BME646 and ECE60146: Homework 9
Spring 2023
Arghadip Das
das169@purdue.edu

1. Introduction

Over the past few years, convolutional neural networks (CNNs) have dominated the field of
computer vision, achieving state-of-the-art performance on a wide range of visual recognition
tasks. However, these networks have several limitations, such as a fixed receptive field and a lack
of attention mechanisms for modeling long-range dependencies. To address these issues, a new
type of neural network architecture called the Vision Transformer (ViT) has been proposed. The
ViT is based on the Transformer architecture originally developed for natural language processing
(NLP) and uses self-attention mechanisms to model long-range dependencies between image
patches. The ViT has quickly gained attention in the computer vision community due to its
impressive performance on various image classification tasks, surpassing the previous state-of-
the-art results achieved by CNNs. In addition, the ViT has shown promising results in other
computer vision tasks such as object detection, segmentation, and generation.

In this homework, we have several goals. Firstly, we aim to gain a deeper understanding of the
multi-headed self-attention mechanism and the transformer architecture. Secondly, we hope to
comprehend how the transformer architecture, which was originally developed for language
translation, can be readily adapted to process images in the Vision Transformer (ViT). Finally, we
are required to implement our own ViT for image classification. By achieving these goals, we will
not only learn more about the ViT architecture but also gain valuable insights into the underlying
principles of modern neural networks for image processing.

2. Methodology

In this report, I detail the steps taken to complete the homework assignment. To prepare for this
homework, we first reviewed Professor Kak's slides on self-attention and gained a better
understanding of the self-attention mechanism and its implementation through matrix
multiplication. Additionally, we learned how multiple self-attention heads can work in parallel in
multi-headed attention to capture inter-word dependencies. We also studied the encoder-decoder
structure of a transformer for sequence-to-sequence translation and experimented with
seg2seq with transformerFG.py and seg2seq with transformerPrelN.py.
Finally, we went through the ViT paper to understand the fundamental concepts behind the Vision
Transformer (ViT) for image classification. In particular, we closely examined Figure 1, which
provides a clear illustration of how an image can be transformed into a sequence of embeddings
and processed using a transformer encoder. We paid special attention to how the class token is
prepended as a learnable parameter to the input patch embedding sequence, as well as how the
same token is taken from the final output sequence to produce the predicted label.



Vision Transformer (ViT) Transformer Encoder

MLP
Head

Patch + Position @a
Embedding >
* Extra learnable
[class] embedding

Transformer Encoder

]
I
I
I
I
I
I
I
I
I
Multi-Head
' . @ﬁ | ‘l\l;telntigfl
I
I
I
I
I
1

5

inear Projection of Flattened Patches ]

=

SER R O B I

i - D O

WWE Eg\begded
atches

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).
To implement our ViT, we utilized the Google Colab platform and followed the instructions
provided in the homework manual. We reused the dataset, training, and evaluation scripts from
HW4, but replaced the HW4 CNN with our ViT implementation. After training the ViT, we
generated a confusion matrix on our test set to evaluate its performance and compared it to CNN-
based networks. In addition, we also attempted to implement a multi-headed self-attention
mechanism using torch.einsum, which we were able to accomplish within just 10 lines of
code.

3. Programming Tasks

3.1.Building Our Own ViT

Before starting, I reviewed the provided VitHelper.py file. This file includes all the necessary
classes for us to build a transformer from scratch quickly. We can find these classes in
DLStudio's Transformers.TransformerPreLN module. These classes are now
standalone so that we can use them directly in our ViT implementation. Specifically, we will use
the MasterEncoder class as the "Transformer Encoder" block, as shown in Figure 1.

Initially, I utilized a linear layer for converting the patch into an embedding, as illustrated in Figure
1. But then, I incorporated a Conv2D based embedding which turned out to be significantly faster
than the linear layer-based conversion. This is because we can apply Conv2D directly on the
complete image without dividing it into patches first. However, it requires appropriate tensor
reshaping to work effectively. We are working with images of size 64x64 and a patch size of
16x16, resulting in a total of 16 patches. To prepare the input sequence for ViT, we prepend a



class token to our patch sequence. To account for this, we set the maximum sequence length of
the transformer to 17. For the class token, it must be set as learnable parameter, which is
implemented using nn.Parameter. In contrast to the sinusoid-based position embedding
commonly used in language processing, ViT makes use of learnable position embeddings.
Therefore, besides initializing the class token, I have also defined the position embeddings as
learnable parameters. We obtain the final class prediction by extracting the class token from the
output sequence generated by the Transformer Encoder block. The class token is then passed
through a Multilayer Perceptron (MLP) layer to obtain the logits for the 5 classes. Here in this
report, we have included the libraries and helper functions provided in ViTHe lper . py to ensure
that the report can be fully understood without referring to any external files. Following this, the
source code for ADVit is presented and it is sufficiently commented to make it easy to

comprehend.

Source Code:

Importing libraries and getting the device:

inline
oco import COCO

chsummary import summary

ch.device ("c :0" if torch.cuda.is available ()

how many basic encoders, num atten heads) :




return out tensor

rough FFN an
he problem of wvani
e nents £

agram ir I ment block
ng a stack of BasicEnc r instanc
has the same
f a number of Z ntionHeac
ment of v ) Ssa about
8 It is

lef init (self, max seq length, embedding size, num atten heads):

super (). init ()

self.max seq length = max seq length

self.embedding size = embedding size

self.qgkv size = self.embedding size // num atten heads

self.num atten heads = num atten heads

self.self attention layer = SelfAttention (

max seq length, embedding size, num atten heads)

self.norml = nn.LayerNorm(self.embedding size)

self.Wl = nn.Linear (self.max seq length self.embedding size,
self.max seq length 2 * self.embedding size)

self.W2 nn.Linear (self.max seq length 2 * self.embedding size,
self.max seq length self.embedding size)

self.norm2 = nn.LayerNorm(self.embedding size)

*
*
*
*

forward(self, sentence tensor):
input for self atten = sentence tensor.float ()
normed input self atten = self.norml (input for self atten)
output self atten = self.self attention layer (

normed input self atten).to(device)
input for FFN = output self atten + input for self atten
normed input FFN = self.norm2 (input for FFN)
basic_encoder out = nn.ReLU() (

self.Wl (normed input FFN.view (sentence tensor.shape([0], -1))
basic _encoder out = self.W2(basic encoder out)
basic _encoder out = basic encoder out.view(

sentence tensor.shape[0], self.max seq length, self.embedding size)
basic_encoder out = basic encoder out + input for FFN
return basic_encoder out

1fAttent )
the outputs OIY 1 ? € ionHeac es d pz s tl catenated
v and 1if

1ape [
and D

(self, max seq length, embedding size, num atten heads):




super (). init ()

self.max seq length = max seq length

self.embedding size = embedding size

self.num atten heads = num atten heads

self.gkv size = self.embedding size // num atten heads

self.attention heads arr = nn.ModulelList ([AttentionHead(self.max seq length,
self.gkv size) for _

range (num_atten heads)])

forward(self, sentence tensor):

concat out from atten heads = torch.zeros(sentence tensor.shape[0], self.max seq length,
self.num atten heads * self.qgkv size).float ()
for i in range(self.num atten heads) :
Sentenceitensoriportion = Sentenceitensor[:,
i, 1 * self.gkv size: (i+l) *
self.gkv_size]
concat out from atten heads[:, :, i * self.qgkv _size: (i+l) * self.qgkv size] =
\
self.attention heads arr[i] (sentence tensor portion)
return concat out from atten heads

AttentionHead (nn.Module) :
won
instance
in an input

PxM to

__init (self, max seq length, gkv size):
super (). init ()
self.gkv size = gkv_size
self.max seq length = max seq length
self.WQ = nn.Linear (max_ seq length
max seq length
self.WK nn.Linear (max seq length
max seq length
self.WV = nn.Linear (max_ seq length
max seq length
self.softmax = nn.Softmax (dim=1)

.gkv_size,
.gkv_size)
.gkv_size,
.gkv_size)
.gkv_size,
.gkv_size)

*
*
*
*
*
*

forward(self, sentence portion):
Q = self.WQ(sentence portion.reshape (
sentence portion.shape[0], -1).float()).to(device)
K self.WK (sentence portion.reshape (
sentence portion.shape[0], -1).float()).to(device)
self.WV (sentence portion.reshape (
sentence portion.shape[0], -1).float()).to(device)
Q.view (sentence portion.shape[0],
self.max seq length, self.gkv_size)
K.view (sentence portion.shape[0],
self.max seq length, self.gkv_size)
v V.view (sentence portion.shape[0],
self.max seq length, self.gkv_size)
A = K.transpose (2, 1)
QK dot prod = Q @ A
rowwise softmax normalizations = self.softmax(QK dot prod)
Z = rowwise softmax normalizations @ V
coeff = l.O/torch.sqrt(torch.tensor([Self.quisize]).’;cat()).to(device)
Z = coeff * Z
return Z




Vision Transformer (ADVit) Implementation:

that implements an attentior
(ViT)

an image

including image si

argument.

num_ patch vertically, num patches
unfold

implemented in the

__init (self, image size, patch size, num atten heads, embedding size,

how many basic encoders, mlp dim, num classes=5, patch to embed method='Conv'):

super (). init ()

self.image size = image size

self.patch size = patch size

self.embedding size = embedding size

self.how many basic encoders = how many basic encoders

self.mlp dim = mlp dim

self.num classes = num classes

self.num atten heads = num atten heads

.patch to embed method = patch to embed method

.num patches = (image size // patch size) ** 2
.max_seq length = self.num patches + 1

.patch dim = 3 * patch size ** 2

if patch to embed method

self.patch embeddings = nn.Linear(self.patch dim, embedding size)




elif patch to embed method == 'C

self.patch embeddings = nn.Conv2d (3, embedding size, kernel size=patch size,
stride=patch size)

self.positional embeddings = nn.Parameter (torch.zeros(l, self.num patches + 1,
embedding size))

self.encoder = MasterEncoder (self.max seq length, embedding size, how many basic encoders,
num atten heads)

self.class token = nn.Parameter (torch.zeros(l, 1, embedding size))

self.fc = nn.Sequential (
nn.Linear (embedding size, self.mlp dim),
nn.Linear (self.mlp dim, 64),
nn.Linear (64, num classes),

forward(self, x):

if self.patch to embed method == 'Lin':

x = x.unfold(2, self.patch size, self.patch size).unfold(3, self.patch size,
self.patch size)
x = x.contiguous () .view(x.size(0), -1, self.patch dim)

x = self.patch embeddings (x)

elif self.patch to embed method == 'Conv':
X self.patch embeddings (x)
X x.view(x.size(0), -1, x.size(l)

class_token = self.class token.expand(x.size(0), -1, -1)
x = torch.cat((class_token, x), dim=1)

x + self.positional embeddings
self.encoder (x)
class output = x[:, 0]

output = self.fc(class output)
return output

ADVit takes in an image and outputs a prediction of its class. The input image is assumed to be
square with a specified image size and three channels for RGB. The image is divided into non-
overlapping patches of a specified patch size, and each patch is embedded into a vector of a
specified embedding size using either a linear layer or a convolutional layer. The module also
learns learnable positional embeddings of the same size as the patch embeddings, and it includes
an encoder made up of a specified number of basic encoders that each have a specified number of
attention heads. Additionally, a learnable class token is added to the input embeddings, and the
output of the class token is fed through an MLP to produce a prediction of the input image's class.




Inthe init  function, the relevant parameters are set, and the various components of the
module are defined. The forward function takes in an input image and performs the necessary
operations to convert the image into a sequence of embeddings that can be fed into the encoder. If
linear patch embeddings are used, the input image is divided into patches using the unfold function,
and each patch is embedded using the linear layer. If convolutional patch embeddings are used,
the input image is passed through a convolutional layer, resulting in a tensor of size
(batch size, embedding size, num patches, num patches), and the tensor
is reshaped to (batch size, num patches, embedding size). In both cases, the
class token is added to the sequence of embeddings, and the positional embeddings are added to
the embeddings. The resulting sequence is fed through the encoder, and the output of the class
token is passed through an MLP to produce a prediction of the input image's class.

We get the following details of the ADV1 t. In the following code, we can see the hyperparameters
used in ADVit. The mentioned shapes of the tensors and variables in comments in the earlier
ADVit code are based on these hyperparameters.

model = ADVit(image_size=64, \
patch_size=16, \
num_atten_heads=8,
embedding size=128, \
how_many basic_encoders=2, \
mlp dim=96, \
num_classes=5,\
patch_to_embed method='Conv') .to (device)

number of learnab a sum(p.numel () for p in model.parameters() if p.requires grad)

% number of learnable params)

The number of layers in the model: 122

The number of learnable parameters in the model: 41577829

O) C

(

2
25
2

O

Linear-20
Softmax-21

(

O



SN o~

3

|
o]

=

<t
|
X

ftma
eac
LayerNorm—4¢




asicEncoder-93
MasterEncoder-94

Total params:

Trainable para

3.2.Image Classification with ADVit

To accomplish this task, we will reuse the training and evaluation scripts we developed in HW4.
Instead of using the HW4 CNN, we will replace it with our ViT model. We will also use the
COCO-based dataset that we created for HW4, which contains 64 x 64 images from five classes.
To ensure that our report is self-contained and can be used to reproduce our results, we have
included the entire process of creating the dataset, defining the dataloader class, and the training
and testing routines from HW4. We will present each step in detail below.

Creating Our Own Image Classification Dataset

In this task we need to create our own image classification dataset by taking images from the MS-
COCO dataset. For that, I took the help of python version of the COCO API. We are using 2014
Train images. I downloaded all the images from the following link and uploaded it to the Google
Drive. I also downloaded the annotation files: 2014 Train/Val annotations. For image classification
task, instances train2014.7json file is used. The following script is used to read the
images from the MS-COCO dataset, resize it to 64x64 images using PIL module and save the
images to another directory. It is made sure that there are no duplicate images.

Source Code:

ive/Arghadip/DL/Datas

for cat in
catl

imgIds




5[1]1]) [0]

r, dataType, img['file name']))

OX)

cat + ' ' + str(i) +

Image.open (os.path.join (dataDir, dataType, img['file name']))

Qutput Directory Structure:

- B test
» @@ airplane
i bus
im cat
im dog
B pizza

v @@ train
im airplane
i bus
im cat
@m dog
B pizza
Figure 2. Dataset directory structure

Once the images are saved in proper directory, the next step is to implement our own dataset class
to provide the necessary support to the torch.utils.data.DataLoader class. The source
code is given below. The dataset class My COCO Dataset contains the relevant information
such as root directory, split (train or test), number of images per class etc. It also performs proper
transform to covert PIL images to CNN supported tensor input. I haven’t used any data
augmentation techniques, but the scope is already present in the given source code. One method
named get filenames and labels() is defined to get all the filenames and
corresponding labels, so that later it can be used during query (i.e. getitem  ()). The
__len () methodis also overwritten to return the total number of images in the dataset. During
training feeding images from different classes in a single batch leads to better training. Therefore,
shuffling support is also provided (shuf f1e=True). The labels are integers (0 to 4) for 5 classes.



Source Code:

CO_Dataset (torch.util data.Dataset) :
__init (self, root='/con © ive/Arghadip/DL/Datasets/coco split="'train',
shuffle= ) g

super (). init ()
self.split = split
self.path = os.path.join (root,self.split)
self.shuffle = shuffle
self.classes = ['airpl € 'bus', 'cat',
if self.split == 'train':

self.num images per class 1500

elif self.split == 'test':
self.num images per class

self.xform = tvt.Compose ([

tvt.ToTensor (),

tvt.Normalize ((0.5,0.5,0.5), (0.5,0.5,0.5))
1)

self. get filenames and labels ()

_get filenames and labels (self):
self.list of files and labels = []
for i in range(len(self.classes)):

for j in range(self.num images per class):

self.list of files and labels.append([os.path.join(self.path, self.classes([i],
self.classes[i] + '_' + str(j) + '.jpg'), il)

if self.shuffle:
random.shuffle (self.list of files and labels)

len  (self):

return len(self.list of files and labels)
__getitem (self, index):
image = Image.open(self.list of files and labels[index] [0]

image self.xform(image)
return (image, self.list of files and labels[index] [1]




Training routine:

We use Adam optimizer with learning rate = 1e-3, 1 = 0.9 and > = 0.99 for training. It also saves
the model parameters in every epoch as a dictionary that is later used for testing using validation
dataset. The model is trained for 50 epochs.

am (net.parameters (), learning rate,

running
if (i+1)

print (" [

for plot.append(running 1
g loss 0.0

e (net.s

".format

Test routine and script to plot confusion matrix:

The test routine is inspired from the routine present in DLStudio. The seaborn package is
useful for the proper display of the confusion matrix.

confusion matrix = np.zeros([num cl
h torch.no grad() :

for i, data in enumer

inputs, 1

inputs

ion matrix[label] [prediction] += 1




plot confusion matrix(confusion matrix, classes, title='Confusion Matrix'):
Vi

the confusion matrix with proper colormap and labels.

labels = []

for row in range (confusion matrix.shape([0]) :
rows = []
for col in range (confusion matrix.shape([1]) :
pred count = confusion matrix[row] [col]
percentage = "$0.2£%%" % (predicount*loo/(np.Sum(confusionimatrix[:][col])))
box label = str(pred count) + '\n' + str(percentage)

rows.append (box label)
labels.append (rows)
labels = np.asarray(labels)
test accuracy = np.trace(confusion matrix) * 100 / np.sum(confusion matrix)

plt.figure ()

sns.heatmap (confusion matrix, annot=labels, fmt="", cmap="Blues", cbar=
xticklabels=classes, yticklabels=classes)

plt.title(title)

plt.xlabel ('Pr ed label \T ccuracy 50.3f'% test accuracy)

plt.ylabel ('Tr

plt.savefig(os.path.join('/content/c MyDrive/Arghadip/DL/HWY9/confusion matric

.Jpg'), dpi=300)

plt.show ()

Main code:

model = ADVit (image size=64, \
patch size=16, \
num atten heads=8,
embedding size=128, \
how many basic encoders=2, \
mlp dim=96, \
num classes=5,\
patch to embed method='Conv').to(device)

batch_size = 64

num workers = 2

train dataset = My COCO Dataset (split='train', shuffle= )

train dataloader = Dataloader (train dataset, batch size=batch size, shuffle=
num workers=num workers)

test dataset = My COCO Dataset (split='test', shuffle= )

test dataloader = DatalLoader (test dataset, batch size=batch size, shuffle=
num workers=num workers)

learning_ rate = le-3

num_epochs = 50

print frequency = 10

loss = run training(model, train dataloader, learning rate, num epochs=num epochs,
print frequency=print frequency)

label = model. <class . name + ' ' + str(learning rate) + ' ' + str(num epochs)
fig, axes = plt.subplots(ncols=1, figsize = (8,4)

axes.plot (loss, label=label)

axes.set title('Trai 1

axes.set xlabel ('Bat n hunc < atch size + str(batch size))

axes.set ylabel ('Tra 1

fig.legend ()




.load (modelfile, map location=torch.de

.load (modelfile))

usion matrix = run te

confusion matrix (confusion matr
T

Training Loss over Training Iterations:

The following plots show how training progresses along the epochs.

Training loss vs. batches ek L LY

1.50 4

1.25 4

1.00 4

0.75 4

Training loss

0.50 A

0.25 4

0.00 +

0 100 200 300 400 500
Batches in hundreds, batch size = 64

Fig.3. Training loss vs. iterations for ADVit



Confusion matrix and overall accuracy:

Confusion Matrix (ADVit_0.001_50)

@
= 385.0 22.0 26.0 16.0 350
W 77.00% 4.40% 5.20% 3.20%
s
300
" 81.0 285.0 56.0 47.0 31.0
27 16.20% BN 11.20%  9.40%  6.20%
250
F
B - 40.0 59.0 188.0 110.0 103.0
Y S~ 800% 11.80% | 37.60% 22.00% 20.60% 200
=
- 150
o 78.0 72.0 139.0 132.0 79.0
8 15.60% 14.40% 27.80% 26.40%  15.80%
- 100
® 20.0 28.0 81.0 49.0 322.0
N7 4.00% 5.60% 16.20% 9.80% 64.40% - 50

airplane bus cat dog pizza
Predicted label

Accuracy = 52.480
Fig.6. Confusion matrix for ADVit over HW4-COCO testset

Overall accuracy: 52.48%

Comparison with HW4 CNN based network:

For better comparison, I present the confusion matrices of 3 different CNN tasks from HW4. These
networks were trained with the same hyperparameters (Adam optimizer with learning rate 1le-3,
B1=0.9 and B2 = 0.99) for 50 epochs with batch size of 8.

P.T.O.



Confusion Matrix for HW4 Task 1:

Confusion Matrix (Netl)

& 350
= 420 370 530 11.0
5 8.40% 7.40% 10.60% 2.20%
° 300
n o PR 560 1130 30.0
2 715.20% LEIMEA 11.20% 22.60% 6.00% 250
a2 200
85 120 120 1250 66.0
v 87 240% 2.40% 25.00% 13.20%
=
- 150
o 330 300 REEEN)
S 6.60% 6.00% ECNILA
-100
80 70 710 500 [NETH - 50

©
N _
27 160% 1.40% 14.20% 10.00% PR:RA
' ! ! '
airplane  bus cat dog pizza
Predicted label
Accuracy = 56.560

Fig.4. Confusion matrix for HW4 Netl (Overall test accuracy = 56.56%)

Confusion Matrix for HW4 Task 2:

Confusion Matrix (Net2)

(]
S EEEINOM 490 240  37.0 9.0 350
c R 9.80% 4.80% 7.40% 1.80%
‘©
300
n 81.0 300.0 28.0 71.0 20.0
3 716.20% LQNEA 5.60% 14.20% 4.00%
250
2
® . 380 340 WALN 1380 730 200
@ 87 7.60% 6.80% EERIIS 27.60% 14.60%
=
‘ - 150
o  53.0 56.0 140.0 180.0 71.0
8 710.60% 11.20% 28.00% 36.00% 14.20%
| -100
11.0 30.0 52.0 46.0 50

©
N
3 220% 6.00% 10.40% 9.20%

1 1 1 1
airplane  bus cat dog pizza
Predicted label

Accuracy = 57.560

Fig.5. Confusion matrix for HW4 Net2 (Overall test accuracy = 57.56%)



Confusion Matrix for HW4 Task 3:

Confusion Matrix (Net3)

Q
< 60.0 40.0 60.0 4.0
! 12.00% 8.00% 12.00% 0.80% =00
s
o 59.0 49.0 62.0 24.0 250
3711.80% 9.80% 12.40% 4.80%
- 200
8o 110 pEyMl 148.0 60.0
v 87 220% 4.80% [FKAEY29.60% 12.00%
F - 150
> 380 650 125.0  60.0
S 7.60% 13.00% 25.00% 12.00% -100
40 180 760 56.0 [MELINY -50

@©
N
27 0.80% 3.60% 15.20% 11.20% JSRARZ

| 1 1 I
airplane  bus cat dog pizza
Predicted label

Accuracy = 54.800

Fig.6. Confusion matrix for HW4 Net3 (Overall test accuracy = 54.80%)

The transformer model (ADVit) performs worse than the CNN-based models, with only 52.48%
accuracy on the test set. In comparison, the CNNs had the following accuracy in decreasing order:
Net2 (57.56%) > Net1 (56.56%) > Net 3 (54.80%). This is because ADVit is overfitting the
small training set, which consists of only 7500 images of size 64x64. The total number of training
points is 7500x(3x64x64) = 92160000, while the number of parameters in the transformer model
(41577829) is comparable with the size of the training set. Although I have tried to reduce the
number of parameters by adjusting the hyperparameters, the model still overfits. To address this
issue, regularization, dropout, and early termination methods can be used, but they are not within
the scope of this homework. On the other hand, the low accuracies of the CNN models in HW4
were due to underfitting caused by their small model orders.



3.3.Extra Credit: Multi-headed self-attention using torch.einsum

The implementation code with detailed comments is given below.

einsum (nn.Module) :
__init (self, max seq length, embedding size, num atten heads):
super (). init ()
self.max seq length = max seq length
self.embedding size embedding size
self.num atten heads = num atten heads

self.gkv size = self.embedding size // num atten heads

self.attention heads arr = nn.ModulelList ([AttentionHead einsum(self.max seq length,
self.gkv _size) for _ in
range (num_atten heads)])

forward(self, sentence tensor):

concat out from atten heads = torch.zeros(sentence tensor.shape[0], self.max seq length,
self.num atten heads * self.qgkv size).float ()
for i in range(self.num atten heads) :
sentenceitensoriportion = sentenceitensor[:,
i, 1 * self.gkv size: (i+l) *
self.gkv_size]
concat out from atten heads[:, :, i * self.qgkv _size: (i+l) * self.qgkv size] =
\

self.attention heads arr[i] (sentence tensor portion)

return concat out from atten heads

AttentionHead einsum odule) :
__init (self, max seq length, gkv size):
super (). init ()
self.gkv size = gkv_size
self.max seq length = max seq length
self.WQ = nn.Linear (max_ seq length
max seq length
self.WK = nn.Linear (max_ seq length
max seq length
self.WV = nn.Linear (max_ seq length
max seq length
self.softmax = nn.Softmax (dim=1)

.gkv_size,
.gkv_size)
.gkv_size,
.gkv_size)
.gkv_size,
.gkv_size)

*
*
*
*
*
*

forward(self, sentence portion):

Q self.WQ (sentence portion.reshape (
sentence portion.shape([0], -1).float()).to(device)
K self.WK (sentence portion.reshape (
sentence portion.shape([0], -1).float()).to(device)
self.WV (sentence portion.reshape (
sentence portion.shape[0], -1).float()).to(device)
Q.view (sentence portion.shape[0],
self.max seq length, self.gkv_size)
K.view (sentence portion.shape[0],
self.max seq length, self.gkv_size)
V.view (sentence portion.shape[0],
self.max seq length, self.gkv_size)

A = torch.einsum("bnm,bnk->bmk", K, torch.ones like(Q))




QK dot prod = torch.einsum("bnm,bmk->bnk", Q, A)

rowwise softmax normalizations = self.softmax(QK dot prod)

Z = torch.einsum("bnm,bnk->bnk", rowwise softmax normalizations, V)

coeff = 1.0/torch.sqrt(torch.tensor([self.qu_size]).float()).to(device)

Z = coeff * Z
return 2

The shape of each tensor is given in the comments assuming the following hyperparameter values.

e max_ seq length = 17

e embedding size = 128

e num atten heads = 8
The above code implements a multi-headed attention mechanism for a given input sentence
portion. It does this by matrix-multiplying the embedding vector for each word in the sentence by
the WQ, WK, and WV matrices to produce the query vector Q, key vector K, and value vector V
for each word in the input sentence. The dot product of Q and K is then used to calculate the
attention weights, which are applied to the value vectors to get the final attention output.



Suggested improvements:

To improve the performance of a transformer on a small training set, several techniques can be
employed. Firstly, transfer learning can be used by pretraining the transformer on a larger dataset
and then fine-tuning it on the small dataset. This can lead to better generalization and faster
convergence on the small dataset. Another technique is to use data augmentation to artificially
increase the size of the training set. This can be done by applying random transformations to the
input data such as cropping, flipping, or adding noise. This can help the model learn more robust
features and reduce overfitting. Regularization techniques such as dropout and weight decay can
also be used to prevent overfitting on the small training set. Dropout randomly drops out some
neurons during training, while weight decay adds a penalty to the loss function for large weights.
Finally, ensembling multiple models can also help improve performance on a small dataset. By
training multiple models with different initializations or architectures and combining their
predictions, the overall performance can be boosted. However, this approach may require more
computational resources.

4. Lessons Learned

In this Vision transformer homework, we learned how to implement a transformer model for image
classification. We used the PyTorch library to build a transformer model that consists of an
encoder, where the encoder extracts features from an image. We also learned about the importance
of attention mechanisms in transformer models, which allow the model to focus on important parts
of the input. Additionally, we experimented with different hyperparameters and techniques to
improve the performance of our model. Overall, this homework provided a practical introduction
to transformer models and their application in computer vision tasks. Through experimentation
and fine-tuning, we gained insights into how different components and hyperparameters of the
model affect its performance. These lessons can be applied to other transformer-based models and
tasks and can help us develop more accurate and efficient deep learning models.

--- End of the document ---



