BME646 and ECE60146: Homework 1

Spring 2024
Due Date: 11:59pm, Jan 15, 2023
TA: Akshita Kamsali (akamsali@purdue.edu)

Turn in typed solutions via BrightSpace. Additional instructions can be
found on BrightSpace announcement. The finalized policies regarding the
programming assignments can be found on BrightSpace after the first week
of classes. Kindly hold off your policy related questions until then.

1 Introduction

The goal of this homework is to improve your understanding of the Python
Object-Oriented (OO) code in general, especially with regard to how it is
used in PyTorch. This is the only homework you will get on general Python
OO programming. Future homework assignments will be specific to using
PyTorch classes directly or your own extensions of those classes for creating
your DL solutions.

Note that you should use Python 3.x and NOT Python 2.x for this
and all future programming assignments. For the Python-related knowledge
required in this homework, refer to Prof. Kak’s tutorial on OO Python [1].

2 Programming Tasks

1. Create a class named Sequence with an instance variable named array
as shown below:

1/ class Sequence(object):
2 def __init__(self, array):
3 self.array = array

The input parameter array is expected to be a list of numbers, e.g.
[0, 1, 2]. This class will serve as the base class for the subclasses
later in this assignment.

2. Now, extend your Sequence class into a subclass called Arithmetic
, with its __init__ method taking in two input parameters: start
and step. These two values will serve as the start and step of the
Arithmetic sequence.



3.

N =

= W

Further expand your Arithmetic class to make its instances callable.
More specifically, after calling an instance of the Arithmetic class
with an input parameter length, the instance variable array should
store a Arithmetic sequence of that length and with start as your
initial value and increments of step. In addition, calling the instance
should cause the computed sequence to be printed. Shown below is a
demonstration of the expected behaviour described so far:

AS = Arithmetic(start=1, step=2)
AS(length=5) # [1, 3, 5, 7, 9]

. Modify your class definitions so that your Sequence instance can be

used as an iterator. For example, when iterating through an instance of
Arithmetic, the numbers should be returned one-by-one. The snippet
below illustrates the expected behavior:

AS = Arithmetic(start=1, step=2)
AS(length=5) # [1, 3, 5, 7, 9]

3/ print (len(AS)) # 5

print([n for n in AS]1) # [1, 2, 3, 5, 8]

Make another subclass of the Sequence class named Geometric. As
the name suggests, the new class is identical to Arithmetic except
that the array now stores a series. Modify the class definition so that
its instance is callable and can be used as an terator. What is shown
below illustrates the expected behavior:

GS = Geometric(start=1, ratio=2)

GS(length=8) # [1, 2, 4, 8, 16, 32, 64, 128]

print (len(GS)) # 8
print([n for n in GS]1) # [1, 2, 4, 8, 16, 32, 64, 128]

Finally, modify the base class Sequence such that two sequence in-
stances of the same length can be compared by the operator ==. In-
voking (A == B) should compare element-wise the two arrays and
return the number of elements in A that are equal than the corre-
sponding elements in B. If the two arrays are not of the same size,
your code should throw a exception. Shown below is an
example:

AS = Arithmetic(start=1, step=2)
AS(length=5) # [1, 3, 5, 7, 9]

3/GS = Geometric(start=1, ratio=2)



3

1| GS(length=5) # [1, 2, 4, 8, 16]
5/ print (FS == GS) # 1

7/ GS(length=8) # [1, 2, 4, 8, 16, 32, 64, 128]
9 print (FS == GS) # will raise an error
o|# Traceback (most recent call last):

1 #
2| # ValueError: Two arrays are not equal in length!

Submission Instructions

Include a typed report explaining how did you solve the given programming
tasks. You may refer to previous homeworks for an outline.

1.

Turn in a zipped file, it should include (a) a typed self-contained pdf
report with source code and results and (b) source code files (only .py
files are accepted). Rename your .zip file as hwl_<First Name><Last
Name>.zip and follow the same file naming convention for your pdf
report too. Not adhering to the above naming convention will lead to
an automatic zero.

For this homework, you are encouraged to use .ipynb for development
and the report. If you use .ipynb, please convert it to .py and submit
that as source code. Do NOT submit .ipynb notebooks.

You can resubmit a homework assignment as many times as you want
up to the deadline. Each submission will overwrite any previous
submission. If you are submitting late, do it only once on
BrightSpace. Otherwise, we cannot guarantee that your latest sub-
mission will be pulled for grading and will not accept related regrade
requests.

The sample solutions from previous years are for reference only. Your
code and final report must be your own work.

Your pdf must include a description of

e Reproductions of the outputs for each of the provided snippets
above with the given parameters.

e Correct outputs for each of the provided snippets above with
input parameters of your choice.



e Your source code. Make sure that your source code files are
adequately commented and cleaned up.

References

[1] Python OO for DL. URL https://engineering.purdue.edu/
DeepLearn/pdf-kak/Python00.pdf.


https://engineering.purdue.edu/DeepLearn/pdf-kak/PythonOO.pdf
https://engineering.purdue.edu/DeepLearn/pdf-kak/PythonOO.pdf

	Introduction
	Programming Tasks
	Submission Instructions

