PURDUE UNIVERSITY
Elmore Family School of Electrical and Computer Engineering

Deep Learning

Homework 9

Adithya Sineesh

Email : asineesh@purdue.edu

Submitted: April 30, 2023



1 Experiment

In this homework, we have to implement a Vision Transformer and compare its per-
formance with the three models developed for HW4 on the same subset of the MS-COCO
dataset:

I have referred to my own HW4 and this medium article for this assignment.

1.1 Dataset

Like HW4, we first download the JSON annotation file. Then using the COCO API,
we load 2000 images each for the above mentioned classes and resize them into (64 x 64)

and save 1500 of them into the training dataset and 500 of them into the test dataset.

1.2 Model Training

The optimizer used was Adam with beta values of (0.9,0.99), the learning rate was
0.0001 for 10 epochs and the batch size was 32. The loss function was Binary Cross En-

tropy Loss.

1.3 Model Architecture

A Vision Transformer consists of the following parts:

1. Patch Embedding

The following steps are involved in this:

(a) We divide the image into patches of fixed size (16x16 for this homework) and
generate the embeddings for each patch. This is done by passing the image

through a convolutional layer with stride and kernel size equal to the size of the


https://towardsdatascience.com/implementing-visualttransformer-in-pytorch-184f9f16f632

patch and the number of output channels being equal to the embedding size (384
for this homework). We then permute this tensor so that its of shape (batch

size, number of patches, embedding size).

(b) Then we append the same learnable class token of size (1,embedding size) for

each image of the batch to the overall embeddings.

(c) Finally we create the learnable parameters for the position embedding of each
patch. It is of shape (number of patches +1 , embedding size) for each image of
the batch. We then add this to the elementwise to the overall embeddings for

each batch.

Therefore the final output of this block is of shape (batch size, number of patches
+1, embedding size). This block’s learnable parameters help capture the image’s

short-range dependencies.

. Transformer Master block

Each transformer master block consists of ”d” transformer blocks within them (for
this homework, I have taken it as 6). Each transformer block consists of Layer Nor-
malization followed by a Multi-Head attention block and another Layer Normalization

followed by a MLP layer. There are skip connections between the layers.

In the Multi-headed attention block, we use learnable weights to compute the Query,
Key and Value for every patch. Then we split the embeddings for every patch into
multiple heads (64 heads in this HW) so that multiple relationships can be learnt
between the input patches. Next, we compute the relationship between all the patches
(which is called attention) using the Query and Key. This value is then normalized
using softmax and the new Value is computed using the attention and the old Value.

Finally, the outputs Value embeddings of the multiple heads are reshaped together.



3. Classification head
The class embedding obtained from the transformer block is passed into the classifi-

cation head, which gives out the 5-class logits.



2 Results

Training Loss vs epochs

0.045

0.040

0.035 A

0.030 A

v 0.025 A

0.020

0.015

0.010 A

0.005 A

Figure 1: Training loss vs epochs

Accuracy vs epochs

100
—— Test Accuracy

Train Accuracy

90 4

80

70+

Accuracy

60

50 /\/\’\/

Figure 2: Training and Test Accuracy vs epochs



Predicted

bus airplane

cat

8 - 49
=
g
N - y
(=%
. i
airplane

61

23

bus

Total accuracy is 50.55999755859375

112 110
61 55
| i
cat dog
Ground Truth

Figure 3: Confusion Matrix

42

109

48

pizza

300

250

200

- 150

- 100

- 350



3 Conclusion

The test accuracy of the models in HW4 on the same dataset after 10 epochs were as

follows:
1. Net 1 : 57.40%
2. Net 2 : 59.08%

3. Net 3: 61.48%

In comparison, the Vision Transformer model used in this homework gave a test accuracy
of only 50.56% after 10 epochs. From Figure 2, its clear to see overfitting is taking place as
the Vision Transformer model is quite powerful for such a small dataset (only 7500 training
images). My implementation of the ViT has 10,950,917 parameters compared to 406,885
parameters for Netl, 529,765 parameters for Net2 and 622,245 parameters for Net3 from
HW4.

Similar to the models from HW4, the ViT struggles with the classification of cats and

dogs.



4/30/23, 5:46 PM DL_HWS9_fromscratch - Jupyter Notebook

In [ ]:

#Import
import
import
from to
import
import
import
from to
from tq
from PI
import
import
import
import
import
from tq

In [ ]:

#From H
class I

def

def

def

ing the Llibraries

torch

torch.nn as nn

rch.utils.data import Dataloader, Dataset
torch.nn.functional as F

0s

torchvision.transforms as transforms
rchvision import datasets,models

dm import tqdm

L import Image

numpy as np

time

matplotlib.pyplot as plt

seaborn as sn

pandas as pd

dm import tqdm

W 4
ndexedDataset(Dataset):

__init_ (self, dir_path):
self.dir_path = dir_path

if os.path.basename(self.dir path) == 'train': #transforms for the train dataset
self.transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([9.5,0.5,0.5],[0.5,0.5,0.5])
D
elif os.path.basename(self.dir_path) == 'test': #transforms for the test datasel
self.transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([©.5,0.5,0.5],[0.5,0.5,0.5])

D

image_filenames = []

for (dirpath, dirnames, filenames) in os.walk(dir_path): #Saving all the image |
image_filenames += [o0s.path.join(dirpath, file) for file in filenames]

self.image_filenames = image_filenames

self.labels map = {"airplane" : @, "bus": 1, "cat" : 2, "dog" : 3, "pizza" : 4}

__len_ (self):
return len(self.image filenames)

__getitem__ (self, idx):

img_name = self.image_filenames[idx]

image = Image.open(img_name).convert('RGB")

image = self.transform(image)

return image, self.labels_map[os.path.basename(os.path.dirname(img_name))]

localhost:8888/notebooks/DL_HW9_fromscratch.ipynb# 111



4/30/23, 5:46 PM DL_HWS9_fromscratch - Jupyter Notebook

In [ ]:

#Converts the images to patches
class Patch_Embedding(nn.Module):

def

def

In [ ]:

__init__ (self,in_channels=3,embedding size=768,patch_size=16,img_size=224):
#Assuming that the image size is perfectly divisible by patch _size
super().__init_ ()

self.embedding_size = embedding_size

self.num_patches = (img_size//patch_size)**2 #(h*w)/patch_size**2

self.conv = nn.Conv2d(in_channels,embedding_size,patch_size,stride=patch_size) ¢

self.cls = nn.Parameter(torch.randn((1,embedding _size))) #The cls token
self.pos = nn.Parameter(torch.randn((self.num_patches+1l,embedding size))) #Posii
forward(self,x):

# x is of shape (b,c,h,w)

batch_size = x.shape[9]

y = self.conv(x) #y is of shape (b,embedding size,h/patch _size,w/patch_size)

out = y.view(-1,self.embedding size,self.num_patches) #out is of shape (b,embedc
out = torch.permute(out,(0,2,1)) #out is of shape (b,num_patches,embedding size,

#Appending the cls token
cout = torch.concat((out,self.cls.repeat(batch_size,1,1)),1) #cout is of shape (

#Adding the position embedding
pcout = cout+self.pos.repeat(batch_size,1,1) #pcout is of shape (b,num_patches-

return pcout

#Final classification head
class ClassificationHead(nn.Module):
def __init_ (self,embedding_size=768,num_classes=5):

super().__init_ ()
self.fc = nn.Linear(embedding size,num_classes)

def forward(self,x):

#x 1s of shape (b,num patches,embedding size)

x = x[:,-1,:] #Taking the output of the last patch
out = self.fc(x)

return out

localhost:8888/notebooks/DL_HW9_fromscratch.ipynb#

2111



4/30/23, 5:46 PM DL_HWS9_fromscratch - Jupyter Notebook

In [ ]:

#Main attention implementation
class MultiAttentionhead(nn.Module):
def __init_ (self,embedding_size=768,num_heads=8,p=0.0):

super().__init_ ()
self.embedding size = embedding size #The embedding size of each 16x16 sized imc
self.num_heads = num_heads #Into how many parts the embedding is split into
self.QKV = nn.Linear(embedding size,3*embedding_size) #The Llearnable matrices fc
self.fc = nn.Linear(embedding_size,embedding_size) #To be applied at the output
self.drop = nn.Dropout(p) #'p' is Dropped out

def forward(self,x):
#x 1s of shape (b,num patches,embedding size)
b = x.shape[9]
num_patches = x.shape[1]

#Getting the Q,K,V for every patch in all the batches
QKV1 = self.QKV(x) #QKV1 is of shape (b,num_patches,3*embedding size)
QKV2 = QKV1.reshape(b,num_patches,self.num_heads,self.embedding size//self.num_}

Q,K,V = torch.permute(QkKv2,(4,0,2,1,3)) #Q,K,V are of shape (b,heads,num_patche:

#Computing the attention
QKT = torch.einsum('bhid,bhjd -> bhij',Q,K) #QKT is of shape (b, heads,num_patche
#This gives the relationship betweer

attention = F.softmax(QKT,dim=-1)/(self.embedding_size**(0.5)) #Softmax convert:
# to all the othe
attention

self.drop(attention)

#Updating the value

QKtV = torch.einsum( 'bhik,bhkj -> bhij',QKT,V) #is of shape (b,heads,num patche:
z = torch.permute(QKtV, (0,2,1,3)) #is of shape (b,num patches, heads, embedding/he
Z = z.reshape(b,num_patches,-1) #is of shape (b,num_patches,embedding size)

out = self.fc(Z) #is of shape (b,num_patches,embedding size)

return out

localhost:8888/notebooks/DL_HW9_fromscratch.ipynb# 3/M1



4/30/23, 5:46 PM

In [ ]:

#Multi Layer perceptron at the end of every Transformer block

class MLP(nn.Module):
#The MLP block within the transformer

def _init (self,embedding size=768,p=0.0,expansion=4):

def

In [ ]:

super().__init_ ()

self.fcl = nn.Linear(embedding_size,expansion*embedding_size)
self.fc2 = nn.Linear(expansion*embedding size,embedding_size)

self.gelu = nn.GELU()
self.drop = nn.Dropout(p)

forward(self,x):

#x 1s of shape (b,num _patches,embedding size)
x = self.gelu(self.fcl(x))

out = self.fc2(self.drop(x))

return out

#0ne transformer block
class Transformer(nn.Module):
#The overall Transformer block

def init (self,embedding size=768,p=0.0,expansion=4,num_heads=8):

super()._ _init_ ()

self.1lnl = nn.LayerNorm(embedding_ size)
self.MAH
self.1n2
self.mlp

nn.LayerNorm(embedding size)
MLP(embedding size,p,expansion)

def forward(self,x):

identityl = x

x = self.MAH(self.1ln1(x))

identity2 = x + identityl #skip connection
out = self.mlp(self.1ln2(identity2))

out = out + identity2 #skip connection
return out

localhost:8888/notebooks/DL_HW9_fromscratch.ipynb#

DL_HWS9_fromscratch - Jupyter Notebook

MultiAttentionhead(embedding size,num_heads,p)

4/11



4/30/23, 5:46 PM DL_HWS9_fromscratch - Jupyter Notebook

In [ ]:

#0verall VAT implementation
class ViT(nn.Module):

def

def

In [ ]:

__init__ (self,embedding_size=768,p=0.0,expansion=4,num_heads=8,in_channels=3,pat

super().__init_ ()
self.embedding = Patch_Embedding(in_channels,embedding_size,patch_size,img_size]
Tlayers = [] #A ViT would have multiple (depth) Transformer blocks
for i in range(depth):
Tlayers.append(Transformer(embedding size,p,expansion,num_heads))
self.Tlayers = nn.Sequential(*Tlayers)
self.head = ClassificationHead(embedding size,num_classes)
forward(self,x):
#Getting the embeddings of each patch of all the batch images
x = self.embedding(x)

#Passing them through "depth" Transformer blocks
x = self.Tlayers(x)

#Passing the output through classification head
out = self.head(x)
return out

#Function to count the number of parameters from https://discuss.pytorch.org/t/how-do-1-
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)

localhost:8888/notebooks/DL_HW9_fromscratch.ipynb#

5/1



4/30/23, 5:46 PM DL_HWS9_fromscratch - Jupyter Notebook

In [ ]:

#Function to calculate the accuracy of the model
def find_acc(net,dataloader):
net.eval()
correct = 0
with torch.no_grad():
loop = tgdm(dataloader)
for i,data in enumerate(loop):
inputs, labels = data
inputs = inputs.to(device)
labels = labels.to(device)
outputs = net(inputs)
predicted = torch.argmax(outputs,1)
correct = correct + torch.sum(predicted.cpu()==1labels.cpu()).item()
net.train()
return (correct*100)/len(dataloader.dataset)

In [ ]:

#Funtion to train the model
def training(epochs,optimizer,criterion,net,train_data_loader,test_data_loader,device):
train_losses = []
train_accs = []
test_accs = []
for epoch in range(epochs):
running_loss = 0.0
loop = tgdm(train_data_loader)
for i, data in enumerate(loop):
inputs, labels = data
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.cpu().item()
loop.set_postfix(loss=running_loss/(i+1))

train_acc = find_acc(net,train_data_loader)
test_acc = find_acc(net,test _data loader)

train_accs.append(train_acc)
test_accs.append(test_acc)

print("[epoch: %d] loss: %.3f Train Accuracy: %.3f Test Accuracy: %.3f " % (epoch +
print("\n")
train_losses.append(running_loss/len(train_dataset))

return net, train_losses, train_accs, test_accs

localhost:8888/notebooks/DL_HW9_fromscratch.ipynb# 6/11



4/30/23, 5:46 PM DL_HWS9_fromscratch - Jupyter Notebook

In [ ]:

#Function to plot the confusion matrix
def confusion_matrix(model,test_data_loader):
matrix = torch.zeros((5,5))
with torch.no_grad():
for b, (X _test, y test) in enumerate(test data_loader):
model.eval()
X_test, y_test = X_test.to(device), y_test.to(device)
# Apply the model
y_val = model(X_test)

# Tally the number of correct predictions
predicted = torch.max(y_val.data, 1)[1]
for i in range(len(predicted)):
matrix[predicted[i].cpu(),y_test[i].cpu()] += 1
heat = pd.DataFrame(matrix, index = [i for i in ["airplane","bus","cat","
columns = [i for i in ["airplane”,"bus","cat","
heat = heat.astype(int)
accuracy = (matrix.trace()/matrix.sum())*100
plt.figure(figsize = (10,7))
plt.title("Total accuracy is "+str(accuracy.item()))
s = sn.heatmap(heat, annot=True,cmap='Blues’',fmt="g")
s.set(xlabel="Ground Truth', ylabel='Predicted")

dog",
dog","pizza"]])

In [ ]:

device = torch.device("cuda" if torch.cuda.is available() else "cpu")
device

Out[13]:

device(type='cuda')

localhost:8888/notebooks/DL_HW9_fromscratch.ipynb#

7M1



4/30/23, 5:46 PM DL_HWS9_fromscratch - Jupyter Notebook

In [ ]:

train_dataset = IndexedDataset("/content/drive/MyDrive/Dataset _HW4/train")

test_dataset = IndexedDataset("/content/drive/MyDrive/Dataset HW4/test")
train_data_loader = DatalLoader(train_dataset,batch_size=32, shuffle=True,num_workers=32]
test _data_loader = DatalLoader(test _dataset,batch size=32, shuffle=True,num_workers=32)

criterion = nn.CrossEntropyLoss()
epochs = 10

model = ViT(embedding size=384,p=0.0,expansion=4,num_heads=64,in_channels=3,patch_size=]
optimizer = torch.optim.Adam(model.parameters(), 1lr=0.00001, betas = (0.9,0.99))

/usr/local/lib/python3.10/dist-packages/torch/utils/data/dataloader.py:56
1: UserWarning: This DatalLoader will create 32 worker processes in total.
Our suggested max number of worker in current system is 2, which is small
er than what this DatalLoader is going to create. Please be aware that exc
essive worker creation might get DatalLoader running slow or even freeze,
lower the worker number to avoid potential slowness/freeze if necessary.
warnings.warn(_create_warning_msg(
In [ ]:

count_parameters(model)

Out[15]:

10950917

In [ ]:

print(len(train_dataset))
print(len(test_dataset))

7500
2500

localhost:8888/notebooks/DL_HW9_fromscratch.ipynb# 8/11



4/30/23, 5:46 PM DL_HWS9_fromscratch - Jupyter Notebook

In [ ]:

trained_model,train_losses,train_accs, test_accs = training(epochs,optimizer,criterion,
confusion_matrix(trained_model,test _data_loader)

4
235/235 [02:59<00:00, 1.31it/s, loss=1.38]
235/235 [00:13<00:00, 17.18it/s]
79/79 [01:15<00:00, 1.04it/s]
: 1.384 Train Accuracy: 57.120 Test Accuracy: 47.120
235/235 [00:17<00:00, 13.14it/s, loss=1.05]
235/235 [00:14<00:00, 15.92it/s]
79/79 [00:05<00:00, 13.29it/s]
: 1.050 Train Accuracy: 69.640 Test Accuracy: 51.720
100% | 235/235 [00:18<00:00, 12.82it/s, 1oss=0.878]
100% | 235/235 [00:14<00:00, 16.61it/s]
100%| 79/79 [00:06<00:00, 13.03it/s]
v

lunAa~h. 21 TAmcr~. N 070 Tuastihn Ac~rliinmr~se TFTE ADNT TAard Armrmivnnar~se CNn oon

localhost:8888/notebooks/DL_HW9_fromscratch.ipynb# 911



4/30/23, 5:46 PM

In [ ]:

epochs = np.arange(1,11)

plt.
plt.
plt.
plt.
plt.
plt.

WARNING:matplotlib.legend:No artists with labels found to put in legend.
Note that artists whose label start with an underscore are ignored when 1

xticks(epochs, epochs)
xlabel("Epochs™)

ylabel("Loss")

title("Training Loss vs epochs™)
plot(epochs,train_losses)
legend(loc = "upper right")

egend() is called with no argument.

Out[18]:

DL_HWS9_fromscratch - Jupyter Notebook

<matplotlib.legend.Legend at Ox7f34290a4490>

Loss

Training Loss vs epochs

0.045 4

0.040

0.035

0.030 ~

0.025 A

0.020

0.015 +

0.010 A

0.005

localhost:8888/notebooks/DL_HW9_fromscratch.ipynb#

10

10/11



4/30/23, 5:46 PM

In [ ]:

epochs = np.arange(1,11)

plt.

plt

plt

xticks(epochs, epochs)

.xlabel("Epochs™)
plt.
plt.
plt.

ylabel("Accuracy")
title("Accuracy vs epochs™)
plot(epochs,test accs,label="Test Accuracy")

.plot(epochs,train_accs,label="Train Accuracy")
plt.

legend(loc = "upper right")

out[19]:

<matplotlib.legend.Legend at 0x7f342913ab9o>

Accuracy

Accuracy vs epochs

DL_HWS9_fromscratch - Jupyter Notebook

100 ~
—— Test Accuracy
Train Accuracy
90 A
80 A
70 A
60 A
50 - /\/\’——\_’/

In [ ]:

localhost:8888/notebooks/DL_HW9_fromscratch.ipynb#

1/1



	Experiment
	Dataset
	Model Training
	Model Architecture

	Results
	Conclusion

