ECE 60146 Deep Learning Homework 7

Mehmet Berk Sahin, sahinm@purdue.edu, 34740048

April 6, 2023

1 Introduction

The purpose of this homework is to implement our own pizza-generating Generative Adversarial
Networks (GAN). Main take aways from this homework are as follows: understanding how the
generator and discriminator networks are trained to beat each other in a minimax game, exper-
imenting with different GAN criteria such as Binary Cross-Entropy (BCE) and the Wasserstein
distance, and evaluating the generated images qualitatively and quantitatively via Frechet Incep-
tion Distance (FID). Before getting into the dataset and solution of the homework, I want to explain
GANs and WGANSs briefly to refer them later.

1.1 Generative Adversarial Network [1]

GAN was first proposed in [1]. They consists of two networks, which are generator and discrimi-
nator. Discriminator’s objective is classify a sample either as real or fake sample. And generator’s
objective is deceive the discriminator by generating fake images, which look as if they are from the
training set. This competition between two networks was formulated as a minimax optimization
problem as follows:

m&,n mgx V(Dv G) = Emwpdam(x) [log D(:E)] + IE:z:rvpz(z) [log (1 - D(G(Z)))] : (1)

As can be seen in the above formulation, discriminator’s job is learning the classification for real and
fake images by minimizing the corresponding binary cross-entropy. As opposed to that, generator
tries to learn to deceive the discriminator by maximizing its binary cross-entropy loss. It was shown,
in [1], that equation is equivalent to saying that generator tries to minimze the Jensen-Shannon
divergence between two distributions. And JS divergence is summation of two Kullback-Leibler
(KL) divergence terms. They are defined as follows:

e The Jensen-Shannon (JS) divergence:
JS(P,By) = KL(P,|[B) + KL(E,|[Pn) 2)

P.+P
where P,,, = %

e The Kullback-Leibler (KL) divergence:

KLE IR, = [108 (30) P (a)auto) 3)

where 0 < P.(x) and 0 < Py(x).

ECE 60146: Deep Learning Spring 2023 — Purdue University

As you may notice above, although JS and KL divergences are measures of difference between
two probability distributions, they are not sufficient because they do not measure the ”distance”
between two distributions. For example, if for a sample, one of the probabilities is approximately
0 and other is not zero, then this will not give any meaningful gradient. And this is very likely
at the initialization of the distributions. Hence, to use the distance information between two
distributions, [2] introduced Wasserstein distance into the training algorithm. It is given as:

e The Wasserstein distance:

W]P)T,]P) = 1 f Ex N . 4
(Fr.Fo) TPy By) + [l =yl (4)

where II(IP,, Py) indicates the set of all join distributions y(x,y) whose marginals are P, and
P, respectively.

This is also called Earth-Mover distance and it denotes the ”cost” of the optimal transport plan [2].

1.2 Wasserstein GAN

As JS measure is insufficient to measure the difference between probability distributions, GAN
models are highly unstable and they are likely to result in mode collapse. Meaning that discrimi-
nator learned more than the generator and this prevent generator from learning the distribution of
the data. |2] introduced Wasserstein distance as measure of difference between fake and real image
distributions and they proposed WGAN. It was shown that wasserstein distance is equivalent to
the dual maximization problem:

W (P, Pg) = i Eonp, [f(2)] = Eonp, [f(2)] ()

where the supremum is overall 1-Lipschitz functions f. In the training, to impose the lipschitz
constraint, there are several methods. Some of them are gradient clipping, gradient penalty, and
spectral norm. First one, restricts the gradient values between two bounds, which are pre-defined.
Second one adds the constraint as a soft penalty term to the loss to penalize the high gradients.
The third one normalizes the gradients via maximum singular values. In this homework, I reported
the results of WGAN gradient penalty. Thus, the critic loss function I used for WGAN is as follows:

CriticLoss = Eyup, [C(G(2))] — Egup, [C(x)] + M [|V:C(2)]| — 1)2, (6)

where & = ex + (1 — €)z for z ~ Pyp. The interpolation between two distributions come from
Proposition 1 in [3]. And generator’s objective is maximizing the first term in that loss. Note that
minimization of critic loss corresponds to maximization of Wasserstein distance and vice versa.

In this homework, I implemented DCGAN, which is a type of GAN consisting of convolutional
layers [4], and WGAN with gradient clipping and gradient penalty. This homework report is
structured as follows. In Section 2, I go through the dataset. In Section 3 and Section 4, I explained
the implementation of GAN and WGAN architectures and their train algorithms respectively. I did
not explain the code for FID because I just used the template given in the homework. In Section
5, I did quantitative and qualitative evaluation of the results and discussed them. In Section 6, I
explained how to run the code and in Section 7, I discussed takeaways of this homework. Source
code and additional images can be found in the Appendix. Videos for the outputs of GAN
and WGAN for each 500 iteration can be found in the submission folder!

ECE 60146: Deep Learning Spring 2023 — Purdue University

2 Dataset

Dataset required for this homework is simpler than previous homeworks so it required less work
to do. Dataset is divided into two as train and test sets, which consist of pizza images. Train set
consists of 8.2k pizza images and test set consists of 1k pizza images. Each image was resized to
64 x 64. To incorporate the dataset into PyTorch training loop, I implemented a custom PyTorch
dataset in dataset.py module.

2.1 dataset.py

Although implementation of the custom dataset is simpler than previous homeworks, I wanted to
explain it to show the reader the pre-processing steps that each image goes through. The name of

class PizzaDataset(nn.Module):

def __init__(self, path="pizza", train=True):
(PizzaDataset, self).__init_ ()
elf.data_dir = os.path.join(path, "train") if train else os.path.joinﬂpath, "eval"))
f.file_list = os.listdir(self.data_dir) e e

elf.transform = tvt.Compose([tvt.Lambda(lambda img: img.copy()),
tvt.ToTensor(),
tvt.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))])

def __len__(self):
return len(self.file_list)

def __getitem__(self, idx):
file_name = os.path.join(self.data_dir, self.file_list[idx])
I = io.imread(file_name)
img = self.transform(I)
return img, file_name

Figure 1: Implementation of the custom dataset

the custom dataset is PizzaDataset and its implementation is given in Figure [I| Hierarchy of the
dataset folders as follows pizzas is the main folder, it has train and eval subfolders. They consists
of train and test pizza images respectively. The location of the main folder should be the same as
the program files. As seen in Figure 1, PizzaDataset stores file names and when a sample called
by __getitem__, it reads the image file then passes it through consecutive transformations. First
transformation copies the image NumPy object (I did that as a workaround of a bug I encountered.)
Second transformation, converts NumPy array to PyTorch tensor and scales it to the range of [0, 1].
Third transformation, normalizes the data with respect to the given mean and standard deviation,
which are 0.5. In addition to the image tensor, I returned file names as well because I used them
later to calculate FID evaluation score. In the next section, I will discuss the implementation of
GAN and WGAN models with their training loops.

3 GAN

In the original GAN paper [1], authors used fully connected neural networks to implement generator
and discriminator. This is not a good idea for image datasets because thanks to convolutional
layers, network become scale invariant and number of parameters reduce drastically. To improve
the performance, |4] introduced DCGAN architecture whose generator and discriminator consist
of convolution and transpose convolution layers respectively. They are similar to encoder-decoder
network architecture. Discriminator can be thought of as encoder and generator can be thought of
as decoder whose input is a noise vector. Since its performance is promising, I have implemented
the same architecute as DCGAN [4].

ECE 60146: Deep Learning Spring 2023 — Purdue University

Model classes are implemented in hw7_MehmetBerkSahin.py module. Generator is implemented
as Generator class, which is a subclass of nn.Module. Its implementation can be seen in Figure
Generator expects a noise vector with the following shape (batch_size, 100, 1, 1). Then,

bias=False, in_din=100):
ini

nn.Sequential(nn.ConvTranspose2d(128, 3, 4, stride=2, padding=1, bias=bias),
nn.Tanh())

t

Figure 2: Generator implementation

it passes this input through two-dimensional transpose convolutions and increase the height and
width of the input to obtain an output having equal shape to the original images in the dataset.
Doing so, in the training, generator learns the fine details in the dataset. Dimension of the batches
increase as follows: 1 —+4 — 8 — 16 — 32 — 64. As the images are normalized at the beginning
and as it was done by DCGAN paper, I added tanh activation function at the end of the architecture.
Furthermore, to increase the performance, I used batch normalization at each layer. In the forward
pass, I just passed the input through up convolutions and last layer with activation function. I
used the same generator for GAN and WGAN as it will make the comparison of two algorithms
easy and DCGAN generator is used for both approaches. Next, I will discuss the implementation
of discriminator for GAN.

Discriminator’s purpose is classifying images as fake or real so it’s a classifier. As the dataset
consists of images, it is a good idea to implement CNN for that purpose. I implemented discrimina-
tor of DCGAN, which performs well in [4]. Model architecture can be seen in Figure 3| It consists
of convolutional layers which reduce the size of the images by stride = 2. To improve the per-
formance I used batch normalization and different than generator, output of the last convolutional
layer passes through sigmoid activation function. Because discriminator estimates the probability
of image being fake or real. At the end of the training, if generator is trained well, discriminator
should output 0.5 for any image. Meaning that generator generates very good fake samples so
discriminator is not able to distinguish them. Next I will explain the GAN class.

Definition of GAN with its __init__ is given in Figure [4] Initialization of parameters necessary
for GAN training are initialized such as beta parameters of Adam optimizer, device (cpu/gpu),
learning rate, batch size, length of the noise vector, generator and discriminator objects, and their
corresponding Adam optimizer objects. Next, I will explain the train() function for GAN. As
it is not short, I will explain its important parts for details, reader can look at the source code.
train() function has two arguments: num_epochs and trainloader. First one is the number of
epochs for training loop and the second one is dataloader for train set. In Figure 5| I do the same
weight initialization as in DCGAN paper [4] because it provides better start to training. Then, I
initialized dictionaries to save them and plot them later. Lastly, I initialized fixed noise to save

ECE 60146: Deep Learning Spring 2023 — Purdue University

s Discriminator(nn.Module):
__init__(self, in_chn, neg_slope=0.2):
super(Discriminator, self)._ init_ ()

self.in_chn = in_chn
self.convs = nn.Sequential(

nn.Conv2d(in_chn, 128, 4, stride=2, padding=1, bias=False),
nn.BatchNorm2d(128),
nn.LeakyReLU(neg_slope, inplace=True),

nn.Conv2d (128, 256, 4, stride=2, padding=1, bias=False)
nn.BatchNorm2d(256),
nn.LeakyReLU(neg_slope, inplace=True),

nn.Conv2d (256, 512, 4, stride=2, padding=1, bias=False),
nn.BatchNorm2d(512),
nn.LeakyReLU(neg_slope, inplace=True),

nn.Conv2d(512, 1024, 4, stride=2, padding=1, bias=False)
nn.BatchNorm2d(1024),
nn.LeakyReLU(neg_slope, inplace=True),

nn.Conv2d(1024, 1, 4, stride=1, padding=0, bias=False),
nn.Sigmoid()

)

f forward(self, x):
out = self.convs(x)
return out

Figure 3: Discriminator implementation

GAN(object):
__init_ (self, args):

self.device = f"cuda:{args.cuda_idx}" if torch.cuda.is_available() else "cpu"

self.betal = args.betal
f.beta2 = args.beta2
batch_size = args.batch_size
1r = args.lr
.zdim = args.noise_dim

generator = Generator(in_dim=args.noise_dim)
.discriminator = Discriminator(in_chn=3)

self.opt_d = Adam(params: .discriminator.parameters(),
lr=self.lr, beta betal, self.beta2))
.generator.parameters(),
betas=(self.betal f.beta2))

Figure 4: __init__ method of GAN

the outputs of the same noise to see the progress of the generator qualitatively. Second part of
the implementation can be seen in Figure [6] Train loop consist of two loops. Outer loop iterates
over epochs and the inner loop iterates over batches. Firstly, discriminator’s gradients are set to 0
in case there may be accumulated gradients from previous steps. Then, forward pass is done over
the discriminator for real images. To calculate the first term of the binary cross-entropy loss in
equation , I entered the predicted probabilites and labels 1 to nn.BCELoss. Then, I do back-
propagation through the first term of BCE to calculate the gradients related to the first term.
Then, to calculate the gradients for the second term in equation BCE, I first generate noise vectors
for each sample in the batch, then I create fake images by passing the noise vector through the
generator. I pass the fake images to the discriminator to get the estimates of their probabilities of
being real. Then, I calculated the second term of BCE by passing the fake images with labels 0
to the nn.BCELoss criterion. I back-propagated the loss to calculate the gradients for the second
term of BCE. Finally, I updated the discriminator weights with step () function. After those steps,
discriminator is trained for one step. Then, we need to train the generator to make it generate
more realistic fake images. To do so, I first set the accumulated gradients of the generator to O.

ECE 60146: Deep Learning Spring 2023 — Purdue University

self.discriminator.apply(weight_inits)
self.generator.apply(weight_inits)

criterion = nn.BCELoss()

target_real = torch.one .batch_size, devic .device)
target_fake = torch.zert f.batch_size, devi .device)

losses = {"

fixed_noise = torch.FloatTensor(self.batch_size, self.zdim, 1, 1).normal_(0, 1).to(self.device)

counter = @

Figure 5: GAN.train() implementation part 1
for epoch in range(num_epochs):

for i, (imgs, _) in enumerate(train_loader, 1):

if imgs.shape[@] !'= self.batch_size:
continue

counter += 1
.discriminator.zero_grad()

imgs = imgs.to(self.device)

pred_probs_r = self.discriminator(imgs).view(-1)
real_loss = criterion(pred_probs_r, target_real)
real_loss.backward()

z = torch.r n(self.batch_size, self.zdim, 1, 1, device=self.device)
fake_imgs .generator(z)

pred_probs_ elf.discriminator(fake_imgs.detach()).view(-1)
fake_loss = criterion(pred_probs_f, target_fake)

fake_loss.backward()

bce_loss = real_loss.item() + fake_loss.item()

self.opt_d.step()

self.generator.zero_grad()

pred_probs_f2 = self.discriminator(fake_imgs).view(-1)
gen_loss = criterion(pred_probs_f2, target_real)
gen_loss.backward()

self.opt_g.step()

Figure 6: GAN.train() implementation part 2

Then, using the fake images generated previously, I do forward pass through the discriminator.
Then, I minimize the second term of equation |1} Here, I want to clarify a possible confusion. In
equation |1}, optimization is over —BCE. So, minimizing the second term of equation [1is equivalent
to maximizing the second term of BCE. To do so, instead of entering fake labels, I enter real labels
with fake probabilities to nn.BCELoss. Then, I calculate the gradients with backward () and update
the generator weights. Rest of the lines, which do not appear in Figure [} consists of saving the
results, reporting them, and saving generated images for each 500 iteration.

4 WGAN

GANSs are able to generate fake images when they are tuned well to the dataset, model architecture
and problem formulation. Doing so is not easy task and requires lot of experiments. And it is very
likely to encounter mode collapse problem, which prevent generator from learning the underlying
distribution. To mitigate these problems, [2] was introduced. Now, instead of discriminator, we
have a critic function and it is constrained to be 1-Lipschitz. I tried weight clipping and gradient

ECE 60146: Deep Learning Spring 2023 — Purdue University

penalty approaches to enforce that constraint [2,3]. The latter performs better as pointed out in [3]
so I only reported WGAN with gradient penalty results. WGAN model is implemented as WGAN
class in hw7_MehmetBerkSahin.py. I will explain its implementation step by step. Similar to GAN,

WGAN (object) :
init (self, args):

self.device = f"cuda:{args.cuda_idx}" if torch.cuda.is_available() else "cpu"

self.betal = args.betal

beta2 = args.beta2
batch_size = args.batch_size

f.lr = args.lr

f.gp = args.gp

f.penalty = args.penalty if self.gp e
clip = args.clip if not self.gp else M
.zdim = args.noise_dim

.generator = Generator(bias=args.bias, in_dim=args.noise_dim)
critic = Critic(bias=args.bias)

.critic.parameters(
, betas: betal, .beta2))
.generator.parameters(),
, betas=(self.betal, .beta2))
c_iter = args.c_iter
cl_iter = args.cl_iter

Figure 7: __init__ method of WGAN

I initialize the device, optimizer, and training hyperparameters. Different than GAN, there are
penalty term, c_iter, cl_iter, and clip. I will elaborate on them further in next paragraphs.

There are common points in WGAN and GAN train loops. I will omit them to avoid repetition,
instead, I will explain the different points step by step. train() function implementation can be
seen in Figure [8] I initialize dictionaries to keep different type of losses. I put if-else statement for

def train(self, train_loader, pre_trained=False, num_epochs=30):

if not os.path.exists("wgan_fake_samples"):
os.mkdir("wgan_fake_samples")
print(f"training is running on {self.device}!")

metric: {
“wasserstein" : [],
“critic loss" : [I,
"gen loss" : [I]

+

self.critic = self.critic.to(self.device)
self.generator Lf.generator.to(self.device)

if pre_trained == False:
self.critic.apply(weight_inits)
self.generator.apply(weight_inits)

else:
self.critic.load_state_dict(torch.load("best_wgan_critic"))
self.generator. load_state_dict(torch.load("best_wgan_generator"))

fixed_noise = torch.FloatTensor(self.batch_size, self.zdim, 1, 1).normal_(@, 1).to(self.device)

one = torch.FloatTensor([1]).to(device=self.device)
mone = torch.FloatTensor([-1]).to(device=self.device)

gen_loss = @
critic_loss = @
wass_dist = 0

Figure 8: WGAN.train() implementation part 1

training from pre-trained model or training from scratch (I did not use any pre-trained model in
my results.) Furthermore, there is one and mone tensors, which are important and will be used in
back-propagation. Train loop consists of three loops. The first and second loop are the same as

ECE 60146: Deep Learning Spring 2023 — Purdue University

gen_iter = @

for epoch in range(num_epochs):
data_iter = iter(train_loader)
idx = @
while idx < len(train_loader):

for param in f.critic.parameters():
param. requires_grad = True

c_iter = self.cl_iter if gen_iter < 25 or gen_iter % 500 == 0 else self.c_iter
c_idx = 0
while c_idx < c_iter and idx < len(train_loader):

c_idx += 1
idx += 1

if not self.gp:
for param in self.critic.parameters():
param.data.clamp_(-self.clip, self.clip)

imgs, _ = next(data_iter)
imgs = imgs.to(self.device)

Figure 9: WGAN.train() implementation part 2

GAN loops. Different than that, here I train critics more than once to prevent mode collapse so
there is a third loop. It iterates c_iter times, which is pre-defined and 5. There is also cl_iter
and it denotes large number of critic iterations. Meaning that, at first 25 step, critic is trained
more than 5 iterations to prevent mode collapse. In my experiments, although this worked for
weight clipping, it did not work for gradient penalty so I made it 5 too. Stopping criteria for
the inner loop is either finishing one epoch or number of iterations for critic. Before the critic
training, I activate the gradient calculation for critic weights to backprop them later. Inside the
loop, if weight clipping is on, I clip the weights and extract the next batch. Using the real images

imgs, _ = next(data_iter)
imgs = imgs.to(self.device)

self.critic.zero_grad()

real_loss = self.critic(imgs).mean(dim=0).view(1)
real_loss.backward(mone)

z = torch.randn(ings.shape[@], self.zdim, 1, 1, device=self.device)
fake_img: .generator(z)

fake_los: 1f.critic(fake_imgs).mean(din=0) .view(1)

fake_loss. backward(one)

f self.gp:
ratio = torch.FloatTensor(imgs.shape[@], 1, 1, 1).uniform_(®, 1).to(self.device)

int_dist = ratio * imgs + (1 - ratio) * fake_imgs.detach()
int_dist.requires_grad = True
c_out = self.critic(int_dist)

c_grads = torch.autograd.grad(c_out, int_dist, torch.ones(c_out.size(), device=self.device),
create_graph=True, retain_graph=True)[0]

c_grads = c_grads.view(c_grads.shape[@], -1)
penalty penalty * ((c_grads.norm(2, dim=1) — 1) s 2).mean()
penalty.ba d()

wass_dist = real_loss - fake_loss
loss_critic = wass_dist
self.opt_c.step()

param in self.critic.parameters():
param. requires_grad = False

Figure 10: WGAN.train() implementation part 3

in the batch, algorithm performs forward pass through the critic. Since the second term in critic
loss @ has a minus sign I add mone inside the backward () to multiply the gradients by -1. Then,
gradients for the second term in equation @ are calculated. Afterwards, from a noise vector, which
is sampled from a normal distribution, generator generates fake images. These images are passed
to critic and empirical mean at the first term of critic loss @ is calculated. Since it is positive

ECE 60146: Deep Learning Spring 2023 — Purdue University

in the critic loss, I passed one to the backward() function. Then, gradients for the first term are
calculated. Lastly, if the gradient penalty mode is on, algorithm calculates the penalty term as
follows. First, for each image, it samples a number from uniform distribution between 0 and 1.
Then, real and fake samples are interpolated by the sampled epsilons, which is ratio in the code.
Then, I activate the gradient calculations with respect to interpolated image and they are passed
to the critic for forward pass. They gradient of the critic with respect to its input is calculated
by using torch.autograd.grad() function. Its L2 norm is calculated and it gets multiplied by a
scalar, which varies depending on how much we want the function to be smooth. Then, algorithm
back-propagates through the penalty term. Lastly, all necessary gradients are calculated and critic
weights are updated using those gradients by calling step() on self.opt_c. Losses are saved and
gradient calculation for critic parameters are disabled for generator training. Part 4 of the WGAN
train() can be seen in Figure First, accumulated gradients of generator from previous steps

self.generator.zero_grad()

z = torch. mgs.shape[0], self.zdim, 1, 1, device=self.device)
fake_imgs = self.generator(z)

loss_gen = self.critic(fake_imgs).mean().view(1)
loss_gen.backward (mone)

gen_loss = -loss_gen

self.opt_g.step()

gen_iter += 1

print(f" [{epoch+1}/{num_epochs}] [{idx}/{1len(train_loader)}] [{gen_iter}] loss_C: {wass_dist.item():.4f}, 1
metrics["wasserstein™].append(wass_dist.item())

metrics["critic loss"].append(loss_critic.item())

metrics["gen loss"].append(gen_loss.item())

if gen_iter % 500 == 0:
with torch.no_grad():
fake = self.generator(fixed_noise).detach().cpu()
fake = fake.mul(0.5).add(0.5)
save_image(fake, fp=f"wgan_fake_samples/{gen_iter//500}.]jpg", nrow=int(self.batch_size0.5))

Figure 11: WGAN.train() implementation part 4

are set to 0. Then, noise vectors from normal distribution are sampled for each sample in batch.
Then, fake image is constructed by the generator. That is forward passed to the critic. Then,
results are back-propagated through the networks. As the generator tries to maximize the first
term in critic loss [6] this is equivalent to minimizing its minus. So, I multiplied the gradients with
-1 by passing mone inside backward (). Then, generator weights are updates by calling step() on
self.opt_g. Other lines consist of saving the losses and saving the generated images at each 500
iteration. Next, I will discuss the experiments and results. For the rest of the code, reader can take
a look at the source code. It is well-commented.

5 Results & Discussion

I conducted three experiments for GAN, WGAN with weight clipping and WGAN with gradient
penalty. I observed that gradient penalty is better at enforcing the 1-Lipschitz constraint than gra-
dient clipping so I report the results for WGAN with gradient penalty. First, I plot the adversarial
losses over training iterations for both generator and discriminator/critic and for both BCE-GAN
and WGAN. Then, I evaluate the performance of the algorithms both quantitatively and qualita-
tively. Then, I present sample images from the generators on 4 x 4 grid. All experiments were run
in NVIDIA A100 GPU. I do not guarantee training for GANs will run in CPU without any error.

ECE 60146: Deep Learning Spring 2023 — Purdue University

5.1 BCE-GAN Results

I used the following hyperparameters to train DCGAN with BCE loss: Adam optimizer is used
with (51, 82) = (0.5,0.999), learning rate is le — 4, batch size is 64, dimensionality of the noise
vector is 100, and number of epochs is 125. I tried to run the algorithm for 750 epochs as I did for
WGAN but GAN started to diverge after 125" epoch. Generator’s and discriminator’s adversarial

BCE-GAN Loss v.s. Iteration

25 1

20 1

T T T T T T T T
o 2000 4000 G000 BOOO 10000 12000 14000
Iteration

Figure 12: BCE-GAN loss of generator and discriminator

losses can be seen in Figure[I2] G and D denote the generator and discriminator losses respectively.
They are noisy because as opposed to previous tasks, objective of this task is adversarial. So, one’s
performance affect another and since both sides are being trained, training procedure is noisy.
For example, discriminator’s loss can be 0 but this may be due to the fact that generator may
not generate realistic samples. It may not be because discriminator is trained very well. Due to
such uncertainities, loss plot is noisy. However, it is obvious that both model started from a high
loss and decreased rapidly at the beginning. To understand if the generator learns the underlying
distribution of the dataset, we need to make quantitative and qualitative assesments.

I make a gif of the generated images at each 500 iteration. You can find the video
in the homework submission folder! In addition to that I added the 4 x 4 grid to the report
as well for completeness. Sample fake pizzas which are generated by BCE-GAN generator can be
found in Figure As in the assignment, we are asked to display 4 x 4 grid, I did not add more
but larger grid can be found in the Appendix section. As it can be seen in the figure, most of the
pizzas’ shapes are generated successfully, albeit with small errors. Furthermore, colors and textures
inside pizzas resemble real pizzas. For example, image at second row and third column look as if
it is a real pizza. Although there are some images without any blur or deformations, few samples
include them. Moreover, pizzas generated in Figure are not the same type. Model generated
various types of pizzas. This implies that model learned the dataset distribution to some extent.
Qualitative evaluations show that model learns the data distribution to some extent. To evaluate
the performance quantitatively, I used the code template given in the assignment to calculate the
FID score of fake images generated by BCE-GAN. I chose 1k samples from real images and
generated 1k images randomly. FID score was found to be 110.2647 for BCE-GAN.

10

ECE 60146: Deep Learning Spring 2023 — Purdue University

(a) Real images from train dataset (b) Fake images generated by BCE-GAN

Figure 13: Real images v.s. BCE-GAN fake images

5.2 WGAN with Gradient Penalty

I used the following hyperparameters to train DCGAN with Wasserstein distance loss. Adam
optimizer is used with (81, f2) = (0.5,0.999), c_iter is 5, cl_iter is 5, penalty weight is 10, learning
rate is le—4, batch size is 64, and dimension of the noise vector is 100. As this model did not diverge
and more stable than BCE-GAN, I run it for 750 epochs. Generator and discriminator adversarial
losses with wasserstein distance over iterations can be seen in Figure [[4] First observation is that

Critic Loss Generator Loss s Wasserstein Distance
o
35 T v 20 150
-50 " 10 %125
2 &
& s 5 0 s 100
p £ B
5 100 £ -0 B
8
125 20 £ %
150 . » f o]
175 T T T T T T T T T T T T T T T T T T 0 T T T T T T T T T
o 2500 5000 7500 10000 12500 15000 17500 20000 o 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration Iteration Iteration
(a) Critic loss v.s. iteration (b) Generator loss v.s. iteration (c) Wasserstein distance v.s. iteration

Figure 14: Different metrics for WGAN GP at each iteration

wasserstein distance decreased tremendously at the beginning of the training and then it increased
slightly. Although it increased, this neither indicates algorithm diverges or lack of learning because
wasserstein distance in the training is only empirical estimate of the real wasserstein distance. For
it to be 100% accurate, samples should be distributed uniformly and critic should be 100% accurate,
which are not the case obviously. So, it is more reliable to asses the performance of the algorithm
over FID metric and by visualizing samples. Moreover, the noise in the generator loss plot is due
to the fact that wasserstein estimation is noisy because critic’s performance is uncertain. And we
can that critic’s loss increased in Figure That implies generator learned to generate realistic

11

ECE 60146: Deep Learning Spring 2023 — Purdue University

fake images. I plotted these in one plot and it can be seen in Figure [I5] In Figure G, W,

WGAN GP Loss v.s. lteration

— C

150 W

100 1

=100 A

—150 -

] 2500 5000 7500 10000 12500 15000 17500 20000
lteration

Figure 15: WGAN GP loss of generator, critic, and wasserstein distance

and C denote generator loss, wasserstein distance and critic loss respectively. One observation for
WGAN losses is that although it is noisy, it is not as noisy as GAN losses. I think this supports
the fact that WGANSs are more stable than GANs, especially when 1-Lipschitzness constraint is
enforced. I made a gif of the generated images at each 500 iteration. You can find
the video in the homework folder! Additionally, I added 8 x 8 grid and 4 x 4 grid to the
report for completeness. First one is in the Appendix and the second one is in Figure As in
Figure fake pizzas generated by WGAN GP are more realistic than fake images generated by
BCE GAN in Figure In Figure [I6] there are various type of pizzas from different perspectives.
For example, in first row second column, there is a mixed pizza. In second row, fourth column
there is a very good margherita from top and close view. Similar margherita can be seen at fourth
row and fourth column but from a different perspective (far away). Although there are some
distortions in some images, quality of the fake samples are sufficiently good for the purpose of this
homework. To evaluate the performance of WGAN GP, I chose 1k samples from real images
and generated 1k images randomly. FID score was found to be 91.9196 for WGAN
GP, which is better than GAN. This was expected because instead of JS, we minimized Wasserstein
distance by incorporating 1-Lipschitzness of the critic function.

To sum, both BCE-GAN and WGAN GP models work fine. Their loss function imply generator
learns the distribution of the data. And the loss functions are very similar to the corresponding loss
functions in Prof. Kak’s slides so that is another factor verifying the fact that my implementations
are correct. Fake images seem realistic and they look like real pizzas, albeit with small errors. To
increase the performance of the model and learn the data distribution better, one may implement
spectral norm to enforce the 1-Lipschitzness constraint on the objective. It is not a soft constraint
like gradient penalty and it normalizes the gradients with the largest singular value. In addition to
that, I did not test other types of architectures such as skip-connections or different convolutional
layers (different kernel sizes, stride, padding, etc.) because I think current models’ performances
are good enough for this homework.

12

ECE 60146: Deep Learning Spring 2023 — Purdue University

(a) Real images from train dataset (b) Fake images generated by WGAN GP

Figure 16: Real images v.s. WGAN GP fake images

WGAN’s performance is better than BCE-GAN. This can be seen from both quantitative and
qualitative analysis. FID of WGAN is less than GAN’s FID. And if we compare the fake images
that are generated by those models, images generated by WGAN have better resolution, texture
and shape therefore they are more realistic. Some of the GAN’s fake images look as if they are
drawn with brush and they have some blurs. However, in WGAN’s images, they are sharper and
there are not too much blurs. The distinction is clearer if the reader look at the 8 x 8 grids in the
Appendix. Furthermore, WGAN’s speed of learning is much faster than GAN’s learning speed. If
you look at the gif videos that I put in homework file, the first outputs of WGAN make much more
sense and look realistic than GAN'’s first outputs. Lastly, as WGAN is more stable than GAN, 1
can run it for 750 epochs but I could run GAN for only 125 epochs. After that it started to diverge.

6 How to run the code?

To run the code properly, one needs to put the pizza dataset under the same location as the
homework program files. And folder hierarchies should follow the convention explained in Section
2. To run the training of the BCE-GAN with recommended parameters, one can run the following
command:

python hw7_MehmetBerkSahin —--betal 0.5 --beta2 0.999 --1r le-4 --batch_size 64
--noise_dim 100 --num_epochs 125 --train_wgan False

To run the training of the WGAN GP, one can run the following command in terminal:

python hw7_MehmetBerkSahin --betal 0.5 --beta2 0.999 --1r le-4 --batch_size 64
--noise_dim 100 --num_epochs 750 --train_wgan True --c_iter 5 --cl_iter 5 --gp True
--penalty 10

All loss plots and figures including fake samples will be saved to the local disk.

13

ECE 60146: Deep Learning Spring 2023 — Purdue University

7 Lessons Learned

In this homework, I learned how the generator, discriminator and the critic are trained to beat
each other in minimax game, I experimented with different GAN types including GAN with BCE,
WGAN with weight clipping, and WGAN with gradient penalty. I observed the evolution of the
generated samples and saved them as gif files. If reader wants, s/he can check the homework
file that I submitted. I experimented how different normalizations such as InstanceNorm and
BatchNorm affect the performance of GANs. I observed how model collapse occur for GANs with
wrong hyperparameters and learned that they should be tuned properly.

8 Appendix

8.1 Sample Real Images

Figure 17: Real images from train dataset

14

ECE 60146: Deep Learning Spring 2023 — Purdue University

8.2 Sample Fake Images

Figure 18: Fake images generated by BCE-GAN

15

ECE 60146: Deep Learning Spring 2023 — Purdue University

Figure 19: Fake images generated by WGAN GP

8.3 Source Code
8.3.1 dataset.py

import torch.nn as nn

import os

from skimage import io

import torchvision.transforms as tvt

class PizzaDataset(nn.Module):

def __init__(self, path="pizza", train=True):
super (PizzaDataset, self).__init__()
self.data_dir = os.path.join(path, "train") if train else os.path.join(path, "eval")
self.file_list = os.listdir(self.data_dir) # list of file names
copy image -> tensor -> normalize
self .transform = tvt.Compose([tvt.Lambda(lambda img: img.copy()),
tvt.ToTensor(),
tvt.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))]) # normalization

def __len__(self):
return len(self.file_list) # data size

16

ECE 60146: Deep Learning Spring 2023 — Purdue University

def __getitem__(self, idx):
file_name = os.path.join(self.data_dir, self.file_list[idx])
I = io.imread(file_name)
img = self.transform(I)
return img, file_name

test code
if __name__ == "__main__":
print("dataset is being generated...")

train_data = PizzaDataset(path="pizzas", train=True)
test_data = PizzaDataset(path="pizzas", train=False)
print(”train and test data were constructed!")
print(f"train length: {len(train_data)}")
print(f"test length: {len(test_data)}")

a=>5
print(len(train_data[0]))

8.3.2 utils.py

from pytorch_fid.fid_score import calculate_activation_statistics, calculate_frechet_distance
from pytorch_fid.inception import InceptionV3

import torch

from torchvision.utils import save_image

import os

def frechet_value(real_paths, fake_paths, device, dims=2048) :
load InceptionV3 model
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
model = InceptionV3([block_idx]).to(device)
calculate statistics for both batch
ml, sl = calculate_activation_statistics(real_paths, model, device=device)
m2, s2 = calculate_activation_statistics(fake_paths, model, device=device)
calculate frechet value
fid_value = calculate_frechet_distance(ml, si, m2, s2)
return fid_value

def calc_frechet(model, dataset, size=64):

device = "cuda" if torch.cuda.is_available() else "cpu"

sample Teal images randomly

perm = torch.randperm(len(dataset))

idxs = perm[:size]

img path names

real_paths = [dataset[i][1] for i in idxs]

create fake images

z = torch.randn(size, 100, 1, 1)

fake_imgs = model.generator(z).mul(0.5).add(0.5)

create directory for fake images

folder_name = "fake_images"

if not os.path.exists(folder_name):
os.mkdir (folder_name)

save fake images

fake_paths = []

for idx in range(fake_imgs.shape[0]):
f = os.path.join(folder_name, f'"fake_img{idx}.jpg")
save_image (fake_imgs[idx], fp=f)
fake_paths.append (f)

calculate frechet wvalue

fid = frechet_value(real_paths, fake_paths, device)

return fid

test code
if __name__ == "__main__

real_paths = ["pizzas/train/01001.jpg", "pizzas/train/01002.jpg"]
fake_paths = ["pizzas/train/01003.jpg", "pizzas/train/01004.jpg"]

",

device = "cuda:0" if torch.cuda.is_available() else "cpu
fid_val = frechet_value(real_paths, fake_paths, device, dims=2048)
print(f"frechet value:", fid_val)

8.3.3 hw7_MehmetBerkSahin.py

import torch

import torch.nn as nn

import pickle

from torch.optim import Adam, RMSprop

import time

from torch.utils.data import Dataset, DataLoader
from torchvision.utils import make_grid, save_image
import torchvision.transforms as tvt

17

ECE 60146: Deep Learning Spring 2023 — Purdue University

from dataset import PizzaDataset
import torch.nn.functional as F
import os

import argparse

import random

import numpy as np

from utils import calc_frechet

class Generator (nn.Module) :
def __init__(self, chn=3, bias=False, in_dim=100):

super (Generator, self).__init__()

filter sizes: [1024, 512, 256, 128]

self.chn = chn

self.up_convs = nn.Sequential(
first up layer
nn.ConvTranspose2d(in_dim, 1024, 4, stride=1, padding=0, bias=bias),
nn.BatchNorm2d (1024) ,
nn.ReLU(True),
second up layer
nn.ConvTranspose2d (1024, 512, 4, stride=2, padding=1, bias=bias),
nn.BatchNorm2d (512),
nn.ReLU(True),
third layer
nn.ConvTranspose2d(512, 256, 4, stride=2, padding=1, bias=bias),
nn.BatchNorm2d (256) ,
nn.ReLU(True),
fourth layer
nn.ConvTranspose2d (256, 128, 4, stride=2, padding=1, bias=bias),
nn.BatchNorm2d(128),
nn.ReLU(True)

)
self.last_layer = nn.Sequential(nn.ConvTranspose2d(128, 3, 4, stride=2, padding=1, bias=bias),
nn.Tanh())
def forward(self, x):

out = self.last_layer(self.up_convs(x))
return out

class Discriminator(nn.Module):
def __init__(self, in_chn, neg_slope=0.2):
super (Discriminator, self).__init__()
filter sizes: [128, 256, 512, 1024]

self.in_chn = in_chn
self.convs = nn.Sequential(
first down layer
nn.Conv2d(in_chn, 128, 4, stride=2, padding=1, bias=False),
nn.BatchNorm2d(128),
nn.LeakyReLU(neg_slope, inplace=True),
second down layer
nn.Conv2d (128, 256, 4, stride=2, padding=1, bias=False),
nn.BatchNorm2d (256) ,
nn.LeakyReLU(neg_slope, inplace=True),
third down layer
nn.Conv2d (256, 512, 4, stride=2, padding=1, bias=False),
nn.BatchNorm2d (512),
nn.LeakyReLU(neg_slope, inplace=True),
fourth down layer
nn.Conv2d(512, 1024, 4, stride=2, padding=1, bias=False),
nn.BatchNorm2d (1024) ,
nn.LeakyReLU(neg_slope, inplace=True),
fifth layer
nn.Conv2d (1024, 1, 4, stride=1, padding=0, bias=False),
nn.Sigmoid ()
)

def forward(self, x):
out = self.convs(x)
return out

class Critic(nn.Module):
def __init__(self, neg_slope=0.2, bias=False):

super(Critic, self).__init__()

filter sizes: [128, 256, 512, 1024]

self.convs = nn.Sequential(
first down layer
nn.Conv2d(3, 128, 4, stride=2, padding=1, bias=bias),
#nn.BatchNorm2d (128),
nn.LeakyReLU(neg_slope, inplace=True),
second down layer
nn.Conv2d (128, 256, 4, stride=2, padding=1, bias=bias),
#nn. BatchNorm2d (256)
nn.LeakyReLU(neg_slope, inplace=True),
third down layer
nn.Conv2d (256, 512, 4, stride=2, padding=1, bias=bias),
#nn.BatchNorm2d (512),
nn.LeakyReLU(neg_slope, inplace=True),
fourth down layer
nn.Conv2d (512, 1024, 4, stride=2, padding=1, bias=bias),
#nn.BatchNorm2d (1024),
nn.LeakyReLU(neg_slope, inplace=True),
fifth layer
nn.Conv2d (1024, 1, 4, stride=1, padding=0, bias=bias),

18

ECE 60146: Deep Learning Spring 2023 — Purdue University

)

def forward(self, x):
out = self.convs(x)
return out

class WGAN(object):
def __init__(self, args):

set device
self.device = f"cuda:{args.cuda_idx}" if torch.cuda.is_available() else "cpu"

hyperparamters

self.betal = args.betal

self.beta2 = args.beta2

self.batch_size = args.batch_size

self.lr = args.lr

self.gp = args.gp

self.penalty = args.penalty if self.gp else None
self.clip = args.clip if not self.gp else None
self.zdim = args.noise_dim

generator & critic
self.generator = Generator(bias=args.bias, in_dim=args.noise_dim)
self.critic = Critic(bias=args.bias)

train params

self.opt_c = Adam(params=self.critic.parameters(),
1lr=self.lr, betas=(self.betal, self.beta2))

self.opt_g = Adam(params=self.generator.parameters(),
1r=self.lr, betas=(self.betal, self.beta2))

self.c_iter = args.c_iter

self.cl_iter = args.cl_iter

de

=}

train(self, train_loader, pre_trained=False, num_epochs=30):
that's where images will be saved
if not os.path.exists("wgan_fake_samples"):
os.mkdir ("wgan_fake_samples")
print(f"training is running on {self.device}!")

histories

metrics = {
"wasserstein" : [],
"critic loss" : [1,
"gen loss" : []

}

put the models to device
self.critic = self.critic.to(self.device)
self.generator = self.generator.to(self.device)

if pre_trained False:
self.critic.apply(weight_inits)
self.generator.apply(weight_inits)

else:
self.critic.load_state_dict(torch.load("best_wgan_critic"))
self.generator.load_state_dict(torch.load("best_wgan_generator"))

fized noise
fixed_noise = torch.FloatTensor(self.batch_size, self.zdim, 1, 1).normal_(0, 1).to(self.device)
targets
one = torch.FloatTensor([1]).to(device=self.device)
mone = torch.FloatTensor([-1]).to(device=self.device)
loss wariables
gen_loss = 0
critic_loss = 0
wass_dist = 0
number of genmerator iterations
gen_iter = 0
for epoch in range(num_epochs) :
data_iter = iter(train_loader)
idx = 0 # number of iteration in current epoch
while idx < len(train_loader):
activate weights of the critic
for param in self.critic.parameters():
param.requires_grad = True

that was 500
c_iter = self.cl_iter if gen_iter < 25 or gen_iter % 500 == 0 else self.c_iter
c_idx = 0 # number of critic iteration
train critic
while c_idx < c_iter and idx < len(train_loader):
update counters
c_idx += 1
idx += 1
if not doing gradient penalty, then do gradient clipping
if not self.gp:
for param in self.critic.parameters():
param.data.clamp_(-self.clip, self.clip)

calculate real loss
imgs, _ = next(data_iter)

19

ECE 60146: Deep Learning Spring 2023 — Purdue University

imgs = imgs.to(self.device)

self.critic.zero_grad()

calculate gradients for real part

real_loss = self.critic(imgs).mean(dim=0).view(1)
real_loss.backward(mone)

calculate gradients for fake part

z = torch.randn(imgs.shape[0], self.zdim, 1, 1, device=self.device)
fake_imgs = self.generator(z)

fake_loss = self.critic(fake_imgs).mean(dim=0).view(1)
fake_loss.backward(one)

gradient penalty term
if self.gp:
ratio = torch.FloatTensor(imgs.shape[0], 1, 1, 1).uniform_(0, 1).to(self.device)
interpolated distribution
int_dist = ratio * imgs + (1 - ratio) * fake_imgs.detach()
int_dist.requires_grad = True
c_out = self.critic(int_dist)
calculate the gradient for soft constraint
c_grads = torch.autograd.grad(c_out, int_dist, torch.ones(c_out.size(), device=self.device),
create_graph=True, retain_graph=True) [0]
#print ("LIMBASS CENNETI:", c_grads.shape)
c_grads = c_grads.view(c_grads.shape[0], -1)
penalty = self.penalty * ((c_grads.norm(2, dim=1) - 1) #** 2).mean()
penalty.backward()

wass_dist = real_loss - fake_loss
loss_critic = -wass_dist
self.opt_c.step()

deactivate the critic weights
for param in self.critic.parameters():
param.requires_grad = False

train generator

self.generator.zero_grad()

z = torch.randn(imgs4shape[O], self.zdim, 1, 1, device=self.device)
fake_imgs = self.generator(z)

loss_gen = self.critic(fake_imgs).mean().view(1)
loss_gen.backward(mone)

gen_loss = -loss_gen

self.opt_g.step()

gen_iter += 1

save losses

print (f" [{epoch+1}/{num_epochs}] [{idx}/{len(train_loader)}] [{gen_iter}] loss_C: {wass_dist.item():.4f}, loss_G: {gen_loss.item():.4f} wass dist: {wass_dis
metrics["wasserstein"].append(wass_dist.item())

metrics["critic loss"].append(loss_critic.item())

metrics["gen loss"].append(gen_loss.item())

save the results per 500 generator iteration
if gen_iter 7 500 ==
with torch.no_grad():
fake = self.generator(fixed_noise).detach().cpu()
fake = fake.mul(0.5).add(0.5)
save_image(fake, fp=f'wgan_fake samples/{gen_iter//500}.jpg", nrow=int(self.batch_size**0.5))

save the results

pickle.dump(metrics, open("wgan_results.pkl", "wb"))
torch.save(self.generator.state_dict(), "best_wgan_generator")
torch.save(self.critic.state_dict(), "best_wgan_critic")
print("results and generator model are saved!")

return metrics

class GAN(object):
def __init__(self, args):

set device
self .device = f'cuda:{args.cuda_idx}" if torch.cuda.is_available() else "cpu"

hyperparamters

self.betal = args.betal
self.beta2 = args.beta2

self .batch_size = args.batch_size
self.lr = args.lr

self.zdim = args.noise_dim

generator & discriminator
self.generator = Generator(in_dim=args.noise_dim)
self.discriminator = Discriminator (in_chn=3)

train params

self.opt_d = Adam(params=self.discriminator.parameters(),
1lr=self.lr, betas=(self.betal, self.betal))

self.opt_g = Adam(params=self.generator.parameters(),
1lr=self.lr, betas=(self.betal, self.beta2))

def train(self, train_loader, num_epochs):

20

ECE 60146: Deep Learning Spring 2023 — Purdue University

that's where images will be saved

if not os.path.exists("gan_fake_samples"):
os.mkdir("gan_fake_samples")

print(f"training is running on {self.device}!")

put the models to device
self.discriminator.to(self.device)
self.generator.to(self.device)

intialize weights
self.discriminator.apply(weight_inits)
self.generator.apply (weight_inits)

BCE loss
criterion = nn.BCELoss()

target_real = torch.ones(self.batch_size, device=self.device)
target_fake = torch.zeros(self.batch_size, device=self.device)

losses = {"bce_loss" : [I,
"g_loss" : [1,
"d_loss" : [1}

mean_probs = {"real_probs" : [],
"fake_probs" : [],
"fake_probs_g" : [1}

fized noise
fixed_noise = torch.FloatTensor(self.batch_size, self.zdim, 1, 1).normal_(0, 1).to(self.device)

counter = 0
for epoch in range(num_epochs):

for each batch
for i, (imgs, _) in enumerate(train_loader, 1):

if imgs.shape[0] != self.batch_size:
continue

counter += 1

self.discriminator.zero_grad()
get batch
imgs = imgs.to(self.device)

calculate discriminator loss

pred_probs_r = self.discriminator(imgs).view(-1)
real_loss = criterion(pred_probs_r, target_real)
real_loss.backward()

z = torch.randn(self.batch_size, self.zdim, 1, 1, device=self.device)
fake_imgs = self.generator(z)

pred_probs_f = self.discriminator(fake_imgs.detach()).view(-1)
fake_loss = criterion(pred_probs_f, target_fake)

fake_loss.backward()

total discriminator loss (BCE loss)

bce_loss = real_loss.item() + fake_loss.item()

update weights

self.opt_d.step()

train generator

self.generator.zero_grad()

pred_probs_f2 = self.discriminator(fake_imgs).view(-1)
gen_loss = criterion(pred_probs_f2, target_real)
gen_loss.backward ()

self.opt_g.step()

report and save the losses
print(f"[{i + epoch * len(train_loader)}/{len(train_loader) * num_epochs} ITER] discriminator loss: {bce_loss:.4f}, generator loss: {gen_loss.item():.4f}"

save the losses to history

losses["d_loss"].append(bce_loss)
losses["g_loss"].append(gen_loss.item())

save mean probabilities
mean_probs["real_probs"].append(pred_probs_r.mean() .item())
mean_probs ["fake_probs"] .append(pred_probs_f.mean() .item())
mean_probs ["fake_probs_g"] .append(pred_probs_f2.mean() .item())

if counter % 500 ==
with torch.no_grad():
fake = self.generator(fixed_noise).detach().cpu()
fake = fake.mul(0.5).add(0.5)
save_image(fake, fp=f"gan_fake_samples/{counter//500}.jpg", nrow=int(self.batch_size**0.5))

save the results to local disk
results = {"losses" : losses,
"probs" : mean_probs}

pickle.dump(results, open("gan_results.pkl", "wb"))

torch.save(self.generator.state_dict(), "best_gan_generator")
torch.save(self.discriminator.state_dict(), "best_gan_discriminator")

21

ECE 60146: Deep Learning Spring 2023 — Purdue University

print("results and generator model are saved!")
return results

generic functions

def weight_inits(model):
class_name = model.__class__.__name
if class_name.find('Conv')
nn.init.normal_(model.weight.data, 0.0, 0.02)
elif class_name.find('BatchNorm') != -1:
nn.init.normal_(model.weight.data, 1.0, 0.02)
nn.init.constant_(model.bias.data, 0)

def save_imgs(generator, z, file_name="images.jpg", best_gen="best_generator"):
load best generator
generator.load_state_dict(torch.load(best_gen))
generator = generator.to('cpu')
generator.eval()
imgs = generator(z)
imgs = imgs.mul(0.5).add(0.5)
#grid = make_grid(imgs, nrow=8)
save_image(imgs, file_name, nrow=8)
print("generated images are saved")

test code

if __name__ == "__main__":
parser = argparse.ArgumentParser ()
common parameters in train
parser.add_argument ("--batch_size", default=64, type=int, help="batch size for SGD")
parser.add_argument ("--1r", default=1le-4, type=float, help="learning rate")
parser.add_argument ("--cuda_idx", default=0, type=int, help="cuda id")
parser.add_argument ("--num_epochs", default=30, type=int, help="number of epochs for GAN training")
parser.add_argument ("--pre_trained", default=False, type=eval, help="start from pre-trained weights")
parser.add_argument ("--bias", default=False, type=eval, help="activate bias in CNN layers")
optimizer
parser.add_argument ("--betal", default=0.5, type=float, help="beta 1 of ADAM")
parser4add_argument("——betaQ", default=0.999, type=float, help="beta 2 of ADAM")
parser4add_argument("—-c_iter", default=5, type=int, help="num. of iteration for critic")
parser.add_argument ("--cl_iter", default=5, type=int, help="large number for iteration at the beginning")
(WGAN train parameters
parser.add_argument ("--gp", default=False, type=eval, help="activate gradient penalty")
parser.add_argument ("--noise_dim", default=100, type=int, help="number of dimension of noise vector")
parser.add_argument ("--train_wgan", default=True, type=eval, help="train wgan or gan")
WGAN_C parameter
parser.add_argument ("--clip", default=0.005, type=float, help="clipping bound")
WGAN_GP parameter
parser.add_argument ("--penalty", default=10, type=float, help="gradient penalty for WGAN")

args = parser.parse_args()

win

Recommended GAN parameters
betal 2 0.5
beta2
learning rate
batch size
noise dim

num_epochs
i

win

Recommended WGAN GP parameters

betal 2 0.5
beta2 : 0.999
c_iter ;5
cl_iter)
penalty : 10
learning rate :le—4
batch size ;64
noise dim : 100
num_epochs : 750

winn

for reproducible results

seed = 101

random.seed (seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)

np.random. seed(seed)
torch.backends.cudnn.deterministic=True
torch.backends.cudnn.benchmarks=False
torch.autograd.set_detect_anomaly(True)

if args.gp:

print("gradient penalty is activated!")
else:

print("gradient clipping is activated!")
get the data
train_data = PizzaDataset(path='"pizzas", train=True)
test_data = PizzaDataset(path="pizzas", train=False)
print("data is loaded!")

22

ECE 60146: Deep Learning

get dataloaders
train_loader = Dataloader(train_data, batch_size=args.batch_size, shuffle=True)

if not args.train_wgan:

train and test GAN

model = GAN(args)

print("start training...")

results = model.train(train_loader, args4num_epochs)

print("training is successful!")

save the losses

pickle.dump(results, open("gan_results.pkl", "wb"))

print("results were saved!")

z = torch.randn(16, 100, 1, 1)

save_imgs (model.generator, z, file_name="GAN_imgs.jpg", best_gen="best_gan_generator")

else:

train and test WGAN

model = WGAN(args)

print("start training...")

#results = model.train(train_loader, num_epochs=args.num_epochs)

print("training is successful!")

save the results

pickle.dump(results, open("wgan_results.pkl", "wb"))

z = torch.randn(64, 100, 1, 1)

save_imgs(model.generator, z, file_name="WGAN_imgs.jpg", best_gen="best_wgan_generator")

calculate FID
model.generator.load_state_dict(torch.load("best_wgan_generator"))
fid = calc_frechet(model, train_data, size=1000)

print("frechet value:", fid)

References

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative adversarial networks, 2014.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan, 2017.
Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. Improved training of wasserstein gans, 2017.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks,
2016.

23

Spring 2023 — Purdue University

	Introduction
	Generative Adversarial Network goodfellow2014generative
	Wasserstein GAN

	Dataset
	dataset.py

	GAN
	WGAN
	Results & Discussion
	BCE-GAN Results
	WGAN with Gradient Penalty

	How to run the code?
	Lessons Learned
	Appendix
	Sample Real Images
	Sample Fake Images
	Source Code
	dataset.py
	utils.py
	hw7_MehmetBerkSahin.py

