
BME646 and ECE60146: Homework 9

Spring 2023

Arghadip Das

das169@purdue.edu

1. Introduction

Over the past few years, convolutional neural networks (CNNs) have dominated the field of
computer vision, achieving state-of-the-art performance on a wide range of visual recognition
tasks. However, these networks have several limitations, such as a fixed receptive field and a lack
of attention mechanisms for modeling long-range dependencies. To address these issues, a new
type of neural network architecture called the Vision Transformer (ViT) has been proposed. The
ViT is based on the Transformer architecture originally developed for natural language processing
(NLP) and uses self-attention mechanisms to model long-range dependencies between image
patches. The ViT has quickly gained attention in the computer vision community due to its
impressive performance on various image classification tasks, surpassing the previous state-of-
the-art results achieved by CNNs. In addition, the ViT has shown promising results in other
computer vision tasks such as object detection, segmentation, and generation.
In this homework, we have several goals. Firstly, we aim to gain a deeper understanding of the
multi-headed self-attention mechanism and the transformer architecture. Secondly, we hope to
comprehend how the transformer architecture, which was originally developed for language
translation, can be readily adapted to process images in the Vision Transformer (ViT). Finally, we
are required to implement our own ViT for image classification. By achieving these goals, we will
not only learn more about the ViT architecture but also gain valuable insights into the underlying
principles of modern neural networks for image processing.

2. Methodology

In this report, I detail the steps taken to complete the homework assignment. To prepare for this
homework, we first reviewed Professor Kak's slides on self-attention and gained a better
understanding of the self-attention mechanism and its implementation through matrix
multiplication. Additionally, we learned how multiple self-attention heads can work in parallel in
multi-headed attention to capture inter-word dependencies. We also studied the encoder-decoder
structure of a transformer for sequence-to-sequence translation and experimented with
seq2seq_with_transformerFG.py and seq2seq_with_transformerPreLN.py.
Finally, we went through the ViT paper to understand the fundamental concepts behind the Vision
Transformer (ViT) for image classification. In particular, we closely examined Figure 1, which
provides a clear illustration of how an image can be transformed into a sequence of embeddings
and processed using a transformer encoder. We paid special attention to how the class token is
prepended as a learnable parameter to the input patch embedding sequence, as well as how the
same token is taken from the final output sequence to produce the predicted label.

To implement our ViT, we utilized the Google Colab platform and followed the instructions
provided in the homework manual. We reused the dataset, training, and evaluation scripts from
HW4, but replaced the HW4 CNN with our ViT implementation. After training the ViT, we
generated a confusion matrix on our test set to evaluate its performance and compared it to CNN-
based networks. In addition, we also attempted to implement a multi-headed self-attention
mechanism using torch.einsum, which we were able to accomplish within just 10 lines of
code.

3. Programming Tasks

3.1. Building Our Own ViT

Before starting, I reviewed the provided VitHelper.py file. This file includes all the necessary
classes for us to build a transformer from scratch quickly. We can find these classes in
DLStudio's Transformers.TransformerPreLN module. These classes are now
standalone so that we can use them directly in our ViT implementation. Specifically, we will use
the MasterEncoder class as the "Transformer Encoder" block, as shown in Figure 1.
Initially, I utilized a linear layer for converting the patch into an embedding, as illustrated in Figure
1. But then, I incorporated a Conv2D based embedding which turned out to be significantly faster
than the linear layer-based conversion. This is because we can apply Conv2D directly on the
complete image without dividing it into patches first. However, it requires appropriate tensor
reshaping to work effectively. We are working with images of size 64x64 and a patch size of
16x16, resulting in a total of 16 patches. To prepare the input sequence for ViT, we prepend a

class token to our patch sequence. To account for this, we set the maximum sequence length of
the transformer to 17. For the class token, it must be set as learnable parameter, which is
implemented using nn.Parameter. In contrast to the sinusoid-based position embedding
commonly used in language processing, ViT makes use of learnable position embeddings.
Therefore, besides initializing the class token, I have also defined the position embeddings as
learnable parameters. We obtain the final class prediction by extracting the class token from the
output sequence generated by the Transformer Encoder block. The class token is then passed
through a Multilayer Perceptron (MLP) layer to obtain the logits for the 5 classes. Here in this
report, we have included the libraries and helper functions provided in ViTHelper.py to ensure
that the report can be fully understood without referring to any external files. Following this, the
source code for ADVit is presented and it is sufficiently commented to make it easy to
comprehend.

Source Code:

Importing libraries and getting the device:

Importing required libraries
%matplotlib inline
from pycocotools.coco import COCO # For MS-COCO API
import numpy as np # numpy
from PIL import Image # For image resizing
import os # Creating folders
import random # Shuffle the images
import torch # For building net, training and tesing routines
import torchvision.transforms as tvt # Convert PIL to tensor and augmentation (if needed)
from torch.utils.data import DataLoader # Parallel processing of data loading
import torch.nn as nn # Neural network layers
import torch.nn.functional as F # Non-liner activations (ReLU)
import skimage.io as io # Image loading through coco_url
import matplotlib.pyplot as plt # Plotting
import seaborn as sns # Colormap of confusion matrix
from torchsummary import summary
Determining device (CPU or CUDA)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)

Helper classes and functions:

This code is from the Transformers co-class of DLStudio:

https://engineering.purdue.edu/kak/distDLS/
class MasterEncoder(nn.Module):
 """
 The purpose of the MasterEncoder is to invoke a stack of BasicEncoder instances on a
 source-language sentence tensor. The output of each BasicEncoder is fed as input to the
 next BasicEncoder in the cascade, as illustrated in the loop in Line B below. The stack
 of BasicEncoder instances is constructed in Line A.
 """
 def __init__(self, max_seq_length, embedding_size, how_many_basic_encoders, num_atten_heads):
 super().__init__()
 self.max_seq_length = max_seq_length
 self.basic_encoder_arr = nn.ModuleList([BasicEncoder(
 max_seq_length, embedding_size, num_atten_heads) for _ in
range(how_many_basic_encoders)]) # (A)

 def forward(self, sentence_tensor):
 out_tensor = sentence_tensor
 for i in range(len(self.basic_encoder_arr)): # (B)
 out_tensor = self.basic_encoder_arr[i](out_tensor)

 return out_tensor

class BasicEncoder(nn.Module):
 """
 The BasicEncoder in TransformerPreLN consists of a layer of self-attention (SA) followed
 by a purely feed-forward layer (FFN). The job of the SA layer is for the network to
 figure out what parts of an input sentence are relevant to what other parts of the
 same sentence in the process of learning how to translate a source-language sentence into
 a target-language sentence. The output of SA goes through FFN and the output of FFN becomes
 the output of the BasicEncoder. To mitigate the problem of vanishing gradients in the PreLN
 transformer design, the input to each of the two components of a BasicEncoder --- SA and
 FFN --- is subject to LayerNorm and a residual connection used that wraps around both the
 LayerNorm and the component as shown in the keystroke diagram in the comment block associated
 with the definition of TranformerPreLN. Deploying a stack of BasicEncoder instances becomes
 easier if the output tensor from a BasicEncoder has the same shape as its input tensor.

 The SelfAttention layer mentioned above consists of a number of AttentionHead instances,
 with each AttentionHead making an independent assessment of what to say about the
 inter-relationships between the different parts of an input sequence. It is the embedding
 axis that is segmented out into disjoint slices for each AttentionHead instance.The
 calling SelfAttention layer concatenates the outputs from all its AttentionHead instances
 and presents the concatenated tensor as its own output.
 """
 def __init__(self, max_seq_length, embedding_size, num_atten_heads):
 super().__init__()
 self.max_seq_length = max_seq_length
 self.embedding_size = embedding_size
 self.qkv_size = self.embedding_size // num_atten_heads
 self.num_atten_heads = num_atten_heads
 self.self_attention_layer = SelfAttention(
 max_seq_length, embedding_size, num_atten_heads) # (A)
 self.norm1 = nn.LayerNorm(self.embedding_size) # (C)
 self.W1 = nn.Linear(self.max_seq_length * self.embedding_size,
 self.max_seq_length * 2 * self.embedding_size)
 self.W2 = nn.Linear(self.max_seq_length * 2 * self.embedding_size,
 self.max_seq_length * self.embedding_size)
 self.norm2 = nn.LayerNorm(self.embedding_size) # (E)

 def forward(self, sentence_tensor):
 input_for_self_atten = sentence_tensor.float()
 normed_input_self_atten = self.norm1(input_for_self_atten)
 output_self_atten = self.self_attention_layer(
 normed_input_self_atten).to(device) # (F)
 input_for_FFN = output_self_atten + input_for_self_atten
 normed_input_FFN = self.norm2(input_for_FFN) # (I)
 basic_encoder_out = nn.ReLU()(
 self.W1(normed_input_FFN.view(sentence_tensor.shape[0], -1))) # (K)
 basic_encoder_out = self.W2(basic_encoder_out) # (L)
 basic_encoder_out = basic_encoder_out.view(
 sentence_tensor.shape[0], self.max_seq_length, self.embedding_size)
 basic_encoder_out = basic_encoder_out + input_for_FFN
 return basic_encoder_out

#################################### Self Attention Code TransformerPreLN

class SelfAttention(nn.Module):
 """
 As described in the doc section of the BasicEncoder class, in each BasicEncoder you have
 a layer of SelfAttention followed by a Fully-Connected layer. The SelfAttention layer
 concatenates the outputs from all AttentionHead instances and presents that concatenated
 output as its own output. If the input sentence consists of W words at most and if the
 embedding size is M, the sentence_tensor at the input to forward() in Line B below will
 be of shape [W,M]. This tensor will be fed into each AttentionHead instance constructed
 in Line A. If K is the size of the output from an AttentionHead instance, the output of each
 such instance will be of shape [W,K]. The SelfAttention instance concatenates A of those
 AttentionHead outputs and returns a tensor of shape [W,K*A] to the BasicEncoder. This
 concatenation is carried in the loop in Lines C and D below.
 """
 def __init__(self, max_seq_length, embedding_size, num_atten_heads):

 super().__init__()
 self.max_seq_length = max_seq_length
 self.embedding_size = embedding_size
 self.num_atten_heads = num_atten_heads
 self.qkv_size = self.embedding_size // num_atten_heads
 self.attention_heads_arr = nn.ModuleList([AttentionHead(self.max_seq_length,
 self.qkv_size) for _ in
range(num_atten_heads)]) # (A)

 def forward(self, sentence_tensor): # (B)
 # batch_size, max_seq_length, embedding_size
 concat_out_from_atten_heads = torch.zeros(sentence_tensor.shape[0], self.max_seq_length,
 self.num_atten_heads * self.qkv_size).float()
 for i in range(self.num_atten_heads): # (C)
 sentence_tensor_portion = sentence_tensor[:,
 :, i * self.qkv_size: (i+1) *
self.qkv_size]
 concat_out_from_atten_heads[:, :, i * self.qkv_size: (i+1) * self.qkv_size] =
\
 self.attention_heads_arr[i](sentence_tensor_portion) # (D)
 return concat_out_from_atten_heads

class AttentionHead(nn.Module):
 """
 An AttentionHead (AH) instance does its job by first matrix-multiplying the embedding
 vector FOR EACH WORD in an input sentence by the following three matrices:

 -- a matrix Wq of size PxM to produce the query Vector q where P is the desired size
 for the matrix-vector product and M the size of the embedding. For each word, this
 will yield a query vector of size P elements at each word position in the input
 sentence.

 -- a matrix Wk, also of size PxM, to produce a key vector k of size P elements at
 each word position

 -- a matrix Wv, also of size PxM, to produce a value vector v of size P elements at
 each word position.
 """
 def __init__(self, max_seq_length, qkv_size):
 super().__init__()
 self.qkv_size = qkv_size
 self.max_seq_length = max_seq_length
 self.WQ = nn.Linear(max_seq_length * self.qkv_size,
 max_seq_length * self.qkv_size) # (B)
 self.WK = nn.Linear(max_seq_length * self.qkv_size,
 max_seq_length * self.qkv_size) # (C)
 self.WV = nn.Linear(max_seq_length * self.qkv_size,
 max_seq_length * self.qkv_size) # (D)
 self.softmax = nn.Softmax(dim=1) # (E)

 def forward(self, sentence_portion): # (F)
 Q = self.WQ(sentence_portion.reshape(
 sentence_portion.shape[0], -1).float()).to(device) # (G)
 K = self.WK(sentence_portion.reshape(
 sentence_portion.shape[0], -1).float()).to(device) # (H)
 V = self.WV(sentence_portion.reshape(
 sentence_portion.shape[0], -1).float()).to(device) # (I)
 Q = Q.view(sentence_portion.shape[0],
 self.max_seq_length, self.qkv_size) # (J)
 K = K.view(sentence_portion.shape[0],
 self.max_seq_length, self.qkv_size) # (K)
 V = V.view(sentence_portion.shape[0],
 self.max_seq_length, self.qkv_size) # (L)
 A = K.transpose(2, 1) # (M)
 QK_dot_prod = Q @ A # (N)
 rowwise_softmax_normalizations = self.softmax(QK_dot_prod) # (O)
 Z = rowwise_softmax_normalizations @ V
 coeff = 1.0/torch.sqrt(torch.tensor([self.qkv_size]).float()).to(device) # (S)
 Z = coeff * Z # (T)
 return Z

Vision Transformer (ADVit) Implementation:

class ADVit(nn.Module):
 """
 The ADVit class is a PyTorch module that implements an attention-based deep learning
architecture called Vision Transformer (ViT)
 for image classification. It takes as input an image tensor x of size (batch_size,
num_channels, image_height, image_width).
 The class constructor initializes the model's hyperparameters including image_size, patch_size,
num_atten_heads, embedding_size,
 how_many_basic_encoders, mlp_dim, num_classes, and patch_to_embed_method.
 The model converts the image tensor into a sequence of patch embeddings using either a linear
layer or a convolutional layer,
 based on the patch_to_embed_method argument. If the linear method is used, the input tensor x
is first unfolded into patches
 of size (batch_size, num_channels, num_patches_vertically, num_patches_horizontally,
patch_size, patch_size) using the unfold
 method of PyTorch. Then, the patches are reshaped into a tensor of size (batch_size,
num_patches, patch_dim), where patch_dim
 is the size of each patch embedding. If the convolutional method is used, the input tensor x is
passed through a convolutional
 layer with embedding_size output channels and a kernel size and stride equal to the patch_size.
The resulting tensor is then
 reshaped into a tensor of size (batch_size, num_patches, embedding_size).
 The patch embeddings are then augmented with a learnable class token and learnable positional
embeddings,
 resulting in a tensor of size (batch_size, max_seq_length, embedding_size), where
max_seq_length is the number of patches plus one.
 The resulting tensor is then fed into a stack of transformer encoders implemented in the
MasterEncoder class.
 Finally, the class token output of the last transformer encoder is extracted and passed through
a multi-layer perceptron (MLP) consisting of three
 fully connected layers with embedding_size, mlp_dim, and num_classes output channels,
respectively. The output of the MLP is a
 tensor of size (batch_size, num_classes), which represents the model's predicted probabilities
for each of the input images.
 """
 def __init__(self, image_size, patch_size, num_atten_heads, embedding_size,
how_many_basic_encoders, mlp_dim, num_classes=5, patch_to_embed_method='Conv'):
 super().__init__()
 self.image_size = image_size # Image height and width (if 64,
image is 3x64x64)
 self.patch_size = patch_size # Size of each patch (if 16, patch
is 3x16x16)
 self.embedding_size = embedding_size # Size of embedding for each patch
(chosen 128)
 self.how_many_basic_encoders = how_many_basic_encoders # Number of basic encoders in
cascade (chosen 2)
 self.mlp_dim = mlp_dim # dimension of the first FC layer
output (chosen 96)
 self.num_classes = num_classes # Number of classes (for image
classification application, here 5)
 self.num_atten_heads = num_atten_heads # Number of attention heads (chosen
as 8), each attention
 # head will work on the embedding
of size (128/8 = 16)
 self.patch_to_embed_method = patch_to_embed_method # The method to convert a patch to
embedding (Linear or Conv2d)

 # calculate number of patches (Assuming square images)
 self.num_patches = (image_size // patch_size) ** 2 # Number of patches = (64/16)^2 =
16
 self.max_seq_length = self.num_patches + 1 # Length of the sequence = Number
of patches + 1 (for prepended class token)
 self.patch_dim = 3 * patch_size ** 2 # Patch dimension (3*16*16 = 768),
assuming RGB images with 3 channels

 if patch_to_embed_method == 'Lin':
 # patch embedding layer (using nn.Linear)
 self.patch_embeddings = nn.Linear(self.patch_dim, embedding_size)

 elif patch_to_embed_method == 'Conv':
 # patch embedding layer (using nn.Conv2d)
 # using a conv layer instead of a linear one -> performance gains
 # kernel_size = stride = patch_size, So, basically it is operating on each patch separately
 self.patch_embeddings = nn.Conv2d(3, embedding_size, kernel_size=patch_size,
stride=patch_size)

 # learnable positional embeddings (nn.Parameter)
 self.positional_embeddings = nn.Parameter(torch.zeros(1, self.num_patches + 1,
embedding_size))

 # Encoder layers
 self.encoder = MasterEncoder(self.max_seq_length, embedding_size, how_many_basic_encoders,
num_atten_heads)

 # class token (learnable) (nn.Parameter)
 self.class_token = nn.Parameter(torch.zeros(1, 1, embedding_size))

 # class prediction head (Multi-Layer Perceptron, i.e., MLP)
 self.fc = nn.Sequential(
 nn.Linear(embedding_size, self.mlp_dim),
 nn.Linear(self.mlp_dim, 64),
 nn.Linear(64, num_classes),
)

 # Forward pass through ViT
 def forward(self, x): # Example sizes are given considering the shape
of x as (1,3,64,64)
 if self.patch_to_embed_method == 'Lin': # If embeddings for patches are created using
linear layers
 # extract patches
 x = x.unfold(2, self.patch_size, self.patch_size).unfold(3, self.patch_size,
self.patch_size) # (1, 3, 4, 4, 16, 16)
 x = x.contiguous().view(x.size(0), -1, self.patch_dim) # (1, 16, 768)

 # patch embeddings
 x = self.patch_embeddings(x) # (1, 16, 768)
 elif self.patch_to_embed_method == 'Conv':
 x = self.patch_embeddings(x) # (1, 128, 4, 4)
 x = x.view(x.size(0), -1, x.size(1)) # (1, 16, 128)

 # add class token
 class_token = self.class_token.expand(x.size(0), -1, -1)
 x = torch.cat((class_token, x), dim=1) # (1, 17, 128)

 # add positional embeddings
 x = x + self.positional_embeddings # (1, 17, 128)

 # transformer layers
 x = self.encoder(x) # (1, 17, 128)

 # extract class token output
 class_output = x[:, 0] # (1, 128)

 # class prediction head
 output = self.fc(class_output) # (1, 5)
 return output

ADVit takes in an image and outputs a prediction of its class. The input image is assumed to be
square with a specified image size and three channels for RGB. The image is divided into non-
overlapping patches of a specified patch size, and each patch is embedded into a vector of a
specified embedding size using either a linear layer or a convolutional layer. The module also
learns learnable positional embeddings of the same size as the patch embeddings, and it includes
an encoder made up of a specified number of basic encoders that each have a specified number of
attention heads. Additionally, a learnable class token is added to the input embeddings, and the
output of the class token is fed through an MLP to produce a prediction of the input image's class.

In the __init__ function, the relevant parameters are set, and the various components of the
module are defined. The forward function takes in an input image and performs the necessary
operations to convert the image into a sequence of embeddings that can be fed into the encoder. If
linear patch embeddings are used, the input image is divided into patches using the unfold function,
and each patch is embedded using the linear layer. If convolutional patch embeddings are used,
the input image is passed through a convolutional layer, resulting in a tensor of size
(batch_size, embedding_size, num_patches, num_patches), and the tensor
is reshaped to (batch_size, num_patches, embedding_size). In both cases, the
class token is added to the sequence of embeddings, and the positional embeddings are added to
the embeddings. The resulting sequence is fed through the encoder, and the output of the class
token is passed through an MLP to produce a prediction of the input image's class.

We get the following details of the ADVit. In the following code, we can see the hyperparameters
used in ADVit. The mentioned shapes of the tensors and variables in comments in the earlier
ADVit code are based on these hyperparameters.

model = ADVit(image_size=64, \
 patch_size=16, \
 num_atten_heads=8,
 embedding_size=128, \
 how_many_basic_encoders=2, \
 mlp_dim=96, \
 num_classes=5,\
 patch_to_embed_method='Conv').to(device)

number_of_learnable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
num_layers = len(list(model.parameters()))
print("\n\nThe number of layers in the model: %d" % num_layers)
print("\nThe number of learnable parameters in the model: %d" % number_of_learnable_params)
image_size = 64
input_size = (3,image_size,image_size)
summary(model, input_size)

The number of layers in the model: 122

The number of learnable parameters in the model: 41577829

--
 Layer (type) Output Shape Param #
==
 Conv2d-1 [-1, 128, 4, 4] 98,432
 LayerNorm-2 [-1, 17, 128] 256
 Linear-3 [-1, 272] 74,256
 Linear-4 [-1, 272] 74,256
 Linear-5 [-1, 272] 74,256
 Softmax-6 [-1, 17, 17] 0
 AttentionHead-7 [-1, 17, 16] 0
 Linear-8 [-1, 272] 74,256
 Linear-9 [-1, 272] 74,256
 Linear-10 [-1, 272] 74,256
 Softmax-11 [-1, 17, 17] 0
 AttentionHead-12 [-1, 17, 16] 0
 Linear-13 [-1, 272] 74,256
 Linear-14 [-1, 272] 74,256
 Linear-15 [-1, 272] 74,256
 Softmax-16 [-1, 17, 17] 0
 AttentionHead-17 [-1, 17, 16] 0
 Linear-18 [-1, 272] 74,256
 Linear-19 [-1, 272] 74,256
 Linear-20 [-1, 272] 74,256
 Softmax-21 [-1, 17, 17] 0

 AttentionHead-22 [-1, 17, 16] 0
 Linear-23 [-1, 272] 74,256
 Linear-24 [-1, 272] 74,256
 Linear-25 [-1, 272] 74,256
 Softmax-26 [-1, 17, 17] 0
 AttentionHead-27 [-1, 17, 16] 0
 Linear-28 [-1, 272] 74,256
 Linear-29 [-1, 272] 74,256
 Linear-30 [-1, 272] 74,256
 Softmax-31 [-1, 17, 17] 0
 AttentionHead-32 [-1, 17, 16] 0
 Linear-33 [-1, 272] 74,256
 Linear-34 [-1, 272] 74,256
 Linear-35 [-1, 272] 74,256
 Softmax-36 [-1, 17, 17] 0
 AttentionHead-37 [-1, 17, 16] 0
 Linear-38 [-1, 272] 74,256
 Linear-39 [-1, 272] 74,256
 Linear-40 [-1, 272] 74,256
 Softmax-41 [-1, 17, 17] 0
 AttentionHead-42 [-1, 17, 16] 0
 SelfAttention-43 [-1, 17, 128] 0
 LayerNorm-44 [-1, 17, 128] 256
 Linear-45 [-1, 4352] 9,474,304
 Linear-46 [-1, 2176] 9,472,128
 BasicEncoder-47 [-1, 17, 128] 0
 LayerNorm-48 [-1, 17, 128] 256
 Linear-49 [-1, 272] 74,256
 Linear-50 [-1, 272] 74,256
 Linear-51 [-1, 272] 74,256
 Softmax-52 [-1, 17, 17] 0
 AttentionHead-53 [-1, 17, 16] 0
 Linear-54 [-1, 272] 74,256
 Linear-55 [-1, 272] 74,256
 Linear-56 [-1, 272] 74,256
 Softmax-57 [-1, 17, 17] 0
 AttentionHead-58 [-1, 17, 16] 0
 Linear-59 [-1, 272] 74,256
 Linear-60 [-1, 272] 74,256
 Linear-61 [-1, 272] 74,256
 Softmax-62 [-1, 17, 17] 0
 AttentionHead-63 [-1, 17, 16] 0
 Linear-64 [-1, 272] 74,256
 Linear-65 [-1, 272] 74,256
 Linear-66 [-1, 272] 74,256
 Softmax-67 [-1, 17, 17] 0
 AttentionHead-68 [-1, 17, 16] 0
 Linear-69 [-1, 272] 74,256
 Linear-70 [-1, 272] 74,256
 Linear-71 [-1, 272] 74,256
 Softmax-72 [-1, 17, 17] 0
 AttentionHead-73 [-1, 17, 16] 0
 Linear-74 [-1, 272] 74,256
 Linear-75 [-1, 272] 74,256
 Linear-76 [-1, 272] 74,256
 Softmax-77 [-1, 17, 17] 0
 AttentionHead-78 [-1, 17, 16] 0
 Linear-79 [-1, 272] 74,256
 Linear-80 [-1, 272] 74,256
 Linear-81 [-1, 272] 74,256
 Softmax-82 [-1, 17, 17] 0
 AttentionHead-83 [-1, 17, 16] 0
 Linear-84 [-1, 272] 74,256
 Linear-85 [-1, 272] 74,256
 Linear-86 [-1, 272] 74,256
 Softmax-87 [-1, 17, 17] 0
 AttentionHead-88 [-1, 17, 16] 0
 SelfAttention-89 [-1, 17, 128] 0
 LayerNorm-90 [-1, 17, 128] 256
 Linear-91 [-1, 4352] 9,474,304
 Linear-92 [-1, 2176] 9,472,128

 BasicEncoder-93 [-1, 17, 128] 0
 MasterEncoder-94 [-1, 17, 128] 0
 Linear-95 [-1, 96] 12,384
 Linear-96 [-1, 64] 6,208
 Linear-97 [-1, 5] 325
==
Total params: 41,575,525
Trainable params: 41,575,525
Non-trainable params: 0
--
Input size (MB): 0.05
Forward/backward pass size (MB): 0.43
Params size (MB): 158.60
Estimated Total Size (MB): 159.08
--

3.2. Image Classification with ADVit

To accomplish this task, we will reuse the training and evaluation scripts we developed in HW4.
Instead of using the HW4 CNN, we will replace it with our ViT model. We will also use the
COCO-based dataset that we created for HW4, which contains 64 × 64 images from five classes.
To ensure that our report is self-contained and can be used to reproduce our results, we have
included the entire process of creating the dataset, defining the dataloader class, and the training
and testing routines from HW4. We will present each step in detail below.

Creating Our Own Image Classification Dataset

In this task we need to create our own image classification dataset by taking images from the MS-
COCO dataset. For that, I took the help of python version of the COCO API. We are using 2014
Train images. I downloaded all the images from the following link and uploaded it to the Google
Drive. I also downloaded the annotation files: 2014 Train/Val annotations. For image classification
task, instances_train2014.json file is used. The following script is used to read the
images from the MS-COCO dataset, resize it to 64x64 images using PIL module and save the
images to another directory. It is made sure that there are no duplicate images.

Source Code:

dataDir = '/content/drive/MyDrive/Arghadip/DL/Datasets' # Directory of annotation and
entire MS-COCO dataset
dataType='train2014' # We are working with
"train2014" version
annFile='{}/annotations/instances_{}.json'.format(dataDir,dataType) # Name of the annotation file
coco=COCO(annFile) # initialize COCO api for
instance annotations

classes = ['airplane', 'bus', 'cat', 'dog', 'pizza'] # We are interested in these
5 classes

for cat in classes: # Loop over all the classes
 catIds = coco.getCatIds(catNms=[cat]) # Get class ids
 imgIds = coco.getImgIds(catIds=catIds) # Get image ids corresponding
to the class

 # Shuffle images
 indices = list(range(len(imgIds)))
 random.shuffle(indices)

 # Take first 1500 images for training
 train_dir = os.path.join(dataDir, 'coco', 'train', cat) # Directory to write training
images
 os.mkdir(train_dir) # Make the directory
 for i in range(1500):
 img = coco.loadImgs(imgIds[indices[i]])[0] # Get image details
 I = Image.open(os.path.join(dataDir, dataType, img['file_name'])) # Load as PIL image from
the MS-COCO directory
 I = I.convert('RGB') # Convert to RGB
 im_resized = I.resize((64,64), Image.BOX) # Resize to 64 x 64
 im_resized.save(os.path.join(train_dir, cat + '_' + str(i) + '.jpg')) # Save with class name
and sequence number

 # Take next 500 images for testing
 test_dir = os.path.join(dataDir, 'coco', 'test', cat) # Directory to write test
images
 os.mkdir(test_dir) # Make the directory
 for i in range(1500,2000):
 img = coco.loadImgs(imgIds[indices[i]])[0] # Get image details
 I = Image.open(os.path.join(dataDir, dataType, img['file_name'])) # Load as PIL image from
the MS-COCO directory
 I = I.convert('RGB') # Convert to RGB
 im_resized = I.resize((64,64), Image.BOX) # Resize to 64 x 64
 im_resized.save(os.path.join(test_dir, cat + '_' + str(i-1500) + '.jpg')) # Save with class
name and sequence number

Output Directory Structure:

Figure 2. Dataset directory structure

Once the images are saved in proper directory, the next step is to implement our own dataset class
to provide the necessary support to the torch.utils.data.DataLoader class. The source
code is given below. The dataset class My_COCO_Dataset contains the relevant information
such as root directory, split (train or test), number of images per class etc. It also performs proper
transform to covert PIL images to CNN supported tensor input. I haven’t used any data
augmentation techniques, but the scope is already present in the given source code. One method
named _get_filenames_and_labels() is defined to get all the filenames and
corresponding labels, so that later it can be used during query (i.e. __getitem__()). The
__len__() method is also overwritten to return the total number of images in the dataset. During
training feeding images from different classes in a single batch leads to better training. Therefore,
shuffling support is also provided (shuffle=True). The labels are integers (0 to 4) for 5 classes.

Source Code:

Custom dataset class definition
class My_COCO_Dataset(torch.utils.data.Dataset):
 def __init__(self, root='/content/drive/MyDrive/Arghadip/DL/Datasets/coco', split='train',
shuffle=False):
 super().__init__() # Part of the definition is obtained from parent class
 self.split = split # 'train' or 'test'
 self.path = os.path.join(root,self.split) # Assign path as per the split
 self.shuffle = shuffle # If shuffling is needed
 self.classes = ['airplane', 'bus', 'cat', 'dog', 'pizza'] # Name of 5 classes
 if self.split == 'train':
 self.num_images_per_class = 1500 # 1500 images per class for
training
 elif self.split == 'test':
 self.num_images_per_class = 500 # 500 images per class for
testing
 # Initialize data augmentation transforms , etc.
 # tvt.Compose collates multiple transforms and perform them sequentially
 self.xform = tvt.Compose([
 # # ------------------- Uncomment following transforms for improved performance ---------

 # # ColorJitter deals with altering the color properties of an image by changing its
pixel values.
 # tvt.ColorJitter(brightness=1, contrast=0, saturation=0, hue=0),
 # # Converted into grayscale with probability 0.5 for augmentation.
 # tvt.RandomGrayscale(p=0.5),
 # # Flipped horizontally with probability 0.5
 # tvt.RandomHorizontalFlip(p=0.5),
 # Conversion from PIL to floating point Tensor
 tvt.ToTensor(),
 # Normalize
 tvt.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
])
 self._get_filenames_and_labels() # Form a list with filenames and
corresponding labels

 # Internal method to get filenames and labels of all the classes
 def _get_filenames_and_labels(self):
 self.list_of_files_and_labels = [] # Empty list initialization
 for i in range(len(self.classes)): # Start loop for each class
 for j in range(self.num_images_per_class): # Start loop for images in each
class
 # Append the filenames and labels to the "list_of_files_and_labels"
 self.list_of_files_and_labels.append([os.path.join(self.path, self.classes[i],
self.classes[i] + '_' + str(j) + '.jpg'), i])
 # Shuffling
 if self.shuffle:
 random.shuffle(self.list_of_files_and_labels)

 def __len__ (self):
 # Return the total number of images in the dataset = number of files in the
"list_of_files_and_labels"
 return len(self.list_of_files_and_labels)

 def __getitem__(self, index):
 # Read an image at index and perform augmentations
 # Return the tuple : (augmented tensor , integer label)
 image = Image.open(self.list_of_files_and_labels[index][0]) # Load image as PIL object
 image = self.xform(image) # Apply transform
 return (image, self.list_of_files_and_labels[index][1]) # Return the image tensor and
label (integer)

Training routine:

We use Adam optimizer with learning rate = 1e-3, b1 = 0.9 and b2 = 0.99 for training. It also saves
the model parameters in every epoch as a dictionary that is later used for testing using validation
dataset. The model is trained for 50 epochs.

def run_training(net, train_data_loader, learning_rate, num_epochs, print_frequency=100):
 '''
 This is the method used to run training. It returns the training loss as a list.
 '''
 net = net.to(device) # Move 'net' to device (either CPU or CUDA)
 criterion = torch.nn.CrossEntropyLoss() # Loss function
 optimizer = torch.optim.Adam(net.parameters(), lr = learning_rate, betas = (0.9, 0.99)) #
Adam optimizer
 loss_for_plot = [] # Empty list to store losses
 for epoch in range(num_epochs):
 running_loss = 0.0
 for i, data in enumerate(train_data_loader): # Loop for every batch in the train_data_loader
 inputs, labels = data
 inputs = inputs.to(device) # Move input batch to the device
 labels = labels.to(device) # Move corresponding labels to the device
 optimizer.zero_grad() # Clear the stored gradient at nodes
 outputs = net(inputs) # Forward pass
 loss = criterion(outputs, labels) # Loss calculation
 loss.backward() # Gradient calculation
 optimizer.step() # Back propagation and update of parameters
 running_loss += loss.item() # Update loss
 if (i+1) % print_frequency == 0: # Print and keep record for every
'print_frequency'
 print("[epoch: %d, batch: %5d] loss: %.3f" \
 % (epoch + 1, i + 1, running_loss / print_frequency))
 loss_for_plot.append(running_loss/print_frequency)
 running_loss = 0.0
 # Save model parameters in every epoch
 torch.save(net.state_dict(), os.path.join('/content/drive/MyDrive/Arghadip/DL/HW9/models',
"ADVit_{}.pth".format(str(learning_rate) + '_' + str(num_epochs))))
 return loss_for_plot # Return loss vector

Test routine and script to plot confusion matrix:

The test routine is inspired from the routine present in DLStudio. The seaborn package is
useful for the proper display of the confusion matrix.

def run_testing(net, test_data_loader, num_classes=5):
 '''
 This function is used for validation/testing. It returns the confusion matrix.
 '''
 confusion_matrix = np.zeros([num_classes, num_classes]) # Initialization of confusion matrix
as ndarray
 with torch.no_grad(): # With no gradient calculation at
nodes
 for i, data in enumerate(test_data_loader): # For every batch in test_data_loader
 inputs, labels = data # Get input images (as tensors) and
labels
 inputs = inputs.to(device)
 labels = labels.to(device)
 outputs = net(inputs) # Forward pass
 _, predicted = torch.max(outputs, 1) # Predicted class (class for which
the output is max)
 for label,prediction in zip(labels,predicted): # Confusion matrix formulation (Taken
from DLStudio)
 confusion_matrix[label][prediction] += 1
 return confusion_matrix # Return confusion matrix

def plot_confusion_matrix(confusion_matrix, classes, title='Confusion Matrix'):
 '''
 This function is defined to plot the confusion matrix with proper colormap and labels.
 '''
 labels = [] # List of empty labels for all the
positions in matrix
 for row in range(confusion_matrix.shape[0]): # Loop for every row
 rows = []
 for col in range(confusion_matrix.shape[1]): # Loop for every column
 pred_count = confusion_matrix[row][col] # Counts for predicted classes for
this particular class
 percentage = "%0.2f%%" % (pred_count*100/(np.sum(confusion_matrix[:][col]))) # Percentage
 box_label = str(pred_count) + '\n' + str(percentage) # Label for the box with both count
and percentage
 rows.append(box_label) # Append to the list
 labels.append(rows) # Append the row to the labels
 labels = np.asarray(labels) # Form numpy array from list
 test_accuracy = np.trace(confusion_matrix) * 100 / np.sum(confusion_matrix) # Overall test
accuracy in percentage
 # Plot of confusion matrix
 # plt.figure(figsize=(5,6))
 plt.figure()
 sns.heatmap(confusion_matrix, annot=labels, fmt="", cmap="Blues", cbar=True,
xticklabels=classes, yticklabels=classes)
 plt.title(title)
 plt.xlabel('Predicted label' + '\n\nAccuracy = %0.3f'% test_accuracy)
 plt.ylabel('True label')
 plt.savefig(os.path.join('/content/drive/MyDrive/Arghadip/DL/HW9/confusion_matrices', title +
'.jpg'), dpi=300) # save
 plt.show()

Main code:

Main code
model = ADVit(image_size=64, \
 patch_size=16, \
 num_atten_heads=8,
 embedding_size=128, \
 how_many_basic_encoders=2, \
 mlp_dim=96, \
 num_classes=5,\
 patch_to_embed_method='Conv').to(device)

Dataset
batch_size = 64 # Batch size
num_workers = 2 # Number of parallel threads for data loading
train_dataset = My_COCO_Dataset(split='train', shuffle=True) # Training dataset
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True,
num_workers=num_workers) # Loader
test_dataset = My_COCO_Dataset(split='test', shuffle=False) # Testing/Validation dataset
test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False,
num_workers=num_workers) # Loader

Run training
learning_rate = 1e-3 # Learning rate
num_epochs = 50 # Number of training epochs
print_frequency = 10 # Frequency of logging loss
loss = run_training(model, train_dataloader, learning_rate, num_epochs=num_epochs,
print_frequency=print_frequency) # Loss

label = model.__class__.__name__ + '_' + str(learning_rate) + '_' + str(num_epochs)
Plot training loss
fig, axes = plt.subplots(ncols=1, figsize = (8,4))
axes.plot(loss, label=label)
axes.set_title('Training loss vs. batches')
axes.set_xlabel('Batches in hundreds, batch size = ' + str(batch_size))
axes.set_ylabel('Training loss')
fig.legend()

fig.tight_layout()
plt.show();
fig.savefig(os.path.join("/content/drive/MyDrive/Arghadip/DL/HW9/training_losses", label +
'.jpg'),dpi=300) # Save
Validation and Confusion matrix plot
Network shell
net = ADVit(image_size=64, \
 patch_size=16, \
 num_atten_heads=8,
 embedding_size=128, \
 how_many_basic_encoders=2, \
 mlp_dim=96, \
 num_classes=5,\
 patch_to_embed_method='Conv').to(device)
modelfile = os.path.join('/content/drive/MyDrive/Arghadip/DL/HW9/models', label + '.pth') # Param
dictionary path
if device.type == 'cpu':
 net.load_state_dict(torch.load(modelfile, map_location=torch.device('cpu'))) # Load in CPU
else:
 net.load_state_dict(torch.load(modelfile)) # Load in GPU
net.to(device) # Mode the model
to 'device'
net.eval() # Setting models
to eval mode
confusion_matrix = run_testing(net, test_dataloader, num_classes=5) # Testing
plot_confusion_matrix(confusion_matrix, test_dataset.classes, title='Confusion Matrix (' + label
+ ')') # Plot confusion matrix

Training Loss over Training Iterations:

The following plots show how training progresses along the epochs.

Fig.3. Training loss vs. iterations for ADVit

Confusion matrix and overall accuracy:

Fig.6. Confusion matrix for ADVit over HW4-COCO testset

Overall accuracy: 52.48%

Comparison with HW4 CNN based network:

For better comparison, I present the confusion matrices of 3 different CNN tasks from HW4. These
networks were trained with the same hyperparameters (Adam optimizer with learning rate 1e-3,
b1 = 0.9 and b2 = 0.99) for 50 epochs with batch size of 8.

P.T.O.

Confusion Matrix for HW4 Task 1:

Fig.4. Confusion matrix for HW4 Net1 (Overall test accuracy = 56.56%)

Confusion Matrix for HW4 Task 2:

Fig.5. Confusion matrix for HW4 Net2 (Overall test accuracy = 57.56%)

Confusion Matrix for HW4 Task 3:

Fig.6. Confusion matrix for HW4 Net3 (Overall test accuracy = 54.80%)

The transformer model (ADVit) performs worse than the CNN-based models, with only 52.48%
accuracy on the test set. In comparison, the CNNs had the following accuracy in decreasing order:
Net2 (57.56%) > Net1 (56.56%) > Net3 (54.80%). This is because ADVit is overfitting the
small training set, which consists of only 7500 images of size 64x64. The total number of training
points is 7500x(3x64x64) = 92160000, while the number of parameters in the transformer model
(41577829) is comparable with the size of the training set. Although I have tried to reduce the
number of parameters by adjusting the hyperparameters, the model still overfits. To address this
issue, regularization, dropout, and early termination methods can be used, but they are not within
the scope of this homework. On the other hand, the low accuracies of the CNN models in HW4
were due to underfitting caused by their small model orders.

3.3. Extra Credit: Multi-headed self-attention using torch.einsum

The implementation code with detailed comments is given below.

class SelfAttention_einsum(nn.Module):
 def __init__(self, max_seq_length, embedding_size, num_atten_heads):
 super().__init__()
 self.max_seq_length = max_seq_length # Sequence length (here 17)
 self.embedding_size = embedding_size # Emdedding size (here 128)
 self.num_atten_heads = num_atten_heads # Number of attention heads
(here 8)
 self.qkv_size = self.embedding_size // num_atten_heads # size of Q, K and V (here
128/8 = 16)
 self.attention_heads_arr = nn.ModuleList([AttentionHead_einsum(self.max_seq_length,
 self.qkv_size) for _ in
range(num_atten_heads)]) # Forming multiple attention heads

 def forward(self, sentence_tensor):
 # batch_size, max_seq_length, embedding_size i.e. (1, 17, 128)
 concat_out_from_atten_heads = torch.zeros(sentence_tensor.shape[0], self.max_seq_length,
 self.num_atten_heads * self.qkv_size).float()
 for i in range(self.num_atten_heads):
 sentence_tensor_portion = sentence_tensor[:,
 :, i * self.qkv_size: (i+1) *
self.qkv_size] # (1, 17, 16)
 concat_out_from_atten_heads[:, :, i * self.qkv_size: (i+1) * self.qkv_size] =
\
 self.attention_heads_arr[i](sentence_tensor_portion) # Concatenate attention
head outputs
 return concat_out_from_atten_heads

class AttentionHead_einsum(nn.Module):
 def __init__(self, max_seq_length, qkv_size):
 super().__init__()
 self.qkv_size = qkv_size
 self.max_seq_length = max_seq_length
 self.WQ = nn.Linear(max_seq_length * self.qkv_size,
 max_seq_length * self.qkv_size)
 self.WK = nn.Linear(max_seq_length * self.qkv_size,
 max_seq_length * self.qkv_size)
 self.WV = nn.Linear(max_seq_length * self.qkv_size,
 max_seq_length * self.qkv_size)
 self.softmax = nn.Softmax(dim=1)

 def forward(self, sentence_portion): # The below sizes are mentioned assuming the shape of
sentence_portion = (1, 17, 16)
 Q = self.WQ(sentence_portion.reshape(
 sentence_portion.shape[0], -1).float()).to(device) # Query (1, 272)
 K = self.WK(sentence_portion.reshape(
 sentence_portion.shape[0], -1).float()).to(device) # Key (1, 272)
 V = self.WV(sentence_portion.reshape(
 sentence_portion.shape[0], -1).float()).to(device) # Value (1, 272)
 Q = Q.view(sentence_portion.shape[0],
 self.max_seq_length, self.qkv_size) # (1, 17, 16)
 K = K.view(sentence_portion.shape[0],
 self.max_seq_length, self.qkv_size) # (1, 17, 16)
 V = V.view(sentence_portion.shape[0],
 self.max_seq_length, self.qkv_size) # (1, 17, 16)

 ### Using einsum #############################
 # This line creates a tensor A with the shape (1, 16, 16) by performing a batch matrix
multiplication
 # between the key tensor K (shape: (1, 17, 16)) and a tensor of ones with the same shape
as the query
 # tensor Q (shape: (1, 17, 16)).
 A = torch.einsum("bnm,bnk->bmk", K, torch.ones_like(Q)) # (1, 16, 16)

 # This line performs a batch matrix multiplication between the query tensor Q (shape: (1,
17, 16))
 # and the attention weight tensor A (shape: (1, 16, 16)) to obtain a dot product tensor
of shape
 # (1, 17, 16). This tensor represents the pairwise dot product similarity scores between
each query
 # vector and key vector for each position in the input sentence.
 QK_dot_prod = torch.einsum("bnm,bmk->bnk", Q, A) # (1, 17, 16)
 # This line applies the softmax function along the second dimension of the dot product
tensor,
 # resulting in a row-wise normalized tensor with shape (1, 17, 16). Each row in the
resulting tensor
 # represents the attention distribution for a given query vector, i.e. how much attention
to pay to
 # each key vector.
 rowwise_softmax_normalizations = self.softmax(QK_dot_prod) # (1, 17, 16)
 # This line performs a batch matrix multiplication between the attention weight tensor
 # (shape: (1, 16, 16)) and the value tensor V (shape: (1, 17, 16)) to obtain the output
 # tensor Z with shape (1, 17, 16). This tensor represents the final output of the
attention head.
 Z = torch.einsum("bnm,bnk->bnk", rowwise_softmax_normalizations, V) # (1, 17, 16)
 # This line computes a scalar coefficient to normalize the output of the attention head
by dividing
 # by the square root of the dimension of the key, query and value vectors.
 coeff = 1.0/torch.sqrt(torch.tensor([self.qkv_size]).float()).to(device) # (1)
 # This line normalizes the output tensor Z by scaling it with the coefficient.
 Z = coeff * Z
 return Z

The shape of each tensor is given in the comments assuming the following hyperparameter values.

• max_seq_length = 17
• embedding_size = 128
• num_atten_heads = 8

The above code implements a multi-headed attention mechanism for a given input sentence
portion. It does this by matrix-multiplying the embedding vector for each word in the sentence by
the WQ, WK, and WV matrices to produce the query vector Q, key vector K, and value vector V
for each word in the input sentence. The dot product of Q and K is then used to calculate the
attention weights, which are applied to the value vectors to get the final attention output.

Suggested improvements:

To improve the performance of a transformer on a small training set, several techniques can be
employed. Firstly, transfer learning can be used by pretraining the transformer on a larger dataset
and then fine-tuning it on the small dataset. This can lead to better generalization and faster
convergence on the small dataset. Another technique is to use data augmentation to artificially
increase the size of the training set. This can be done by applying random transformations to the
input data such as cropping, flipping, or adding noise. This can help the model learn more robust
features and reduce overfitting. Regularization techniques such as dropout and weight decay can
also be used to prevent overfitting on the small training set. Dropout randomly drops out some
neurons during training, while weight decay adds a penalty to the loss function for large weights.
Finally, ensembling multiple models can also help improve performance on a small dataset. By
training multiple models with different initializations or architectures and combining their
predictions, the overall performance can be boosted. However, this approach may require more
computational resources.

4. Lessons Learned

In this Vision transformer homework, we learned how to implement a transformer model for image
classification. We used the PyTorch library to build a transformer model that consists of an
encoder, where the encoder extracts features from an image. We also learned about the importance
of attention mechanisms in transformer models, which allow the model to focus on important parts
of the input. Additionally, we experimented with different hyperparameters and techniques to
improve the performance of our model. Overall, this homework provided a practical introduction
to transformer models and their application in computer vision tasks. Through experimentation
and fine-tuning, we gained insights into how different components and hyperparameters of the
model affect its performance. These lessons can be applied to other transformer-based models and
tasks and can help us develop more accurate and efficient deep learning models.

--- End of the document ---

