Sreeram Nagappa
snagapp@purdue.edu

hwl-report

January 16, 2024

1 Introduction

The goal of this homework is to improve your understanding of the Python Object-Oriented (OO)
code in general, especially with regard to how it is used in PyTorch. This is the only homework
you will get on general Python OO programming. Future homework assignments will be specific
to using PyTorch classes directly or your own extensions of those classes for creating your DL

solutions.

2 Task 1

[1]: # Task 1

class Sequence(object):
def __init__(self, array):
self.array = array

Variable to store the array

Task 1 asked to create a class named Sequence with an instance variable named array, which was
done by having a class and a constructor that took in a parameter ‘array’ and stored it in a variable

‘self.array’.

3 Task 2

[2]: # Task 2
class Sequence(object):
def __init__(self, array):

self.array = array

class Arithmetic(Sequence):

def __init__(self, start, step):

super () . __init__(self)
~base class

self.start = start
wparameter

self.step = step
wparameter

Variable to store the array

Super method to inherit Sequence
Variable to store 'start' input,

Variable to store 'step' input,

Akshita Kamsali
Sreeram Nagappa

Akshita Kamsali
snagapp@purdue.edu

[3]:

[4] :

[5]:

Task 2 asked to create a subclass named Arithmetic that extended from the Sequence class, which
was done by having a class and a constructor that took in parameters ‘start’ and ‘step’ and stored
in variables ‘self.start’ and ‘self.step’. Also, in the constructor, the super method is used to inherit
the Sequence class in the Arithmetic class and be able to access the variable ‘self.array’.

4 Task 3

Task 3

class Sequence(object):
def __init__(self, array):
self.array = array # Variable to store the array

class Arithmetic(Sequence):
def __init__(self, start, step):

super () .__init__(self) # Super method to inherit Sequence,
~base class

self.start = start # Vartable to store 'start' inputy
wparameter

self.step = step # Vartable to store 'step' inputy
wparameter

def __call__(self, length):
self.array = [self.start + (self.step * i) for i in range(length)] U

< # Create the arithmetic array based on inputs
print(self.array)

Task 3 Required Outputs

AS = Arithmetic(start=1, step=2)
AS(1length=5)

[1’ 3’ 5, 7’ 9]

Task 3 Own Outputs

AS = Arithmetic(start=1, step=3)
AS(length=7)

(1, 4, 7, 10, 13, 16, 19]

Task 3 asked to make the Arithmetic class’ instances callable, which was done by having a call
method to invoke the creation of an arithmetic array using the ‘self.start’ and ‘self.step’ variables
and an input parameter ‘length’. The algorithm for the arithmetic array uses a for loop that
executes a certain number of times based on the length and adds the step value each time to the
previous calculated value beginning with the start value. Finally, the array is printed after the
instance call, as shown in the required and own test cases above.

5 Task 4

[6]: # Task 4

class Sequence(object):
def __init__(self, array):
self.array = array

def __len__(self):
return len(self.array)

def __iter__(self):
self.index = 0
<at 0
return self
<an tterator

def __next__(self):

if self.index < len(self.array):

Variable to store the array

Method to return length of the array

Variable to store tterator starting,

Method to make Sequence be used as,

result = self.array[self.index]

self.index += 1
return result
»Sequence instance
else:
raise StoplIteration

class Arithmetic(Sequence):

def __init__(self, start, step):

super) .__init__(self)
~base class

self.start = start
wparameter

self.step = step
wparameter

def __call__(self, length):

Method to iterate through the,

Super method to inherit Sequencey
Variable to store 'start' input,

Variable to store 'step' inputy

self .array = [self.start + (self.step * i) for i in range(length)]
» # Create the arithmetic array based on inputs

print(self.array)
[7]: # Task 4 Required Outputs

AS = Arithmetic(start=1, step=2)
AS(length=5)

print (len(AS))

print([n for n in AS])

(1, 3, 5, 7, 9]
5
(1, 3, 5, 7, 9]

[8]:|# Task 4 Own Outputs

AS = Arithmetic(start=1, step=3)
AS(length=7)

print(len(AS))

print([n for n in AS])

(1, 4, 7, 10, 13, 16, 19]

7

(1, 4, 7, 10, 13, 16, 19]

Task 4 asked to make the Sequence class’ instance be used as an iterator, which was done by having
a iter method and a next method. In the iter method, a variable ‘self.index’ stored the initial
value of 0 to be used as the iterator in the next method and returns self. In the next method, if
the current index value is less than the length of the array, the value stored at that index of the
array is returned and the ‘self.index’ value is incremented by one, else a ‘Stoplteration’ exception is
raised to prevent iterating when the end of the array is reached. Furthermore, to return the length
of the array, a len method is created in the Sequence class. These methods are inherited by the
subclasses. The expected length and iteration of values in the array are returned, as shown in the

required and own test cases above.

6 Task 5

[9]: # Task 5

class Sequence(object):
def __init__(self, array):
self.array = array # Variable to store the array
def __len__(self):
return len(self.array) # Method to return length of the array
def __iter__(self):
self.index = 0 # Variable to store tterator starting,

sat 0
return self # Method to make Sequence be used asy

<an iterator

def __next__(self):
if self.index < len(self.array):
result = self.array[self.index]
self.index += 1

return result
~Sequence instance

else:
raise Stoplteration

class Arithmetic(Sequence):
def __init__(self, start, step):

super() .__init__(self)

~base class
self.start = start

wparameter
self.step = step

wparameter

def __call__(self, length):

Method to iterate through they

Super method to inherit Sequencey
Variable to store 'start' input,

Vartable to store 'step' inputy

self .array = [self.start + (self.step * i) for i in range(length)]
» # Create the artithmetic array based on inputs

print(self.array)

class Geometric(Sequence):

def __init__(self, start, ratio):

super () .__init__(self)
~base class

self.start = start
wparameter

self.ratio = ratio
wparameter

def __call__(self, length):

Super method to inherit Sequencey
Vartable to store 'start' imputy

Variable to store 'ratio' imput,

self.array = [self.start * (self.ratio *x i) for i in range(length)]
~ # Create the geometric array based on inputs

print(self.array)
[10]: # Task 5 Required Outputs

GS = Geometric(start=1, ratio=2)
GS(length=8)

print (len(GS))

print([n for n in GS])

(1, 2, 4, 8, 16, 32, 64, 128]
8
(1, 2, 4, 8, 16, 32, 64, 128]

[11]:

[12]:

Task 5 Own Outputs

GS = Geometric(start=1, ratio=3)
GS(length=7)

print(len(GS))

print([n for n in GS])

(1, 3, 9, 27, 81, 243, 729]
7
(1, 3, 9, 27, 81, 243, 729]

Task 5 asked to create a subclass named Geometric that extended from the Sequence class, which
was done by having a class and a constructor that took in parameters ‘start’ and ‘ratio’ and stored in
variables ‘self.start’ and ‘self.ratio’. Also, in the constructor, the super method is used to inherit the
Sequence class in the Geometric class and be able to access the variable ‘self.array’. Furthermore,
Task 5 asked to make the Geometric class’ instances callable, which was done by having a call
method to invoke the creation of a geometric array using the ‘self.start’ and ‘self.ratio’ variables
and an input parameter ‘length’. The algorithm for the geometric array uses a for loop that executes
a certain number of times based on the length and multiplies the ratio raised to the current iterator
value to the previous calculated value beginning with the start value. Finally, the array is printed
after the instance call, as shown in the required and own test cases above. In addition, Task 5
asked to make the Sequence class’ instance be used as an iterator, which was done by having a
iter method and a next method. In the iter method, a variable ‘self.index’ stored the initial
value of 0 to be used as the iterator in the next method and returns self. In the next method, if
the current index value is less than the length of the array, the value stored at that index of the
array is returned and the ‘self.index’ value is incremented by one, else a ‘Stoplteration’ exception is
raised to prevent iterating when the end of the array is reached. Furthermore, to return the length
of the array, a len method is created in the Sequence class. These methods are inherited by the
subclasses. The expected length and iteration of values in the array are returned, as shown in the

required and own test cases above.

7 Task 6

Task 6

class Sequence(object):
def __init__(self, array):
self.array = array # Variable to store the array

def __len__(self):
return len(self.array) # Method to return length of the array

def __iter__(self):
self.index = 0 # Variable to store tterator starting,

at 0
return self # Method to make Sequence be used as,

<an iterator

def _ _next__(self):

if self.index < len(self.array):
result = self.array[self.index]
self.index += 1
return result # Method to iterate through the,

~Sequence instance

else:

raise StopIteration

def __eq__(self, other):
if len(self.array) != len(other.array):
raise ValueError("Two arrays are not equal in length!")

count = 0 # Variable to store number of equal,
welements
for i in range(len(self.array)):
if self.array[i] == other.arrayl[i]:

count += 1

return count # Method to check if two sequence

winstances are equal element-wise

class Arithmetic(Sequence):
def __init__(self, start, step):

super () .__init__(self) # Super method to inherit Sequence,
~base class

self.start = start # Variable to store 'start' input,
wparameter

self.step = step # Variable to store 'step' inputy
wparameter

def __call__(self, length):
self .array = [self.start + (self.step * i) for i in range(length)]
«~ # Create the arithmetic array based on inputs

print(self.array)

class Geometric(Sequence):
def __init__(self, start, ratio):

super() .__init__(self) # Super method to inherit Sequence,
~base class

self.start = start # Vartable to store 'start' inputy
wparameter

[13]:

[14] :

self.ratio = ratio
wparameter

def __call__(self, length):

Vartable to store 'ratio' inputy

self.array = [self.start * (self.ratio ** i) for i in range(length)]
~ # Create the geometric array based on inputs

print (self.array)

Task 6 Required Outputs

AS = Arithmetic(start=1, step=2)

AS(1length=5)

GS = Geometric(start=1, ratio=2)

GS(length=5)
print (AS == GS)

GS (length=38)
print (AS == GS)

[1, 3, 5, 7, 9]

[1, 2, 4, 8, 16]

1

[1, 2, 4, 8, 16, 32, 64, 128]

ValueError
Cell In[13], line 10
7 print(AS == GS)
9 GS(length=8)
---> 10 print(AS == GS)

Cell In[12], line 24, in

22 def __eq__(self, other):

Traceback (most recent call last)

(self, other)

23 if len(self.array) != len(other.array):

-—=> 24 raise ValueError("Two arrays are not equal in length!")
26 count = 0
27 for i in range(len(self.array)):

ValueError: Two arrays are not equal in length!

Task 6 Own Outputs

AS = Arithmetic(start=2, step=3)

AS(1length=7)

GS = Geometric(start=1, ratio=3)

GS(length=7)

(]

print (AS == GS)

GS(length=4)
print (AS == GS)

[2, 5, 8, 11, 14, 17, 20]
[1, 3, 9, 27, 81, 243, 729]
0

[1, 3, 9, 27]

ValueError Traceback (most recent call last)
Cell In[14], line 10

7 print(AS == GS)

9 GS(length=4)
---> 10 print(AS == GS)

Cell In[12], line 24, in (self, other)
22 def __eq__(self, other):
23 if len(self.array) != len(other.array):
-—=> 24 raise ValueError("Two arrays are not equal in length!")
26 count = 0
27 for i in range(len(self.array)):

ValueError: Two arrays are not equal in length!

Task 6 asked to make the Sequence class be able to check if two sequence instances are equal
element-wise, which was done by having a eq method. The algorithm for this method first checks if
the two sequences are equal in length, and if not, throw a ‘ValueError’. If the sequences are equal,
then initalize the variable ‘count’ and set it equal to 0, which will keep track of the number of
equal elements. Then with a for loop, iterate through the length of the sequence and at each index,
check if the value at that index in both sequences are equal and if so, increment count by one. At
end, return the count. In the first test case, since 1 is the same at index 0 of both sequences and
none of the other indexes have the same value, the output is 1. In the second test case, since the
first sequence has a length of 5 and second sequence has a length of 8, a ‘ValueError’ is thrown.
The newly created sequences and the number of equal elements are returned if the sequences are
equal in length or a ‘ValueError’ is thrown if the sequences are not equal in length, as shown in the
required and own test cases above.

	Introduction
	Task 1
	Task 2
	Task 3
	Task 4
	Task 5
	Task 6

