load(f)
f.close ()
with open(’{}/eval_dict.pkl’.format(path), ’rb’) as f:
eval_dict = pickle.load(f)
f.close()
with open(’{}/test_dict.pkl’.format(path), ’rb’) as f:
test_dict = pickle.load(f)

f.close()

with open(’{}/train_data_processed.pkl’.format (path), ’rb’) as f:
train_processed = pickle.load(f)
f.close ()

with open(’{}/eval_data_processed.pkl’.format(path), ’rb’) as f:
eval_processed = pickle.load(f)
f.close()

with open(’{}/test_data_processed.pkl’.format(path), ’rb’) as f:
test_processed = pickle.load(f)
f.close()

print keys

print (train_dict.keys ())

print (eval_dict.keys())

print (test_dict.keys())

print (train_processed.keys ())

print (eval_processed.keys ())

print (test_processed.keys ())

return train_dict, eval_dict, test_dict, train_processed,
— eval_processed, test_processed

fine tune model
def train_model(train_processed, eval_processed):
initialize model
model_name = ’bert-base-uncased’
model= BertForQuestionAnswering.from_pretrained (model_name)
print (model. _modules)
set training arguments
training_args = TrainingArguments (output_dir=’./results’, # output
— directory
use_mps_device=False,
num_train_epochs=10, # total
— number of training epochs
per_device_train_batch_size=8, #
— batch size per device
<~ during training
per_device_eval_batch_size=8, #
— batch size for evaluation

11

65 weight_decay=0.01, # strength of
— weight decay

66 logging_strategy=’epoch’,
67 logging_steps=1
68)
69 # create dataset instance
70 train_dataset = Dataset.from_pandas(pd.DataFrame(train_processed))
71 eval_dataset = Dataset.from_pandas(pd.DataFrame(eval_processed))
72 # train model
73 trainer = Trainer (model=model, # the instantiated Transformers
— model to be fine-tuned
74 args=training_args, # training arguments, defined
— above
75 train_dataset=train_dataset, # training dataset
76 eval_dataset=eval_dataset # evaluation dataset
77)
78 trainer.train()
79 # save trainer instance
80 trainer.save_model (’./results/last_model’)
81

82 | # convert Unicode to ASCII
83 |def unicode2ascii(s):

84 return ’’.join(

85 ¢ for ¢ in unicodedata.normalize(’NFD’, s)
86 if unicodedata.category(c) != ’Mn’

87)

88

8) | # normalize sentence
90 |def normalize_string(s):

91 s = unicode2ascii(s.lower().strip())

92 s = re.sub(xr" ([,.!'?748\-\"\>\"\"\(\) "{\circ}t])", r" \1 ", s)

93 s = re.sub(r"["a-zA-Z20-9,.!?2%8\=-\’\’\"\"\(\) "{\circ}]+", r" ", s)
94 s = re.sub(r’ \s+|\s+$’, ’°’, s)

95 s = re.sub(r" “{\circ} ", r""{\circl}", s)

96 return s

97

98 | # convert subword-level token to word-level token
99 |def subword2word(s):

100 s = re.sub(r" ##", r"", s)
101 return s
102

103 | # compute Exact Match

104 |def compute_exact_match(prediction, truth):
105 return int(prediction == truth)

106
107 | # compute Fl-score

108 |def fl_score(prediction, truth):

109 pred_tokens = prediction.split()

110 truth_tokens = truth.split()

111 # if either the prediction or the truth is no-answer then F1 = 1 if
<~ they agree, 0 otherwise

112 if len(pred_tokens) == 0 or len(truth_tokens) == 0:

113 return int (pred_tokens == truth_tokens)

114 else:

12

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

163

164

common_tokens = set(pred_tokens) & set(truth_tokens)
if there are no common tokens then F1 = 0
if len(common_tokens) == O:
return O
else:
prec = len(common_tokens) / len(pred_tokens)
rec = len(common_tokens) / len(truth_tokens)
return 2 * (prec * rec) / (prec + rec)

test model
def test_model(test_dict, test_processed):
create dataset instance
test_dataset = Dataset.from_pandas(pd.DataFrame(test_processed))
load trained model
model = BertForQuestionAnswering.from_pretrained(’./results/
— last_model’)
trainer = Trainer (model=model)
Initialize the tokenizer
tokenizer = BertTokenizer.from_pretrained(’bert-base-uncased’)
test trained model
X = trainer.predict(test_dataset)
retrieve offset mapping of prediction
start_pos, end_pos = x.predictions
start_pos = np.argmax(start_pos, axis=1)
end_pos = np.argmax(end_pos, axis=1)
create lists to save metrics
EM_list = []
Fi_list = []
print predictions and calculate metrics
for k, (i, j) in enumerate(zip(start_pos, end_pos)):
convert indices to tokens
tokens = tokenizer.convert_ids_to_tokens (test_processedl[’
<~ input_ids’][k])
preprocess prediction and ground truth
prediction = subword2word(’ ’.join(tokens[i:j+1]))
truth = normalize_string(test_dict[’answers’][k][’text’][0])
print (’Question:’, test_dict[’question’][k])
print (’Answer:’, prediction)
print (’Correct Answer:’, test_dict[’answers’][k][’text’][0])
print (’Normalized Correct Answer:’, truth)
em = compute_exact_match(prediction, truth)
f1 = fl_score(prediction, truth)
print (’Exact Match:’, em)
print (’F1 Score:’, f1)
EM_list.append(em)
Fl_list.append(£f1)
print (’---")
print overall metrics
print (’\n’)
print (’Exact Match: average: {}; median: {}’.format(statistics.mean
< (EM_list), statistics.median(EM_1list)))
print (’F1 Score: average: {}; median: {}’.format(statistics.mean(
— F1_list), statistics.median(F1_1list)))

13

165 | # compare with another open-source fine-tuned model
166 | def compare_model (test_dict):

167 # load model
168 question_answerer = pipeline(’question-answering’, model=’
— distilbert-base-cased-distilled-squad’)
169 # create lists to save metrics
170 EM_list = []
171 Fi_list = []
172 # print predictions and calculate metrics
173 for i in range(len(test_dict[’question’])):
174 result = question_answerer (question=test_dict[’question’][i],
<~ context=test_dict[’context’][i])
175 print (’Question:’, test_dict[’question’][i])
176 print (’Answer:’, result[’answer’])
177 print (’Correct:’, test_dict[’answers’][i]l[’text’][0])
178 em = compute_exact_match(result[’answer’], test_dict[’answers’
— 1[il[’text’]1[0])
179 f1 = f1_score(result[’answer’], test_dict[’answers’][i][’text”’
— 1[001)
180 print (’Exact Match:’, em)
181 print (’F1 Score:’, f1)
182 EM_list.append(em)
183 Fl_list.append(£f1)
184 print (°---7)
185 # print overall metrics
186 print (’\n’)
187 print (’Exact Match: average: {}; median: {}’.format(statistics.mean
— (EM_list), statistics.median(EM_1list)))
188 print (°’F1 Score: average: {}; median: {}’.format(statistics.mean/(
< F1_1list), statistics.median(F1_list)))
189
190 |if __name__ == ’_ _main__"’:
191 # ’1’ -- fine tune model
192 # ’2’ -- test fine-tuned model
193 # ’3’ -- compare with another fine-tuned model
194 parser = argparse.ArgumentParser ()
195 parser.add_argument (’-t’, ’--task’, type=str, default=’1’,\
196 help=’choose a task’, choices=[’1’,72’,"3"])
197 args = parser.parse_args ()
198
199 # set random seed
200 seed = 60146
201 random_seed_setting (seed)
202
203 train_dict, eval_dict, test_dict, train_processed, eval_processed,
— test_processed = load_dataset ()
204 if args.task == ’1’:
205 train_model (train_processed, eval_processed)
206 if args.task == ’27:
207 test_model (test_dict, test_processed)
208 if args.task == ’3’:
209 compare_model (test_dict)

14

	Programming Tasks
	Dataset
	BERT for Q&A
	Testing and evaluation metrics
	Comparison

	Complete Source Code

