
BME646 and ECE60146: Homework 6

Spring 2023
Due Date: 11:59pm, Mar 22, 2023
TA: Fangda Li (li1208@purdue.edu)

Turn in typed solutions via BrightSpace. Additional instructions can be
found at BrightSpace. Late submissions will be accepted with penalty: -10
points per-late-day, up to 5 days. This can be a VERY challenging
homework. Start early!

1 Introduction

Why detect only one pizza when there are multiple? Unironically again, the
goal of this homework is for you create your own multi-pizza detector that
is based on the YOLO framework [2]. Your learning objectives for this HW
are:

1. Understand the YOLO logic – how multi-instance object detection can
be done via just a single forward pass of the network.

2. Implement your own YOLO training and evaluation logic. You might
just be surprised how much more complicated the logic becomes when
dealing with multi-instance rather than single-instance.

The following steps will prepare you to work with object detection, data
loading with annotations, e.g. , bounding boxes and labels, and so on. Before
starting to code, it is highly recommended that you read through the entire
handout first.

2 Getting Ready for This Homework

Before embarking on this homework, do the following:

1. Your first step would be to come to terms with the basic concepts of
YOLO: Compared to everything you have done so far in our DL class,
the YOLO logic is very complex. As was explained in class, it uses the
notion of Anchor Boxes. You divide an image into a grid of cells and
you associate N anchor boxes with each cell in the grid. Each anchor
box represents a bounding box with a different aspect ratio.
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Your first question is likely to be: Why divide the image into a grid
of cells? To respond, the job of estimating the exact location of an
object is assigned to that cell in the grid whose center is closest to the
center of the object itself. Therefore, in order to localize the object,
all that needs to be done is to estimate the offset between the center
of the cell and the center of true bounding box for the object.

But why have multiple anchor boxes at each cell of the grid? As
previously mentioned, anchor boxes are characterized by different as-
pect ratios. That is, they are candidate bounding boxes with dif-
ferent height-to-width ratios. In Prof. Kak’s implementation in the
RegionProposalGenerator module, he creates five different anchor
boxes for each cell in the grid, these being for the aspect ratios: [ 1

/ 5, 1/3, 1/1, 3/1, 5/1 ] . The idea here is that the anchor box
whose aspect ratio is closest to that of the true bounding box for the
object will speak with the greatest confidence for that object.

2. You can deepen your understanding of the YOLO logic by looking
at the implementation of image gridding and anchor boxes in Version
2.0.8 of Prof. Kak’s RegionProposalGenerator module:

https://engineering.purdue.edu/kak/distRPG/

Go to the Example directory and execute the script:

multi_instance_object_detection.py

and work your way backwards into the module code to see how it
works. In particular, you should pay attention to how the notion of
anchor boxes is implemented in the function:

run_code_for_training_multi_instance_detection()

To execute the script multi_instance_object_detection.py, you
will need to download and install the following datasets:

Purdue_Dr_Eval_Multi_Dataset-clutter-10-noise-20-size-10000-train.gz

Purdue_Dr_Eval_Multi_Dataset-clutter-10-noise-20-size-1000-test.gz

Links for downloading the datasets can be found on the module’s web-
page. In the dataset names, a string like size-10000 indicates the
number of images in the dataset, the string noise-20 means 20%

2

https://engineering.purdue.edu/kak/distRPG/


added random noise, and the string clutter-10 means a maximum
of 10 background clutter objects in each image.

Follow the instructions on the main webpage for RegionProposalGenerator
on how to unpack the image data archive that comes with the module
and where to place it in your directory structure. These instructions
will ask you to download the main dataset archive and store it in the
Examples directory of the distribution.

3 Programming Tasks

3.1 Creating Your Own Multi-Instance Object Localization
Dataset

In this exercise, you will create your own dataset based on the following
steps:

1. Similar to what you have done in the previous HWs, first make sure the
COCO API is properly installed in your conda environment. As for
the image files and their annotations, we will be using both the 2014
Train images and 2014 Val images, as well as their accompanying
annotation files: 2014 Train/Val annotations. For instructions on
how to access them, you can refer back to the HW4 handout.

2. Now, your main task is to use those files to create your own multi-
instance object localization dataset. More specifically, you need to
write a script that filters through the images and annotations to gen-
erate your training and testing dataset such that any image in your
dataset meets the following criteria:

• Contains at least one foreground object. A foreground object must
be from one of the three categories: [ ’bus’, ’cat’, ’pizza’

]. Additionally, the area of any foreground object must be larger
than 64 × 64 = 4096 pixels. Different from the last HW, there
can be multiple foreground objects in an image since we are deal-
ing with multi-instance object localization for this homework. If
there is none, that image should be discarded. Also, note that
you can use the area entry in the annotation dictionary instead
of calculating it yourself.

• When saving your images to disk, resize them to 256×256. Note
that you would also need to scale the bounding box parameters
accordingly after resizing.

3



(a) Example 1 (b) Example 2

Figure 1: Sample COCO images with bounding box and label annotations.

• Use only images from 2014 Train images for the training set
and 2014 Val images for the testing set.

Again, you have total freedom on how you organize your dataset as
long as it meets the above requirements. If done correctly, you will
end up with at least 6k training images and 3k testing images.

3. In your report, make a figure of a selection of images from your created
dataset. You should plot at least 3 images from each of the three classes
like what is shown in Fig. 1 and with the annotations of all the present
foreground objects.

3.2 Building Your Deep Neural Network

Once you have prepared the dataset, you now need to implement your deep
convolutional neural network (CNN) for multi-instance object classification
and localization. For this HW, you can directly base your CNN architecture
on what you have implemented for HW5, which was built upon the skeleton
and your own skip-connection implementation. Nonetheless, you have total
freedom on what specific architecture you choose to use for this HW.

The key design choice you’ll need to make is on the organization of the
predicted parameters by your network. As you have learned in Prof. Kak’s
tutorial on Multi-Instance Object Detection [1], for any input image, your
CNN should output a yolo_tensor. The exact shape of your predicted
yolo_tensor is dependent on how you choose to implement image gridding
and the anchor boxes. It is highly recommended that, before starting your
own implementation, you should review the tutorial again and familiarize
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yourself with the notions of yolo_vector, which is predicted for each and
every anchor box, and yolo_tensor, which stacks all yolo_vectors.

In your report, designate a code block for your network architecture.
Additionally, clearly state the shape of your output yolo_tensor and ex-
plain in detail how that shape is resulted from your design parameters, e.g.
the total number of cells and the number of anchor boxes per cell, etc.

3.3 Training and Evaluating Your Network

Now that you have finished designing your deep CNN, it is finally time to
put your glorious multi-pizza detector in action. What is described in this
section is probably the hardest part of the homework. To train and evaluate
your YOLO framework, you should follow the steps below:

1. Write your own dataloader. While everyone’s implementation will
differ, it is recommended that the following items should be returned
by your __getitem__ method for multi-instance object localization:

(a) The image tensor;

(b) For each foreground object present in the image:

i. Index of the assigned cell;

ii. Index of the assigned anchor box;

iii. Groundtruth yolo_vector.

The tricky part here is how to best assign a cell and an anchor box
given a GT bounding box. For this part, you will have to implement
your own logic. Typically, one would start with finding the best cell,
and subsequently, choose the anchor box with the highest IoU with
the GT bounding box. You would need to pass on the indices of the
chosen cell and anchor box for the calculation of the losses explained
later in this section.

It is also worthy to remind yourself that the part in a yolo_vector

concerning the bounding box should contain four parameters: δx, δy,
σw and σh. The first two, δx and δy, are simply the offsets between
the GT box center and the anchor box center. While the last two, σw
and σh, can be the “ratios” between the GT and anchor widths and
heights:

wGT = eσw · wanchor,

hGT = eσh · hanchor.
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2. Write your own training code. Note that this time you will need
three losses for training your network: a binary cross-entropy loss for
objectness, a cross-entropy loss for classification and another loss for
bounding box regression.

The main challenge for you in this year’s version of the HW is to write
your logic for loss calculation in a way that accommodates an arbi-
trary training batch size (i.e. greater than 1) without looping through
individual images in the batch. To walk you through the process, here
is a brief summary of the steps:

(a) For each anchor box that has been assigned a GT object, set the
corresponding target objectness to one and everywhere else as
zero.

(b) Calculate the bounding box regression and class prediction losses
only based on the predicted yolo_vectors for assigned anchor
boxes. The predicted yolo_vectors for anchor boxes where no
GT object has been assigned are simply ignored.

(c) Note that all of the aforementioned logic can be done simulta-
neously and efficiently for all images in a batch just with some
clever indexing and without using for loops.

3. Write your own evaluation code. Different than evaluating single-
instance detectors, quantitatively examining the performance of a multi-
instance detector can be much more complicated and may be beyond
the scope of this HW, as you have learned in Prof. Kak’s tutorial
[1]. Therefore, for this HW, we only ask you to present your multi-
instance detection and localization results qualitatively. That is, for a
given test image, you should plot the predicted bounding boxes and
class labels along with the GT annotations.

More specifically, you will need to implement your own logic that con-
verts the predicted yolo_tensor to bounding box and class label pre-
dictions that can be visualized. Note that for this part, you are allowed
to implement your logic which may only accommodate a batch size of
one.

4. In your report, write several paragraphs summarizing on how you have
implemented your dataloading, training and evaluation logic. Specifi-
cally you should comment on how you have accommodated batch size
greater than 1 in training. Additionally, include a plot of all three
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losses over training iterations (you should train your network for at
least 10 epochs).

For presenting the outputs of your YOLO detector, display your multi-
instance localization and detection results for at least 8 different images
from the test set. Again, for a given test image, you should plot the
predicted bounding boxes and class labels along with the GT annota-
tions for all foreground objects. You should strive to present your best
multi-instance results in at least 6 images while you can use the other
2 images to illustrate the current shortcomings of your multi-instance
detector. Additionally, you should include a paragraph that discusses
the performance of your YOLO detector.

4 Submission Instructions

Include a typed report explaining how did you solve the given programming
tasks.

1. Your pdf must include a description of

• The figures and descriptions as mentioned in Sec. 3.

• Your source code. Make sure that your source code files are
adequately commented and cleaned up.

2. Turn in a zipped file, it should include (a) a typed self-contained pdf
report with source code and results and (b) source code files (only .py
files are accepted). Rename your .zip file as hw6 <First Name><Last
Name>.zip and follow the same file naming convention for your pdf
report too.

3. Do NOT submit your network weights.

4. For all homeworks, you are encouraged to use .ipynb for development
and the report. If you use .ipynb, please convert it to .py and submit
that as source code.

5. You can resubmit a homework assignment as many times as you want
up to the deadline. Each submission will overwrite any previous
submission. If you are submitting late, do it only once on
BrightSpace. Otherwise, we cannot guarantee that your latest sub-
mission will be pulled for grading and will not accept related regrade
requests.
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6. The sample solutions from previous years are for reference only. Your
code and final report must be your own work.

7. To help better provide feedbacks to you, make sure to number your
figures.
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