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1. Introduction 
 
Over the past few years, convolutional neural networks (CNNs) have dominated the field of 
computer vision, achieving state-of-the-art performance on a wide range of visual recognition 
tasks. However, these networks have several limitations, such as a fixed receptive field and a lack 
of attention mechanisms for modeling long-range dependencies. To address these issues, a new 
type of neural network architecture called the Vision Transformer (ViT) has been proposed. The 
ViT is based on the Transformer architecture originally developed for natural language processing 
(NLP) and uses self-attention mechanisms to model long-range dependencies between image 
patches. The ViT has quickly gained attention in the computer vision community due to its 
impressive performance on various image classification tasks, surpassing the previous state-of-
the-art results achieved by CNNs. In addition, the ViT has shown promising results in other 
computer vision tasks such as object detection, segmentation, and generation. 
In this homework, we have several goals. Firstly, we aim to gain a deeper understanding of the 
multi-headed self-attention mechanism and the transformer architecture. Secondly, we hope to 
comprehend how the transformer architecture, which was originally developed for language 
translation, can be readily adapted to process images in the Vision Transformer (ViT). Finally, we 
are required to implement our own ViT for image classification. By achieving these goals, we will 
not only learn more about the ViT architecture but also gain valuable insights into the underlying 
principles of modern neural networks for image processing. 
 

2. Methodology 
 
In this report, I detail the steps taken to complete the homework assignment. To prepare for this 
homework, we first reviewed Professor Kak's slides on self-attention and gained a better 
understanding of the self-attention mechanism and its implementation through matrix 
multiplication. Additionally, we learned how multiple self-attention heads can work in parallel in 
multi-headed attention to capture inter-word dependencies. We also studied the encoder-decoder 
structure of a transformer for sequence-to-sequence translation and experimented with 
seq2seq_with_transformerFG.py and seq2seq_with_transformerPreLN.py. 
Finally, we went through the ViT paper to understand the fundamental concepts behind the Vision 
Transformer (ViT) for image classification. In particular, we closely examined Figure 1, which 
provides a clear illustration of how an image can be transformed into a sequence of embeddings 
and processed using a transformer encoder. We paid special attention to how the class token is 
prepended as a learnable parameter to the input patch embedding sequence, as well as how the 
same token is taken from the final output sequence to produce the predicted label. 



 

 
To implement our ViT, we utilized the Google Colab platform and followed the instructions 
provided in the homework manual. We reused the dataset, training, and evaluation scripts from 
HW4, but replaced the HW4 CNN with our ViT implementation. After training the ViT, we 
generated a confusion matrix on our test set to evaluate its performance and compared it to CNN-
based networks. In addition, we also attempted to implement a multi-headed self-attention 
mechanism using torch.einsum, which we were able to accomplish within just 10 lines of 
code. 
 
 
3. Programming Tasks 
 
3.1. Building Our Own ViT 
 
Before starting, I reviewed the provided VitHelper.py file. This file includes all the necessary 
classes for us to build a transformer from scratch quickly. We can find these classes in 
DLStudio's Transformers.TransformerPreLN module. These classes are now 
standalone so that we can use them directly in our ViT implementation. Specifically, we will use 
the MasterEncoder class as the "Transformer Encoder" block, as shown in Figure 1. 
Initially, I utilized a linear layer for converting the patch into an embedding, as illustrated in Figure 
1. But then, I incorporated a Conv2D based embedding which turned out to be significantly faster 
than the linear layer-based conversion. This is because we can apply Conv2D directly on the 
complete image without dividing it into patches first. However, it requires appropriate tensor 
reshaping to work effectively. We are working with images of size 64x64 and a patch size of 
16x16, resulting in a total of 16 patches. To prepare the input sequence for ViT, we prepend a 



class token to our patch sequence. To account for this, we set the maximum sequence length of 
the transformer to 17. For the class token, it must be set as learnable parameter, which is 
implemented using nn.Parameter. In contrast to the sinusoid-based position embedding 
commonly used in language processing, ViT makes use of learnable position embeddings. 
Therefore, besides initializing the class token, I have also defined the position embeddings as 
learnable parameters. We obtain the final class prediction by extracting the class token from the 
output sequence generated by the Transformer Encoder block. The class token is then passed 
through a Multilayer Perceptron (MLP) layer to obtain the logits for the 5 classes. Here in this 
report, we have included the libraries and helper functions provided in ViTHelper.py to ensure 
that the report can be fully understood without referring to any external files. Following this, the 
source code for ADVit is presented and it is sufficiently commented to make it easy to 
comprehend. 
 
Source Code: 
 
Importing libraries and getting the device: 
 
# Importing required libraries 
%matplotlib inline 
from pycocotools.coco import COCO         # For MS-COCO API 
import numpy as np                        # numpy 
from PIL import Image                     # For image resizing 
import os                                 # Creating folders 
import random                             # Shuffle the images 
import torch                              # For building net, training and tesing routines 
import torchvision.transforms as tvt      # Convert PIL to tensor and augmentation (if needed) 
from torch.utils.data import DataLoader   # Parallel processing of data loading 
import torch.nn as nn                     # Neural network layers 
import torch.nn.functional as F           # Non-liner activations (ReLU) 
import skimage.io as io                   # Image loading through coco_url 
import matplotlib.pyplot as plt           # Plotting 
import seaborn as sns                     # Colormap of confusion matrix 
from torchsummary import summary 
# Determining device (CPU or CUDA) 
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") 
print(device) 

 
Helper classes and functions: 
 
##  This code is from the Transformers co-class of DLStudio: 
 
##           https://engineering.purdue.edu/kak/distDLS/ 
class MasterEncoder(nn.Module): 
    """ 
    The purpose of the MasterEncoder is to invoke a stack of BasicEncoder instances on a 
    source-language sentence tensor. The output of each BasicEncoder is fed as input to the  
    next BasicEncoder in the cascade, as illustrated in the loop in Line B below.  The stack 
    of BasicEncoder instances is constructed in Line A. 
    """ 
    def __init__(self, max_seq_length, embedding_size, how_many_basic_encoders, num_atten_heads): 
        super().__init__() 
        self.max_seq_length = max_seq_length 
        self.basic_encoder_arr = nn.ModuleList([BasicEncoder( 
            max_seq_length, embedding_size, num_atten_heads) for _ in 
range(how_many_basic_encoders)])  # (A) 
 
    def forward(self, sentence_tensor): 
        out_tensor = sentence_tensor 
        for i in range(len(self.basic_encoder_arr)):  # (B) 
            out_tensor = self.basic_encoder_arr[i](out_tensor) 



        return out_tensor 
 

class BasicEncoder(nn.Module): 
    """ 
    The BasicEncoder in TransformerPreLN consists of a layer of self-attention (SA) followed 
    by a purely feed-forward layer (FFN).  The job of the SA layer is for the network to 
    figure out what parts of an input sentence are relevant to what other parts of the 
    same sentence in the process of learning how to translate a source-language sentence into 
    a target-language sentence. The output of SA goes through FFN and the output of FFN becomes 
    the output of the BasicEncoder.  To mitigate the problem of vanishing gradients in the PreLN 
    transformer design, the input to each of the two components of a BasicEncoder --- SA and  
    FFN --- is subject to LayerNorm and a residual connection used that wraps around both the 
    LayerNorm and the component as shown in the keystroke diagram in the comment block associated 
    with the definition of TranformerPreLN. Deploying a stack of BasicEncoder instances becomes 
    easier if the output tensor from a BasicEncoder has the same shape as its input tensor.   
 
    The SelfAttention layer mentioned above consists of a number of AttentionHead instances,  
    with each AttentionHead making an independent assessment of what to say about the  
    inter-relationships between the different parts of an input sequence. It is the embedding 
    axis that is segmented out into disjoint slices for each AttentionHead instance.The  
    calling SelfAttention layer concatenates the outputs from all its AttentionHead instances  
    and presents the concatenated tensor as its own output. 
    """ 
    def __init__(self, max_seq_length, embedding_size, num_atten_heads): 
        super().__init__() 
        self.max_seq_length = max_seq_length 
        self.embedding_size = embedding_size 
        self.qkv_size = self.embedding_size // num_atten_heads 
        self.num_atten_heads = num_atten_heads 
        self.self_attention_layer = SelfAttention( 
            max_seq_length, embedding_size, num_atten_heads)  # (A) 
        self.norm1 = nn.LayerNorm(self.embedding_size)  # (C) 
        self.W1 = nn.Linear(self.max_seq_length * self.embedding_size, 
                            self.max_seq_length * 2 * self.embedding_size) 
        self.W2 = nn.Linear(self.max_seq_length * 2 * self.embedding_size, 
                            self.max_seq_length * self.embedding_size) 
        self.norm2 = nn.LayerNorm(self.embedding_size)  # (E) 
 
    def forward(self, sentence_tensor): 
        input_for_self_atten = sentence_tensor.float() 
        normed_input_self_atten = self.norm1(input_for_self_atten) 
        output_self_atten = self.self_attention_layer( 
            normed_input_self_atten).to(device)  # (F) 
        input_for_FFN = output_self_atten + input_for_self_atten 
        normed_input_FFN = self.norm2(input_for_FFN)  # (I) 
        basic_encoder_out = nn.ReLU()( 
            self.W1(normed_input_FFN.view(sentence_tensor.shape[0], -1)))  # (K) 
        basic_encoder_out = self.W2(basic_encoder_out)  # (L) 
        basic_encoder_out = basic_encoder_out.view( 
            sentence_tensor.shape[0], self.max_seq_length, self.embedding_size) 
        basic_encoder_out = basic_encoder_out + input_for_FFN 
        return basic_encoder_out 
 
####################################  Self Attention Code TransformerPreLN 
########################################### 
 
class SelfAttention(nn.Module): 
    """ 
    As described in the doc section of the BasicEncoder class, in each BasicEncoder you have  
    a layer of SelfAttention followed by a Fully-Connected layer.  The SelfAttention layer  
    concatenates the outputs from all AttentionHead instances and presents that concatenated  
    output as its own output. If the input sentence consists of W words at most and if the  
    embedding size is M, the sentence_tensor at the input to forward() in Line B below will  
    be of shape [W,M].  This tensor will be fed into each AttentionHead instance constructed 
    in Line A.  If K is the size of the output from an AttentionHead instance, the output of each  
    such instance will be of shape [W,K].  The SelfAttention instance concatenates A of those 
    AttentionHead outputs and returns a tensor of shape [W,K*A] to the BasicEncoder.  This 
    concatenation is carried in the loop in Lines C and D below. 
    """ 
    def __init__(self, max_seq_length, embedding_size, num_atten_heads): 



        super().__init__() 
        self.max_seq_length = max_seq_length 
        self.embedding_size = embedding_size 
        self.num_atten_heads = num_atten_heads 
        self.qkv_size = self.embedding_size // num_atten_heads 
        self.attention_heads_arr = nn.ModuleList([AttentionHead(self.max_seq_length, 
                                                                self.qkv_size) for _ in 
range(num_atten_heads)])  # (A) 
 
    def forward(self, sentence_tensor):  # (B) 
        # batch_size, max_seq_length, embedding_size 
        concat_out_from_atten_heads = torch.zeros(sentence_tensor.shape[0], self.max_seq_length, 
                                                  self.num_atten_heads * self.qkv_size).float() 
        for i in range(self.num_atten_heads):  # (C) 
            sentence_tensor_portion = sentence_tensor[:, 
                                                      :, i * self.qkv_size: (i+1) * 
self.qkv_size] 
            concat_out_from_atten_heads[:, :, i * self.qkv_size: (i+1) * self.qkv_size] =          
\ 
                self.attention_heads_arr[i](sentence_tensor_portion)  # (D) 
        return concat_out_from_atten_heads 
 

class AttentionHead(nn.Module): 
    """ 
    An AttentionHead (AH) instance does its job by first matrix-multiplying the embedding 
    vector FOR EACH WORD in an input sentence by the following three matrices: 
 
    -- a matrix Wq of size PxM to produce the query Vector q where P is the desired size  
        for the matrix-vector product and M the size of the embedding.  For each word, this  
        will yield a query vector of size P elements at each word position in the input  
        sentence. 
 
    -- a matrix Wk, also of size PxM, to produce a key vector k of size P elements at 
        each word position 
 
    -- a matrix Wv, also of size PxM, to produce a value vector v of size P elements at 
        each word position. 
    """ 
    def __init__(self, max_seq_length, qkv_size): 
        super().__init__() 
        self.qkv_size = qkv_size 
        self.max_seq_length = max_seq_length 
        self.WQ = nn.Linear(max_seq_length * self.qkv_size, 
                            max_seq_length * self.qkv_size)  # (B) 
        self.WK = nn.Linear(max_seq_length * self.qkv_size, 
                            max_seq_length * self.qkv_size)  # (C) 
        self.WV = nn.Linear(max_seq_length * self.qkv_size, 
                            max_seq_length * self.qkv_size)  # (D) 
        self.softmax = nn.Softmax(dim=1)  # (E) 
 
    def forward(self, sentence_portion):  # (F) 
        Q = self.WQ(sentence_portion.reshape( 
            sentence_portion.shape[0], -1).float()).to(device)  # (G) 
        K = self.WK(sentence_portion.reshape( 
            sentence_portion.shape[0], -1).float()).to(device)  # (H) 
        V = self.WV(sentence_portion.reshape( 
            sentence_portion.shape[0], -1).float()).to(device)  # (I) 
        Q = Q.view(sentence_portion.shape[0], 
                   self.max_seq_length, self.qkv_size)  # (J)         
        K = K.view(sentence_portion.shape[0], 
                   self.max_seq_length, self.qkv_size)  # (K) 
        V = V.view(sentence_portion.shape[0], 
                   self.max_seq_length, self.qkv_size)  # (L) 
        A = K.transpose(2, 1)  # (M) 
        QK_dot_prod = Q @ A  # (N) 
        rowwise_softmax_normalizations = self.softmax(QK_dot_prod)  # (O) 
        Z = rowwise_softmax_normalizations @ V 
        coeff = 1.0/torch.sqrt(torch.tensor([self.qkv_size]).float()).to(device)  # (S) 
        Z = coeff * Z  # (T) 
        return Z 



Vision Transformer (ADVit) Implementation: 
 
class ADVit(nn.Module): 
  """ 
  The ADVit class is a PyTorch module that implements an attention-based deep learning 
architecture called Vision Transformer (ViT) 
  for image classification. It takes as input an image tensor x of size (batch_size, 
num_channels, image_height, image_width).  
  The class constructor initializes the model's hyperparameters including image_size, patch_size, 
num_atten_heads, embedding_size,  
  how_many_basic_encoders, mlp_dim, num_classes, and patch_to_embed_method.  
  The model converts the image tensor into a sequence of patch embeddings using either a linear 
layer or a convolutional layer,  
  based on the patch_to_embed_method argument. If the linear method is used, the input tensor x 
is first unfolded into patches  
  of size (batch_size, num_channels, num_patches_vertically, num_patches_horizontally, 
patch_size, patch_size) using the unfold  
  method of PyTorch. Then, the patches are reshaped into a tensor of size (batch_size, 
num_patches, patch_dim), where patch_dim  
  is the size of each patch embedding. If the convolutional method is used, the input tensor x is 
passed through a convolutional  
  layer with embedding_size output channels and a kernel size and stride equal to the patch_size. 
The resulting tensor is then  
  reshaped into a tensor of size (batch_size, num_patches, embedding_size).  
  The patch embeddings are then augmented with a learnable class token and learnable positional 
embeddings,  
  resulting in a tensor of size (batch_size, max_seq_length, embedding_size), where 
max_seq_length is the number of patches plus one.  
  The resulting tensor is then fed into a stack of transformer encoders implemented in the 
MasterEncoder class.  
  Finally, the class token output of the last transformer encoder is extracted and passed through 
a multi-layer perceptron (MLP) consisting of three  
  fully connected layers with embedding_size, mlp_dim, and num_classes output channels, 
respectively. The output of the MLP is a  
  tensor of size (batch_size, num_classes), which represents the model's predicted probabilities 
for each of the input images. 
  """ 
  def __init__(self, image_size, patch_size, num_atten_heads, embedding_size, 
how_many_basic_encoders, mlp_dim, num_classes=5, patch_to_embed_method='Conv'): 
    super().__init__() 
    self.image_size = image_size                              # Image height and width (if 64, 
image is 3x64x64) 
    self.patch_size = patch_size                              # Size of each patch (if 16, patch 
is 3x16x16) 
    self.embedding_size = embedding_size                      # Size of embedding for each patch 
(chosen 128) 
    self.how_many_basic_encoders = how_many_basic_encoders    # Number of basic encoders in 
cascade (chosen 2) 
    self.mlp_dim = mlp_dim                                    # dimension of the first FC layer 
output (chosen 96) 
    self.num_classes = num_classes                            # Number of classes (for image 
classification application, here 5) 
    self.num_atten_heads = num_atten_heads                    # Number of attention heads (chosen 
as 8), each attention  
                                                              # head will work on the embedding 
of size (128/8 = 16) 
    self.patch_to_embed_method = patch_to_embed_method        # The method to convert a patch to 
embedding (Linear or Conv2d) 
 
    # calculate number of patches (Assuming square images) 
    self.num_patches = (image_size // patch_size) ** 2        # Number of patches = (64/16)^2 = 
16 
    self.max_seq_length = self.num_patches + 1                # Length of the sequence = Number 
of patches + 1 (for prepended class token) 
    self.patch_dim = 3 * patch_size ** 2                      # Patch dimension (3*16*16 = 768), 
assuming RGB images with 3 channels 
     
    if patch_to_embed_method == 'Lin': 
      # patch embedding layer (using nn.Linear) 
      self.patch_embeddings = nn.Linear(self.patch_dim, embedding_size) 



    elif patch_to_embed_method == 'Conv': 
      # patch embedding layer (using nn.Conv2d) 
      # using a conv layer instead of a linear one -> performance gains 
      # kernel_size = stride = patch_size, So, basically it is operating on each patch separately 
      self.patch_embeddings = nn.Conv2d(3, embedding_size, kernel_size=patch_size, 
stride=patch_size) 
     
    # learnable positional embeddings (nn.Parameter) 
    self.positional_embeddings = nn.Parameter(torch.zeros(1, self.num_patches + 1, 
embedding_size)) 
     
    # Encoder layers 
    self.encoder = MasterEncoder(self.max_seq_length, embedding_size, how_many_basic_encoders, 
num_atten_heads) 
     
    # class token (learnable) (nn.Parameter) 
    self.class_token = nn.Parameter(torch.zeros(1, 1, embedding_size)) 
     
    # class prediction head (Multi-Layer Perceptron, i.e., MLP) 
    self.fc = nn.Sequential( 
                            nn.Linear(embedding_size, self.mlp_dim), 
                            nn.Linear(self.mlp_dim, 64), 
                            nn.Linear(64, num_classes), 
    ) 
   
  # Forward pass through ViT 
  def forward(self, x):                         # Example sizes are given considering the shape 
of x as (1,3,64,64) 
    if self.patch_to_embed_method == 'Lin':     # If embeddings for patches are created using 
linear layers 
      # extract patches 
      x = x.unfold(2, self.patch_size, self.patch_size).unfold(3, self.patch_size, 
self.patch_size) # (1, 3, 4, 4, 16, 16) 
      x = x.contiguous().view(x.size(0), -1, self.patch_dim)  # (1, 16, 768) 
 
      # patch embeddings 
      x = self.patch_embeddings(x)              # (1, 16, 768) 
    elif self.patch_to_embed_method == 'Conv': 
      x = self.patch_embeddings(x)              # (1, 128, 4, 4) 
      x = x.view(x.size(0), -1, x.size(1))      # (1, 16, 128) 
     
    # add class token 
    class_token = self.class_token.expand(x.size(0), -1, -1) 
    x = torch.cat((class_token, x), dim=1)      # (1, 17, 128) 
     
    # add positional embeddings 
    x = x + self.positional_embeddings          # (1, 17, 128) 
     
    # transformer layers 
    x = self.encoder(x)                         # (1, 17, 128) 
     
    # extract class token output 
    class_output = x[:, 0]                      # (1, 128) 
     
    # class prediction head 
    output = self.fc(class_output)              # (1, 5) 
    return output 

 
ADVit takes in an image and outputs a prediction of its class. The input image is assumed to be 
square with a specified image size and three channels for RGB. The image is divided into non-
overlapping patches of a specified patch size, and each patch is embedded into a vector of a 
specified embedding size using either a linear layer or a convolutional layer. The module also 
learns learnable positional embeddings of the same size as the patch embeddings, and it includes 
an encoder made up of a specified number of basic encoders that each have a specified number of 
attention heads. Additionally, a learnable class token is added to the input embeddings, and the 
output of the class token is fed through an MLP to produce a prediction of the input image's class. 



In the __init__ function, the relevant parameters are set, and the various components of the 
module are defined. The forward function takes in an input image and performs the necessary 
operations to convert the image into a sequence of embeddings that can be fed into the encoder. If 
linear patch embeddings are used, the input image is divided into patches using the unfold function, 
and each patch is embedded using the linear layer. If convolutional patch embeddings are used, 
the input image is passed through a convolutional layer, resulting in a tensor of size 
(batch_size, embedding_size, num_patches, num_patches), and the tensor 
is reshaped to (batch_size, num_patches, embedding_size). In both cases, the 
class token is added to the sequence of embeddings, and the positional embeddings are added to 
the embeddings. The resulting sequence is fed through the encoder, and the output of the class 
token is passed through an MLP to produce a prediction of the input image's class. 
 
We get the following details of the ADVit. In the following code, we can see the hyperparameters 
used in ADVit. The mentioned shapes of the tensors and variables in comments in the earlier 
ADVit code are based on these hyperparameters. 
 
model = ADVit(image_size=64, \ 
              patch_size=16, \ 
              num_atten_heads=8,  
              embedding_size=128, \ 
              how_many_basic_encoders=2, \ 
              mlp_dim=96, \ 
              num_classes=5,\ 
              patch_to_embed_method='Conv').to(device) 
 
number_of_learnable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) 
num_layers = len(list(model.parameters())) 
print("\n\nThe number of layers in the model: %d" % num_layers) 
print("\nThe number of learnable parameters in the model: %d" % number_of_learnable_params) 
image_size = 64 
input_size = (3,image_size,image_size) 
summary(model, input_size) 

 
The number of layers in the model: 122 
 
The number of learnable parameters in the model: 41577829 
 
---------------------------------------------------------------- 
        Layer (type)               Output Shape         Param # 
================================================================ 
            Conv2d-1            [-1, 128, 4, 4]          98,432 
         LayerNorm-2              [-1, 17, 128]             256 
            Linear-3                  [-1, 272]          74,256 
            Linear-4                  [-1, 272]          74,256 
            Linear-5                  [-1, 272]          74,256 
           Softmax-6               [-1, 17, 17]               0 
     AttentionHead-7               [-1, 17, 16]               0 
            Linear-8                  [-1, 272]          74,256 
            Linear-9                  [-1, 272]          74,256 
           Linear-10                  [-1, 272]          74,256 
          Softmax-11               [-1, 17, 17]               0 
    AttentionHead-12               [-1, 17, 16]               0 
           Linear-13                  [-1, 272]          74,256 
           Linear-14                  [-1, 272]          74,256 
           Linear-15                  [-1, 272]          74,256 
          Softmax-16               [-1, 17, 17]               0 
    AttentionHead-17               [-1, 17, 16]               0 
           Linear-18                  [-1, 272]          74,256 
           Linear-19                  [-1, 272]          74,256 
           Linear-20                  [-1, 272]          74,256 
          Softmax-21               [-1, 17, 17]               0 



    AttentionHead-22               [-1, 17, 16]               0 
           Linear-23                  [-1, 272]          74,256 
           Linear-24                  [-1, 272]          74,256 
           Linear-25                  [-1, 272]          74,256 
          Softmax-26               [-1, 17, 17]               0 
    AttentionHead-27               [-1, 17, 16]               0 
           Linear-28                  [-1, 272]          74,256 
           Linear-29                  [-1, 272]          74,256 
           Linear-30                  [-1, 272]          74,256 
          Softmax-31               [-1, 17, 17]               0 
    AttentionHead-32               [-1, 17, 16]               0 
           Linear-33                  [-1, 272]          74,256 
           Linear-34                  [-1, 272]          74,256 
           Linear-35                  [-1, 272]          74,256 
          Softmax-36               [-1, 17, 17]               0 
    AttentionHead-37               [-1, 17, 16]               0 
           Linear-38                  [-1, 272]          74,256 
           Linear-39                  [-1, 272]          74,256 
           Linear-40                  [-1, 272]          74,256 
          Softmax-41               [-1, 17, 17]               0 
    AttentionHead-42               [-1, 17, 16]               0 
    SelfAttention-43              [-1, 17, 128]               0 
        LayerNorm-44              [-1, 17, 128]             256 
           Linear-45                 [-1, 4352]       9,474,304 
           Linear-46                 [-1, 2176]       9,472,128 
     BasicEncoder-47              [-1, 17, 128]               0 
        LayerNorm-48              [-1, 17, 128]             256 
           Linear-49                  [-1, 272]          74,256 
           Linear-50                  [-1, 272]          74,256 
           Linear-51                  [-1, 272]          74,256 
          Softmax-52               [-1, 17, 17]               0 
    AttentionHead-53               [-1, 17, 16]               0 
           Linear-54                  [-1, 272]          74,256 
           Linear-55                  [-1, 272]          74,256 
           Linear-56                  [-1, 272]          74,256 
          Softmax-57               [-1, 17, 17]               0 
    AttentionHead-58               [-1, 17, 16]               0 
           Linear-59                  [-1, 272]          74,256 
           Linear-60                  [-1, 272]          74,256 
           Linear-61                  [-1, 272]          74,256 
          Softmax-62               [-1, 17, 17]               0 
    AttentionHead-63               [-1, 17, 16]               0 
           Linear-64                  [-1, 272]          74,256 
           Linear-65                  [-1, 272]          74,256 
           Linear-66                  [-1, 272]          74,256 
          Softmax-67               [-1, 17, 17]               0 
    AttentionHead-68               [-1, 17, 16]               0 
           Linear-69                  [-1, 272]          74,256 
           Linear-70                  [-1, 272]          74,256 
           Linear-71                  [-1, 272]          74,256 
          Softmax-72               [-1, 17, 17]               0 
    AttentionHead-73               [-1, 17, 16]               0 
           Linear-74                  [-1, 272]          74,256 
           Linear-75                  [-1, 272]          74,256 
           Linear-76                  [-1, 272]          74,256 
          Softmax-77               [-1, 17, 17]               0 
    AttentionHead-78               [-1, 17, 16]               0 
           Linear-79                  [-1, 272]          74,256 
           Linear-80                  [-1, 272]          74,256 
           Linear-81                  [-1, 272]          74,256 
          Softmax-82               [-1, 17, 17]               0 
    AttentionHead-83               [-1, 17, 16]               0 
           Linear-84                  [-1, 272]          74,256 
           Linear-85                  [-1, 272]          74,256 
           Linear-86                  [-1, 272]          74,256 
          Softmax-87               [-1, 17, 17]               0 
    AttentionHead-88               [-1, 17, 16]               0 
    SelfAttention-89              [-1, 17, 128]               0 
        LayerNorm-90              [-1, 17, 128]             256 
           Linear-91                 [-1, 4352]       9,474,304 
           Linear-92                 [-1, 2176]       9,472,128 



     BasicEncoder-93              [-1, 17, 128]               0 
    MasterEncoder-94              [-1, 17, 128]               0 
           Linear-95                   [-1, 96]          12,384 
           Linear-96                   [-1, 64]           6,208 
           Linear-97                    [-1, 5]             325 
================================================================ 
Total params: 41,575,525 
Trainable params: 41,575,525 
Non-trainable params: 0 
---------------------------------------------------------------- 
Input size (MB): 0.05 
Forward/backward pass size (MB): 0.43 
Params size (MB): 158.60 
Estimated Total Size (MB): 159.08 
---------------------------------------------------------------- 

 
 
 
3.2. Image Classification with ADVit 
 
To accomplish this task, we will reuse the training and evaluation scripts we developed in HW4. 
Instead of using the HW4 CNN, we will replace it with our ViT model. We will also use the 
COCO-based dataset that we created for HW4, which contains 64 × 64 images from five classes. 
To ensure that our report is self-contained and can be used to reproduce our results, we have 
included the entire process of creating the dataset, defining the dataloader class, and the training 
and testing routines from HW4. We will present each step in detail below. 
 
Creating Our Own Image Classification Dataset 
 
In this task we need to create our own image classification dataset by taking images from the MS-
COCO dataset. For that, I took the help of python version of the COCO API. We are using 2014 
Train images. I downloaded all the images from the following link and uploaded it to the Google 
Drive. I also downloaded the annotation files: 2014 Train/Val annotations. For image classification 
task, instances_train2014.json file is used. The following script is used to read the 
images from the MS-COCO dataset, resize it to 64x64 images using PIL module and save the 
images to another directory. It is made sure that there are no duplicate images. 
 
Source Code: 
 
dataDir = '/content/drive/MyDrive/Arghadip/DL/Datasets'             # Directory of annotation and 
entire MS-COCO dataset 
dataType='train2014'                                                # We are working with 
"train2014" version 
annFile='{}/annotations/instances_{}.json'.format(dataDir,dataType) # Name of the annotation file 
coco=COCO(annFile)                                                  # initialize COCO api for 
instance annotations 
 
classes = ['airplane', 'bus', 'cat', 'dog', 'pizza']                # We are interested in these 
5 classes 
 
for cat in classes:                                                 # Loop over all the classes 
  catIds = coco.getCatIds(catNms=[cat])                             # Get class ids 
  imgIds = coco.getImgIds(catIds=catIds)                            # Get image ids corresponding 
to the class   
   
  # Shuffle images 
  indices = list(range(len(imgIds))) 
  random.shuffle(indices) 



 
  # Take first 1500 images for training 
  train_dir = os.path.join(dataDir, 'coco', 'train', cat)           # Directory to write training 
images 
  os.mkdir(train_dir)                                               # Make the directory 
  for i in range(1500): 
    img = coco.loadImgs(imgIds[indices[i]])[0]                      # Get image details 
    I = Image.open(os.path.join(dataDir, dataType, img['file_name'])) # Load as PIL image from 
the MS-COCO directory 
    I = I.convert('RGB')                                            # Convert to RGB 
    im_resized = I.resize((64,64), Image.BOX)                       # Resize to 64 x 64 
    im_resized.save(os.path.join(train_dir, cat + '_' + str(i) + '.jpg')) # Save with class name 
and sequence number 
 
  # Take next 500 images for testing 
  test_dir = os.path.join(dataDir, 'coco', 'test', cat)             # Directory to write test 
images 
  os.mkdir(test_dir)                                                # Make the directory 
  for i in range(1500,2000): 
    img = coco.loadImgs(imgIds[indices[i]])[0]                      # Get image details 
    I = Image.open(os.path.join(dataDir, dataType, img['file_name'])) # Load as PIL image from 
the MS-COCO directory 
    I = I.convert('RGB')                                            # Convert to RGB 
    im_resized = I.resize((64,64), Image.BOX)                       # Resize to 64 x 64 
    im_resized.save(os.path.join(test_dir, cat + '_' + str(i-1500) + '.jpg')) # Save with class 
name and sequence number 

 
Output Directory Structure: 

 
Figure 2. Dataset directory structure 

 
Once the images are saved in proper directory, the next step is to implement our own dataset class 
to provide the necessary support to the torch.utils.data.DataLoader class. The source 
code is given below. The dataset class My_COCO_Dataset contains the relevant information 
such as root directory, split (train or test), number of images per class etc. It also performs proper 
transform to covert PIL images to CNN supported tensor input. I haven’t used any data 
augmentation techniques, but the scope is already present in the given source code. One method 
named _get_filenames_and_labels() is defined to get all the filenames and 
corresponding labels, so that later it can be used during query (i.e. __getitem__()). The 
__len__() method is also overwritten to return the total number of images in the dataset. During 
training feeding images from different classes in a single batch leads to better training. Therefore, 
shuffling support is also provided (shuffle=True). The labels are integers (0 to 4) for 5 classes. 
 
 
 



Source Code: 
 
# Custom dataset class definition 
class My_COCO_Dataset(torch.utils.data.Dataset): 
  def __init__(self, root='/content/drive/MyDrive/Arghadip/DL/Datasets/coco', split='train', 
shuffle=False): 
    super().__init__()  # Part of the definition is obtained from parent class 
    self.split = split                                          # 'train' or 'test' 
    self.path = os.path.join(root,self.split)                   # Assign path as per the split 
    self.shuffle = shuffle                                      # If shuffling is needed 
    self.classes = ['airplane', 'bus', 'cat', 'dog', 'pizza']   # Name of 5 classes 
    if self.split == 'train': 
      self.num_images_per_class = 1500                          # 1500 images per class for 
training 
    elif self.split == 'test': 
      self.num_images_per_class = 500                           # 500 images per class for 
testing 
    # Initialize data augmentation transforms , etc. 
    # tvt.Compose collates multiple transforms and perform them sequentially 
    self.xform = tvt.Compose([ 
        # # ------------------- Uncomment following transforms for improved performance ---------
---------- 
        # # ColorJitter deals with altering the color properties of an image by changing its 
pixel values. 
        # tvt.ColorJitter(brightness=1, contrast=0, saturation=0, hue=0), 
        # # Converted into grayscale with probability 0.5 for augmentation. 
        # tvt.RandomGrayscale(p=0.5), 
        # # Flipped horizontally with probability 0.5 
        # tvt.RandomHorizontalFlip(p=0.5), 
        # Conversion from PIL to floating point Tensor 
        tvt.ToTensor(), 
        # Normalize 
        tvt.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5)) 
    ]) 
    self._get_filenames_and_labels()                            # Form a list with filenames and 
corresponding labels 
 
  # Internal method to get filenames and labels of all the classes 
  def _get_filenames_and_labels(self): 
    self.list_of_files_and_labels = []                          # Empty list initialization 
    for i in range(len(self.classes)):                          # Start loop for each class 
      for j in range(self.num_images_per_class):                # Start loop for images in each 
class 
        # Append the filenames and labels to the "list_of_files_and_labels" 
        self.list_of_files_and_labels.append([os.path.join(self.path, self.classes[i], 
self.classes[i] + '_' + str(j) + '.jpg'), i]) 
    # Shuffling 
    if self.shuffle: 
      random.shuffle(self.list_of_files_and_labels) 
 
  def __len__ (self): 
    # Return the total number of images in the dataset = number of files in the 
"list_of_files_and_labels" 
    return len(self.list_of_files_and_labels) 
 
  def __getitem__(self, index): 
  # Read an image at index and perform augmentations 
  # Return the tuple : ( augmented tensor , integer label ) 
    image = Image.open(self.list_of_files_and_labels[index][0])   # Load image as PIL object 
    image = self.xform(image)                                     # Apply transform 
    return (image, self.list_of_files_and_labels[index][1])       # Return the image tensor and 
label (integer) 

 
 
 
 
 



Training routine: 
 
We use Adam optimizer with learning rate = 1e-3, b1 = 0.9 and b2 = 0.99 for training. It also saves 
the model parameters in every epoch as a dictionary that is later used for testing using validation 
dataset. The model is trained for 50 epochs. 
 
def run_training(net, train_data_loader, learning_rate, num_epochs, print_frequency=100): 
  ''' 
  This is the method used to run training. It returns the training loss as a list. 
  ''' 
  net = net.to(device)                            # Move 'net' to device (either CPU or CUDA) 
  criterion = torch.nn.CrossEntropyLoss()         # Loss function 
  optimizer = torch.optim.Adam(net.parameters(), lr = learning_rate, betas = (0.9, 0.99))    # 
Adam optimizer 
  loss_for_plot = []                              # Empty list to store losses 
  for epoch in range(num_epochs): 
    running_loss = 0.0 
    for i, data in enumerate(train_data_loader):  # Loop for every batch in the train_data_loader 
      inputs, labels = data 
      inputs = inputs.to(device)                  # Move input batch to the device 
      labels = labels.to(device)                  # Move corresponding labels to the device 
      optimizer.zero_grad()                       # Clear the stored gradient at nodes 
      outputs = net(inputs)                       # Forward pass 
      loss = criterion(outputs, labels)           # Loss calculation 
      loss.backward()                             # Gradient calculation 
      optimizer.step()                            # Back propagation and update of parameters 
      running_loss += loss.item()                 # Update loss 
      if (i+1) % print_frequency == 0:            # Print and keep record for every 
'print_frequency' 
        print("[epoch: %d, batch: %5d] loss: %.3f" \ 
              % (epoch + 1, i + 1, running_loss / print_frequency)) 
        loss_for_plot.append(running_loss/print_frequency) 
        running_loss = 0.0 
    # Save model parameters in every epoch 
    torch.save(net.state_dict(), os.path.join('/content/drive/MyDrive/Arghadip/DL/HW9/models', 
"ADVit_{}.pth".format(str(learning_rate) + '_' + str(num_epochs)))) 
  return loss_for_plot                            # Return loss vector 

 
 
Test routine and script to plot confusion matrix: 
 
The test routine is inspired from the routine present in DLStudio. The seaborn package is 
useful for the proper display of the confusion matrix. 
 
def run_testing(net, test_data_loader, num_classes=5): 
  ''' 
  This function is used for validation/testing. It returns the confusion matrix. 
  ''' 
  confusion_matrix = np.zeros([num_classes, num_classes])   # Initialization of confusion matrix 
as ndarray 
  with torch.no_grad():                                     # With no gradient calculation at 
nodes 
    for i, data in enumerate(test_data_loader):             # For every batch in test_data_loader 
      inputs, labels = data                                 # Get input images (as tensors) and 
labels 
      inputs = inputs.to(device) 
      labels = labels.to(device) 
      outputs = net(inputs)                                 # Forward pass 
      _, predicted = torch.max(outputs, 1)                  # Predicted class (class for which 
the output is max) 
      for label,prediction in zip(labels,predicted):        # Confusion matrix formulation (Taken 
from DLStudio) 
        confusion_matrix[label][prediction] += 1 
  return confusion_matrix                                   # Return confusion matrix 



 
def plot_confusion_matrix(confusion_matrix, classes, title='Confusion Matrix'): 
  ''' 
  This function is defined to plot the confusion matrix with proper colormap and labels. 
  ''' 
  labels = []                                               # List of empty labels for all the 
positions in matrix 
  for row in range(confusion_matrix.shape[0]):              # Loop for every row 
    rows = [] 
    for col in range(confusion_matrix.shape[1]):            # Loop for every column 
      pred_count = confusion_matrix[row][col]               # Counts for predicted classes for 
this particular class 
      percentage = "%0.2f%%" % (pred_count*100/(np.sum(confusion_matrix[:][col])))  # Percentage 
      box_label = str(pred_count) + '\n' + str(percentage)  # Label for the box with both count 
and percentage 
      rows.append(box_label)                                # Append to the list 
    labels.append(rows)                                     # Append the row to the labels 
  labels = np.asarray(labels)                               # Form numpy array from list 
  test_accuracy = np.trace(confusion_matrix) * 100 / np.sum(confusion_matrix) # Overall test 
accuracy in percentage 
  # Plot of confusion matrix 
  # plt.figure(figsize=(5,6)) 
  plt.figure() 
  sns.heatmap(confusion_matrix, annot=labels, fmt="", cmap="Blues", cbar=True, 
xticklabels=classes, yticklabels=classes) 
  plt.title(title) 
  plt.xlabel('Predicted label' + '\n\nAccuracy = %0.3f'% test_accuracy) 
  plt.ylabel('True label') 
  plt.savefig(os.path.join('/content/drive/MyDrive/Arghadip/DL/HW9/confusion_matrices', title + 
'.jpg'), dpi=300)  # save 
  plt.show() 
 
Main code: 
 
# Main code 
model = ADVit(image_size=64, \ 
              patch_size=16, \ 
              num_atten_heads=8,  
              embedding_size=128, \ 
              how_many_basic_encoders=2, \ 
              mlp_dim=96, \ 
              num_classes=5,\ 
              patch_to_embed_method='Conv').to(device) 
 
# Dataset 
batch_size = 64         # Batch size 
num_workers = 2         # Number of parallel threads for data loading 
train_dataset = My_COCO_Dataset(split='train', shuffle=True)    # Training dataset 
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, 
num_workers=num_workers) # Loader 
test_dataset = My_COCO_Dataset(split='test', shuffle=False)     # Testing/Validation dataset 
test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, 
num_workers=num_workers)  # Loader 
 
# Run training 
learning_rate = 1e-3    # Learning rate 
num_epochs = 50         # Number of training epochs 
print_frequency = 10    # Frequency of logging loss 
loss = run_training(model, train_dataloader, learning_rate, num_epochs=num_epochs, 
print_frequency=print_frequency)    # Loss 
 
label = model.__class__.__name__ + '_' + str(learning_rate) + '_' + str(num_epochs) 
# Plot training loss 
fig, axes = plt.subplots(ncols=1, figsize = (8,4)) 
axes.plot(loss, label=label) 
axes.set_title('Training loss vs. batches') 
axes.set_xlabel('Batches in hundreds, batch size = ' + str(batch_size)) 
axes.set_ylabel('Training loss') 
fig.legend() 



fig.tight_layout() 
plt.show(); 
fig.savefig(os.path.join("/content/drive/MyDrive/Arghadip/DL/HW9/training_losses", label + 
'.jpg'),dpi=300)             # Save 
# # Validation and Confusion matrix plot 
# Network shell 
net = ADVit(image_size=64, \ 
              patch_size=16, \ 
              num_atten_heads=8,  
              embedding_size=128, \ 
              how_many_basic_encoders=2, \ 
              mlp_dim=96, \ 
              num_classes=5,\ 
              patch_to_embed_method='Conv').to(device) 
modelfile = os.path.join('/content/drive/MyDrive/Arghadip/DL/HW9/models', label + '.pth') # Param 
dictionary path 
if device.type == 'cpu': 
  net.load_state_dict(torch.load(modelfile, map_location=torch.device('cpu')))  # Load in CPU 
else: 
  net.load_state_dict(torch.load(modelfile))                                    # Load in GPU 
net.to(device)                                                                  # Mode the model 
to 'device' 
net.eval()                                                                      # Setting models 
to eval mode 
confusion_matrix = run_testing(net, test_dataloader, num_classes=5)             # Testing 
plot_confusion_matrix(confusion_matrix, test_dataset.classes, title='Confusion Matrix (' + label 
+ ')')  # Plot confusion matrix 

 
 
 
 
Training Loss over Training Iterations: 
 

 
The following plots show how training progresses along the epochs. 
 

 
Fig.3. Training loss vs. iterations for ADVit 

 
 



Confusion matrix and overall accuracy: 
 

 
Fig.6. Confusion matrix for ADVit over HW4-COCO testset 

 
Overall accuracy: 52.48% 
 
 
 
Comparison with HW4 CNN based network: 
 
For better comparison, I present the confusion matrices of 3 different CNN tasks from HW4. These 
networks were trained with the same hyperparameters (Adam optimizer with learning rate 1e-3, 
b1 = 0.9 and b2 = 0.99) for 50 epochs with batch size of 8. 
 
 
 
 
 
 
 

P.T.O. 



Confusion Matrix for HW4 Task 1: 
 

 
 

Fig.4. Confusion matrix for HW4 Net1 (Overall test accuracy = 56.56%) 
 
Confusion Matrix for HW4 Task 2: 
 

 
 

Fig.5. Confusion matrix for HW4 Net2 (Overall test accuracy = 57.56%) 
 



Confusion Matrix for HW4 Task 3: 
 

 
 

Fig.6. Confusion matrix for HW4 Net3 (Overall test accuracy = 54.80%) 
 
The transformer model (ADVit) performs worse than the CNN-based models, with only 52.48% 
accuracy on the test set. In comparison, the CNNs had the following accuracy in decreasing order: 
Net2 (57.56%) > Net1 (56.56%) > Net3 (54.80%). This is because ADVit is overfitting the 
small training set, which consists of only 7500 images of size 64x64. The total number of training 
points is 7500x(3x64x64) = 92160000, while the number of parameters in the transformer model 
(41577829) is comparable with the size of the training set. Although I have tried to reduce the 
number of parameters by adjusting the hyperparameters, the model still overfits. To address this 
issue, regularization, dropout, and early termination methods can be used, but they are not within 
the scope of this homework. On the other hand, the low accuracies of the CNN models in HW4 
were due to underfitting caused by their small model orders. 
 
 
 
 
 
 
 
 
 
 



3.3. Extra Credit: Multi-headed self-attention using torch.einsum 
 
The implementation code with detailed comments is given below. 
 
class SelfAttention_einsum(nn.Module): 
    def __init__(self, max_seq_length, embedding_size, num_atten_heads): 
        super().__init__() 
        self.max_seq_length = max_seq_length                        # Sequence length (here 17) 
        self.embedding_size = embedding_size                        # Emdedding size (here 128) 
        self.num_atten_heads = num_atten_heads                      # Number of attention heads 
(here 8) 
        self.qkv_size = self.embedding_size // num_atten_heads      # size of Q, K and V (here 
128/8 = 16) 
        self.attention_heads_arr = nn.ModuleList([AttentionHead_einsum(self.max_seq_length, 
                                                                self.qkv_size) for _ in 
range(num_atten_heads)]) # Forming multiple attention heads 
 
    def forward(self, sentence_tensor): 
        # batch_size, max_seq_length, embedding_size i.e. (1, 17, 128) 
        concat_out_from_atten_heads = torch.zeros(sentence_tensor.shape[0], self.max_seq_length, 
                                                  self.num_atten_heads * self.qkv_size).float() 
        for i in range(self.num_atten_heads): 
            sentence_tensor_portion = sentence_tensor[:, 
                                                      :, i * self.qkv_size: (i+1) * 
self.qkv_size]  # (1, 17, 16) 
            concat_out_from_atten_heads[:, :, i * self.qkv_size: (i+1) * self.qkv_size] =          
\ 
                self.attention_heads_arr[i](sentence_tensor_portion)    # Concatenate attention 
head outputs 
        return concat_out_from_atten_heads 
 

class AttentionHead_einsum(nn.Module): 
    def __init__(self, max_seq_length, qkv_size): 
        super().__init__() 
        self.qkv_size = qkv_size 
        self.max_seq_length = max_seq_length 
        self.WQ = nn.Linear(max_seq_length * self.qkv_size, 
                            max_seq_length * self.qkv_size) 
        self.WK = nn.Linear(max_seq_length * self.qkv_size, 
                            max_seq_length * self.qkv_size) 
        self.WV = nn.Linear(max_seq_length * self.qkv_size, 
                            max_seq_length * self.qkv_size) 
        self.softmax = nn.Softmax(dim=1) 
 
    def forward(self, sentence_portion):    # The below sizes are mentioned assuming the shape of 
sentence_portion = (1, 17, 16) 
        Q = self.WQ(sentence_portion.reshape( 
            sentence_portion.shape[0], -1).float()).to(device)   # Query (1, 272) 
        K = self.WK(sentence_portion.reshape( 
            sentence_portion.shape[0], -1).float()).to(device)   # Key (1, 272) 
        V = self.WV(sentence_portion.reshape( 
            sentence_portion.shape[0], -1).float()).to(device)   # Value (1, 272) 
        Q = Q.view(sentence_portion.shape[0], 
                   self.max_seq_length, self.qkv_size)           # (1, 17, 16) 
        K = K.view(sentence_portion.shape[0], 
                   self.max_seq_length, self.qkv_size)           # (1, 17, 16) 
        V = V.view(sentence_portion.shape[0], 
                   self.max_seq_length, self.qkv_size)           # (1, 17, 16) 
 
        ########################################### Using einsum ############################# 
        # This line creates a tensor A with the shape (1, 16, 16) by performing a batch matrix 
multiplication  
        # between the key tensor K (shape: (1, 17, 16)) and a tensor of ones with the same shape 
as the query  
        # tensor Q (shape: (1, 17, 16)).  
        A = torch.einsum("bnm,bnk->bmk", K, torch.ones_like(Q))     # (1, 16, 16) 



        # This line performs a batch matrix multiplication between the query tensor Q (shape: (1, 
17, 16))  
        # and the attention weight tensor A (shape: (1, 16, 16)) to obtain a dot product tensor 
of shape  
        # (1, 17, 16). This tensor represents the pairwise dot product similarity scores between 
each query  
        # vector and key vector for each position in the input sentence. 
        QK_dot_prod = torch.einsum("bnm,bmk->bnk", Q, A)            # (1, 17, 16) 
        # This line applies the softmax function along the second dimension of the dot product 
tensor,  
        # resulting in a row-wise normalized tensor with shape (1, 17, 16). Each row in the 
resulting tensor  
        # represents the attention distribution for a given query vector, i.e. how much attention 
to pay to  
        # each key vector. 
        rowwise_softmax_normalizations = self.softmax(QK_dot_prod)  # (1, 17, 16) 
        # This line performs a batch matrix multiplication between the attention weight tensor  
        # (shape: (1, 16, 16)) and the value tensor V (shape: (1, 17, 16)) to obtain the output  
        # tensor Z with shape (1, 17, 16). This tensor represents the final output of the 
attention head. 
        Z = torch.einsum("bnm,bnk->bnk", rowwise_softmax_normalizations, V)     # (1, 17, 16) 
        # This line computes a scalar coefficient to normalize the output of the attention head 
by dividing  
        # by the square root of the dimension of the key, query and value vectors. 
        coeff = 1.0/torch.sqrt(torch.tensor([self.qkv_size]).float()).to(device) # (1) 
        # This line normalizes the output tensor Z by scaling it with the coefficient. 
        Z = coeff * Z 
        return Z 
 
 
The shape of each tensor is given in the comments assuming the following hyperparameter values. 

• max_seq_length = 17 
• embedding_size = 128 
• num_atten_heads = 8 

The above code implements a multi-headed attention mechanism for a given input sentence 
portion. It does this by matrix-multiplying the embedding vector for each word in the sentence by 
the WQ, WK, and WV matrices to produce the query vector Q, key vector K, and value vector V 
for each word in the input sentence. The dot product of Q and K is then used to calculate the 
attention weights, which are applied to the value vectors to get the final attention output. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Suggested improvements: 
 
To improve the performance of a transformer on a small training set, several techniques can be 
employed. Firstly, transfer learning can be used by pretraining the transformer on a larger dataset 
and then fine-tuning it on the small dataset. This can lead to better generalization and faster 
convergence on the small dataset. Another technique is to use data augmentation to artificially 
increase the size of the training set. This can be done by applying random transformations to the 
input data such as cropping, flipping, or adding noise. This can help the model learn more robust 
features and reduce overfitting. Regularization techniques such as dropout and weight decay can 
also be used to prevent overfitting on the small training set. Dropout randomly drops out some 
neurons during training, while weight decay adds a penalty to the loss function for large weights. 
Finally, ensembling multiple models can also help improve performance on a small dataset. By 
training multiple models with different initializations or architectures and combining their 
predictions, the overall performance can be boosted. However, this approach may require more 
computational resources. 
 
 
 
 
 

4. Lessons Learned 
 
In this Vision transformer homework, we learned how to implement a transformer model for image 
classification. We used the PyTorch library to build a transformer model that consists of an 
encoder, where the encoder extracts features from an image. We also learned about the importance 
of attention mechanisms in transformer models, which allow the model to focus on important parts 
of the input. Additionally, we experimented with different hyperparameters and techniques to 
improve the performance of our model. Overall, this homework provided a practical introduction 
to transformer models and their application in computer vision tasks. Through experimentation 
and fine-tuning, we gained insights into how different components and hyperparameters of the 
model affect its performance. These lessons can be applied to other transformer-based models and 
tasks and can help us develop more accurate and efficient deep learning models. 
 
 
 
 
 
 
 
 
 
 
 

--- End of the document --- 


