
BME646 and ECE60146: Homework 7

Spring 2023
Due Date: 11:59pm, Apr 05, 2023
TA: Fangda Li (li1208@purdue.edu)

Turn in typed solutions via BrightSpace. Additional instructions can be
found at BrightSpace. Late submissions will be accepted with penalty: -10
points per-late-day, up to 5 days.

1 Introduction

Got pizza? The goal for this HW is to create your own pizza-generating
Generative Adversarial Networks (GAN). The learning objectives are:

1. Understand how the generator and discriminator networks are trained
to compete against each other in a minimax game.

2. Experiment with two different GAN learning criteria: Binary Cross-
Entropy (BCE) and the Wasserstein distance.

3. Evaluate your generated images qualitatively, and quantitatively using
the Fréchet Inception Distance (FID).

2 Getting Ready for This Homework

Before embarking on this homework, do the following:

1. Go through Slide 28 through 44 of the Week 9 slide deck on Semantic
Segmentation [3] and develop a good understanding of the concept of
what is meant by Transpose Convolution.

2. Also go through the Slide 43 through 51 of the same set of Week 9
slides to fully understand the relationship between the Kernel Size,
Padding, and Output Size for Transpose Convolution. Make sure you
understand the example shown on Slide 44 in which a 4-channel 1× 1
noise vector is expanded into a 2-channel 4 × 4 noise image. This
example is foundational to designing the Generator side of a GAN.

3. Understand the GAN material on Slide 60 through 77 of the Week 11
slide deck on “Generative Adversarial networks” [2]. For additional
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depth, you may wish to read the original GAN paper by Goodfellow
et al. [5]:

https://arxiv.org/pdf/1406.2661.pdf

4. When you are learning about a new type of a neural network, playing
with an implementation by varying its various parameters and seeing
how that affects the results can often help you gain deep insights in a
short time. If you believe in that philosophy, execute the following the
script in the ExamplesAdversarialLearning directory of DLStudio:

python dcgan_DG1.py

It uses the PurdueShapes5GAN dataset that is described on Slide 56
through 61 of the Week 11 slides. Instructions for downloading this
dataset are on the main DLStudio webpage.

5. For understanding the Wasserstein distance, you need to first read
the explanation on Slide 38 through 43 of the Week 11 slides. Make
sure you understand the 1-Lipschitz condition for imposing smoothness
constraints on the distance function. Now go over Slide 92 through 97
to understand how to create the Critic part of a Critic-Generator pair
for estimating the Wasserstein distance. Finally, look over Slide 100
for how the 1-Lipschitz condition is actually implemented in code.

To play with the Wasserstein-GAN in DLStudio yourself, execute the
following script: wgan_CG1.py, or wgan_CG2.py if you are also inter-
ested in applying the gradient penalty. For a good alternative source
of reference on how Wasserstein GAN with gradient penalty can be
implemented, you can read the networks.py file from [1].

3 Programming Tasks

3.1 Building and Training Your GAN

Here are the steps for making your own (fake) pizza:

1. Before starting, make sure you have downloaded the provided pizza
dataset from BrightSpace along with this handout. The dataset con-
tains 8k+ images for training and 1k images for evaluation, all resized
to 64× 64. Example images are shown in Figure 1.
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Figure 1: Real pizzas.

2. Your first task in this homework is to conjure up your own genera-
tor and discriminator networks. Just like the previous homeworks,
you have total freedom on how you design your networks. The only
network-building requirement is that your generator has to be able to
generate RGB pizza images of size 64× 64 from random noise vectors
and must do so while utilizing transposed convolutions.

3. Subsequently, you’ll need to write your own adversarial training logic.
You can refer to Slide 64 through 69 of the Week 11 slides to famil-
iarize yourself with how it can be done. For this HW, we ask you to
experiment with two different adversarial learning criteria: the Binary
Cross-Entropy (BCE) loss as originally used by Goodfellow et al. in
[5], and the Wasserstein distance as introduced by Arjovsky et al. in
[4]. You should train two GANs in total, one with the BCE loss and
another with the Wasserstein distance. In the rest of this handout, we
shall call them the BCE-GAN and the W-GAN, respectively.

Note that for the purpose of this HW, we do not require you to enforce
the 1-Lipschitz constraint on your Critic for W-GAN. For enforcing
that constraint, authors of the original W-GAN used the heuristics
of weight clipping (as mentioned on Slide 92), while that is generally
replaced later by Gradient Penalty [6] (Slide 106 through 108).

4. In your report, plot the adversarial losses over training iterations for
both the generator and the discriminator in the same figure. Note that
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you should make two separate figures for BCE-GAN and W-GAN.

3.2 Evaluating Your GAN

Here are the steps for evaluating your GANs:

1. First, you should generate 1k images of fake pizza from randomly
sampled noise vectors using your trained generator (BCE-GAN or W-
GAN).

2. For evaluating your generated images quantitatively, you will use the
Fréchet Inception Distance (FID). Originally proposed in [7], the FID
is a widely used metrics for measuring both the quality and the di-
versity of GAN-generated images. More specifically, it does so by
measuring how close the distribution of the fake images is to the dis-
tribution of the real images. To calculate the FID, one would first
encode the set of real images into feature vectors using a pretrained
Inception network, and then model the resulting distribution of fea-
ture vectors using a multivariate Gaussian distribution. The same is
carried out for the set of fake images. Once that is done, the FID is
simply the Fréchet distance between the two multivariate Gaussians.

3. For this homework, you will be using the pytorch-fid package [8] for
calculating the FIDs. To install the package, use the command:

pip3 install pytorch-fid

Once installed, you can use the pytorch-fid package in a Python
script as follows:

1 from pytorch_fid.fid_score \

2 import calculate_activation_statistics , \

3 calculate_frechet_distance

4 from pytorch_fid.inception import InceptionV3

5

6 real_paths = [’/real/0.jpg’, ’/real/1.jpg’, ...]

7 fake_paths = [’/fake/0.jpg’, ’/fake/1.jpg’, ...]

8 dims = 2048

9 block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]

10 model = InceptionV3([block_idx]).to(device)

11 m1 , s1 = calculate_activation_statistics(

12 real_paths , model , device=device)

13 m2 , s2 = calculate_activation_statistics(

14 fake_paths , model , device=device)

15 fid_value = calculate_frechet_distance(m1 , s1 , m2 , s2)

16 print(f’FID: {fid_value :.2f}’)
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4. In your report, for qualitative evaluation, display a 4 × 4 image grid,
similar to what is shown in Figure 1, showcasing images randomly
generated by your BCE-GAN. Also display the same with images by
your W-GAN. You might find the functions in torchvision.utils

really helpful here. For quantitative evaluation, present the FID values
for both GAN variants. Finally, include a paragraph discussing your
results: BCE-GAN v.s. W-GAN, which is better?

4 Submission Instructions

Include a typed report explaining how did you solve the given programming
tasks.

1. Your pdf must include a description of

• The figures and descriptions as mentioned in Sec. 3.

• Your source code. Make sure that your source code files are
adequately commented and cleaned up.

2. Turn in a zipped file, it should include (a) a typed self-contained pdf
report with source code and results and (b) source code files (only .py
files are accepted). Rename your .zip file as hw7 <First Name><Last
Name>.zip and follow the same file naming convention for your pdf
report too.

3. Make sure your submission zip file is under 10MB. Compress
your figures if needed.

4. Do NOT submit your network weights.

5. For all homeworks, you are encouraged to use .ipynb for development
and the report. If you use .ipynb, please convert it to .py and submit
that as source code.

6. You can resubmit a homework assignment as many times as you want
up to the deadline. Each submission will overwrite any previous
submission. If you are submitting late, do it only once on
BrightSpace. Otherwise, we cannot guarantee that your latest sub-
mission will be pulled for grading and will not accept related regrade
requests.

7. The sample solutions from previous years are for reference only. Your
code and final report must be your own work.
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8. To help better provide feedbacks to you, make sure to number your
figures.
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