
ECE 60146 Deep Learning Homework 6

Mehmet Berk Sahin, sahinm@purdue.edu, 34740048

March 22, 2023

1 Introduction

In the previous homework, we worked on an object detection task and we assumed each image
includes a single object, which is supposed to be detected by using residual blocks. In addition to
that task, in this lab, we are interested in multi object detection where an image can include multiple
objects, which need to be detected and classified. You Only Look Once (YOLO) architecture is
an efficient network, which was designed for multi-object detection, and it is so efficient that it
can even make predictions in real-time [1]. The purpose of this lab is i) understanding the logic
behind YOLO, in other words, how multi-instance detection is achieve via single forward pass, and
ii) implementing our own YOLO training and evluation logic. Since YOLO logic is used both in
traininig and inference phases, I want to first explain it to refer it in subsequent sections.

1.1 YOLO Logic

Briefly, YOLO logic assigns cells and anchor boxes to objects in an image to increase the efficiency
of its localization and make the inference and training over one network. Doing so, it achieves
real-time classification performance. Every image in the dataset is divided into grid of cells and for
each cell, a set of anchor boxes having different aspect ratios are defined. Cells have square shapes
and length of their edge is called yolo interval. And aspect ratio of anchor boxes are defined as
the ratio between its width and height. Instead of looking at the whole image as we did in the
previous assignment, the model needs the look at the cell number and anchor index pairs to draw
the bounding box and make classification. Each object corresponds to one (cell, anchor box)

pair and it is represented by yolo vector. Its structure is given below:

(obj, δx, δy, h, w, obj class)

obj is 1 if there is an object in the cell-anchor box pair otherwise it is 0. δx, δy terms denote
the distance between the center of the cell and the corresponding bounding box center. h and w

represent height and width of the bounding box divided by the height and width of the cell. Lastly,
the last term is the one-hot-encoded representation of the object class in the bounding box. These
yolo vectors are elements of yolo tensor, whose shape is given below:

(batch size, num cells, num anchors, 8)

First axis represents the number of images in one batch. Second axis denotes number of cells in
the grid over an image. For example, if yolo interval= 20 and image size is 256× 256, then the
grid will be 12× 12 and there will be 144 cells per image. Note that 16 pixels are not included to
the grid and are completely ignored due to YOLO logic. Third axis denotes the number of anchor
boxes. In the examples that we covered in the class, aspect ratios of anchor boxes are as follow:

1

ECE 60146: Deep Learning Spring 2023 – Purdue University

1/5, 1/3, 1 3/1, 5/1. So, aspect ratio of the ground truth bounding box is calculated and its
yolo vector is saved into the corresponding anchor box or the one that has the closest aspect
ratio index in yolo tensor. Lastly, the fourth axis is allocated to yolo vector. The idea here is
dividing the problem into subproblems and doing the training and inference in a single network
with real-time performance. YOLO was not the best model in the classification at the time paper
was published but it was the best model in real-time object detection.

Rest of the paper is organized as follows. In Section 2, I explained pre-processing on COCO
dataset and structure of it with the explanation of the code. In Section 3, I explained the train
and inference logic for YOLO multi-object detection. I explained the relevant codes. In Section 4,
I presented the learning curves and example classifications, and I discussed them. In Section 5, I
discussed the lessons learned from this homework.

2 Dataset Preparation

Data preparation is similar to the previous homeworks. Train and test images come from 2014
Train images and 2014 Test images folders in COCO webpage. And their annotations are in
2014 Train/Val annotations. Data hierarchy is as follows: folders are located under coco folder
and their names are train2014, test2014, and annotations2014. Before running the program,
you should input the path of the parent folder of coco to the program. I will explain how to
run the code later. To create the dataset that is used in the training of YOLO, I implemented
YoloDataset class in dataset.py module.

Data generation part is very similar to the previous homework except that I implemented
yolo extractor() function. In homework 5, for each image in COCO dataset, I resized the image
and its bounding box, then saved to the local disk with its label. Different from this, I saved each
image file with the information of the objects’ cell indices, anchor indices, labels, and yolo tensor

of the whole image. Code snippet for the call of yolo extractor is given in Figure 1. As most
of the part is similar to my implementation in HW5 and similar to the code in HW5, I do not
explain data generator() function again. As you may notice, the part that comes before the call

Figure 1: Call of yolo extractor under data generator()

of yolo extractor is very similar to HW5. Different from that, I passed the annotations and

2

ECE 60146: Deep Learning Spring 2023 – Purdue University

scales of x, y as arguments to the yolo extractor function. As an output, I get cell ids, anchor
box ids and labels of the objects in the image and image’s yolo tensor representation. I saved
these objects into my ”data” dictionary object whose keys are file names of the images and whose
values are dictionary of cell ids, anchor ids, labels and yolo tensor of images. Thus, my dataset
is structured as dictionary and saved to the local disk to be used later in the training. And resized
images are saved in to the local folders which are ”train data” and ”test data”. Next, I will explain
the yolo extractor().

2.1 yolo extractor()

This function is an instance function of YoloDataset class in dataset.py module. I will explain
how yolo vector and yolo tensor are generated from bounding boxes in COCO. First part of
yolo extractor() is given in Figure 2. It takes annotation list (anns) and scales for x, y coordi-

Figure 2: yolo extractor() implementation part 1

nates due to resizing of images. Note that the shape of yolo tensor is (num cells, num anchors,

8) and the shape of cell anc cat is (max num objects, 4), where max num objects mean maxi-
mum number of objects in an image. This number equals to the maximum number of objects in an
image over the training dataset. Then, for each annotation or bounding box, I perform following op-
erations: i) convert the COCO category index to my index convention (bus=0, cat=1, pizza=2).
ii) using scales for x and y, calculate the center of the bounding box. iii) using the center of the
bounding box, maximum row and column cell numbers, and cell width, which is yolo interval,
calculate the row and column cell index that corresponds the bounding box and calculate its height
and width as multiple of yolo interval. Then, iv) calculate cell centers that are the closest to

Figure 3: yolo extractor() implementation part 2

the bounding box by using cell dimension and cell indices. v) calculate the difference between the

3

ECE 60146: Deep Learning Spring 2023 – Purdue University

Figure 4: Randomly chosen samples from training set

bounding box and the cell center (δx and δy) as a multiple of cell width by taking the difference
of them and dividing them by yolo interval. Until now, δx, δy, h, and w of yolo vectors are
calculated. Row and column cell indices are found for each bounding box. However, we did not
assign any anchor box to ground truth bounding boxes as suggested in homework. Instead of defin-
ing hand-crafted anchor boxes, I defined intervals for aspect ratio as we discussed in class because I
think the model’s performance will depend on my choice of anchor box less than the former method.
I defined 5 anchor boxes whose aspect ratio are 1/5, 1/3, 1, 3/1, and 5/1. Then, vi) I calculated the
aspect ratio of each bounding box and assign anchor box index whose aspect ratio is the closest to
the bounding box to that object as can be seen in Figure 3. Then, vii) I saved the category of the
object in one-hot-encoded representation to the last 3 elements of the yolo vector. Lastly, viii) I
saved obj=1, δx, δy, h, w and one-hot-encoded obj class to yolo vector. And function returns
two tensors: first one consists of cell and anchor box indices with labels, and the second one is the
yolo tensor.

2.2 data generator()

Implementation of this function is very similar to the previous homework so I will not explain it
again but I will give the rules that I follow to generate the dataset. They are as follows:

• Each image contains at least one foreground object.

• Each foreground object must belong to one of the three categories: [’bus’, ’cat’, ’pizza’].

• The area of any foreground object must exceed 64× 64 = 4096 pixels.

4

ECE 60146: Deep Learning Spring 2023 – Purdue University

• If there is no foreground object in an image, do not include the image to the dataset.

• Resize each image to 256× 256 and scale the bounding boxes accordingly.

I randomly sampled images from both train and test dataset as asked in the assignment. Train
samples can be sen on Figure 4. And test samples can be seen on Figure 5. I provided 3 images from

Figure 5: Randomly chosen samples from test set

each class for both training and test sets as asked in the assignment. As you may notice, objects in
the images are not always obvious. For example, in training set, in image at row 1 and column 3,
although there is a very large pizza, there is small pizza slice, which is about to be eaten by woman.
And it is not flat, it has some curvature. Due to these facts, learning its bounding box and class
may be difficult for the network. Another example in test set, at row 3 and column 3, there are 4
meals one of which is pizza. Although other meals do not belong to pizza class, they consists of
some texture that is common in foods. So, that may increase the difficulty of localization. Lastly,
in test set, at row 2 column 3, tail of the bus behind the large bus appears and it constitutes very
small bounding box. And at the left there is less than half view of a buss. That kind of incomplete
objects make localization and classification harder.

Lastly, I checked the sizes of my train and test sets after filtering according to the criteria
mentioned above. In the training set, I obtained 6883 images and in the test set, I obtained
3491 images. The former is above 6000 and the latter 3000, which show that I satisfied the
criteria in homework. Next I will explain the training and inference logic with the code.

5

ECE 60146: Deep Learning Spring 2023 – Purdue University

3 YOLO Train & Inference Logic

In this section, I will first explain the training and inference logic of my YOLO model, then I will
explain the important parts of the code. For the full source code, you can check the attachments.
I think they are well-commented. I will not explain my network architecture because I used the
same network that I used in previous homework. Its CNN backbone is similar to the recommended
architecture in HW5 and it uses BasicBlock which are skip-connections and which is used in
Resnet34 [2]. At the last layer, I implemented single layer fully connected layer in order to obtain
a yolo tensor as the output of the network. I tried to implement more than one fully connected
layer but number of parameters increased drastically and convergence slowed down so I tuned it to
single layer.

3.1 YOLO Train Logic

In preparation of the dataset, each object in an image is represented by yolo vector. Each
yolo vector consists of objectness bit, row and column cell indices, anchor id, and class of the
object. So, model needs to decide whether there is an object for each grid cell and anchor box
pairs. Since this is a binary classification task, its loss should be Binary Cross Entropy Loss (BCE
Loss). If the objectness bit is 1, then model needs to draw a bounding box. It does this by doing
regression (nonlinear) on ground truth values of center offsets, and width and height of the ground
truth bounding box. As the method is regression, its loss is chosen as Mean Squared Error (MSE).
This loss is calculated only for cell-anchor pairs whose objectness bit is 1. In addition to the
location of the predicted bounding box, the model should also predict the class of the object, which
can be bus, cat or pizza in our setting. The model performs this by predicting the last 3 number
of the yolo vector correctly. For example, if the object in row cell 1, column cell 2 and anchor
box 3 is cat, which is encoded as (0, 1, 0), then predicted yolo vector corresponding to the same
cell-anchor pair location should have the highest value at 6th index. Ideally, that entry should be
infinity and 5th and 7th entries should be minus infinity. Since the task is multi-classification, I
used Cross Entropy Loss (CE Loss). I combined these under one loss function given below:

Loss =λcoord

S2∑
i=0

B∑
j=0

1
obj
i,j

[
(δxi − δx̂i)

2 + (δyi − δŷi)
2
]

+ λcoord

S2∑
i=0

B∑
j=0

1
obj
i,j

[
(wi − ŵi)

2 + (hi − ĥi)
2
]

+

S2∑
i=0

B∑
j=0

1
obj
i,j

[
p(obji,j) log(p(ˆobji,j)) + (1− p(obji,j)) log(1− p(ˆobji,j))

]

+ λnoobj

S2∑
i=0

B∑
j=0

1
noobj
i,j

[
p(obji,j) log(p(ˆobji,j)) + (1− p(obji,j)) log(1− p(ˆobji,j))

]

+
S2∑
i=0

B∑
j=0

1
obj
i,j

[∑
c∈classes

p(ci,j) log(p(ĉi,j))

]
,

(1)

where p(obji,j) is the ground truth for objectness, p(ˆobji,j) is predicted probability of objectness,
p(ci,j) is ground truth for class c (either 1 or 0), and p(ĉi,j) is the predicted probability of class
c for each ith cell and jth anchor pair. This loss is inspired by the loss proposed in the original

6

ECE 60146: Deep Learning Spring 2023 – Purdue University

YOLO paper [1]. It is similar but not not exactly the same. As you may noticed, there are two
weighting coefficients: λcoord and λnoobj . The first one is for compensating the low number of
yolo vectors that include objects. For example, if cell widths is 20, image size is 256, and number
of anchor box is 5, and if there is only one object in the image, then other 719 yolo vector are
not included into MSE loss as they do not include any object. As a result of this, gradients for
correcting bounding boxes will be very small compared to other tasks’ gradients. Thus, I decided
to increase its importance by setting λcoord > 1. Similarly, as there are lot of ground truths with
objectness=0, I scaled the corresponding BCE loss with 0 < λnoobj < 1. In the original YOLO
paper, objects are assigned to cells [1], in my implementation, different than that, I assigned them
to cell-anchor box pairs. So, CE over classes are summed over anchor boxes as well. Lastly, in the
original paper, authors performed regression [1], but I used BCE and CE losses for classification
tasks. I conducted the calculation of this loss function without any for loop over images, cells, and
anchor boxes.

3.2 YOLO Train Code & run train()

Training code of the YOLO is implemented in model.py module. It is an instance function of
YoloNet so self in the code represents the YOLO model. I divided the code into parts to explain
it step-by-step. I will go through the important steps and ignore the common things like loading
the model to device, which we do in every homework. For details, one can check the source code.
First part can be seen on Figure 6. It takes train and test datasets as arguments to train the model

Figure 6: YOLO training code part 1

and report the train and test performance at each epoch. And betas are for Adam optimizer. Using
PyTorch’s torch.nn module, I initialized the BCE, MSE and CE loss objects and I initialized the
dictionaries to save the train and test losses to be displayed later. The next part can be seen in
Figure 7. The outer loop is the main training loop, which exists in almost every deep learning
code, and the inner loop is for iterating over the train dataset with mini-batches. Other lines are
initialization of the variables to be used in the training. loss corresponds to Loss in equation (1).
objectness keeps 1s and 0s for each image’s cell and anchor pair. And note that yolo tensor

consists of ground truth and its shape is (batch size, num cells, num anchors, 8). output is
vector and prediction of the model. It is reshaped to the shape of yolo tensor. Lastly, yolo idx

is the indices of images, cells and anchor boxes triples the include objects. After initializations,
we can calculate the BCE and MSE losses as given in Figure 8. I calculate BCE for object and
no object cases. tmp consists of indices with objectness=0 and yolo idx consists of indices with
objectness=1. Using these, I filtered ground truths and corresponding predictions. I passed the
predictions through sigmoid function and calculated the BCE loss. To calculate the MSE loss, I
reshaped the yolo tensor and output to the following form:

(batch size, num row cell, num col cell, num anchors, 8)

7

ECE 60146: Deep Learning Spring 2023 – Purdue University

Figure 7: YOLO training code part 2

Figure 8: YOLO training code part 3

Then, using the ground truths for cell numbers and anchor box ids, which come from gts dictionary,
I filtered the yolo vectors that correspond to the objects in images from mini-batch. This filtering
is done above ”calculate mse loss” comment. Then, using nn.MSELoss() object, I calculated the
MSE loss for δx, δy, h, and w. And I multiplied the loss by λcoord. Doing so, I calculate the first two
row of equation (1). And BCE calculation explained previously correspond to third and fourth row
of equation 1. Lastly, I calculated the cross entropy loss for multi-classification only for predictions
whose corresponding ground truth’s objectness is 1. It can be seen on the last 3 lines in Figure 8.
After those lines I performed backward pass on loss and take a step on optimizer.

After the inner loop is completed, I save and report the running losses, which are BCE, MSE,
and CE losses per epoch. Then, I take the model to evalution mode with ”eval()” function of
PyTorch. And very similar inner loop for the test set was conducted except that there is not any
gradient updates. I only evaluated the performance of the model over the test set to see whether
there is any overfitting. Details can be found in the source code.

8

ECE 60146: Deep Learning Spring 2023 – Purdue University

3.3 YOLO Inference Logic

After the training, model needs to predict bounding boxes for the objects in an image. Hopefully,
this prediction should belong to the correct class. In this section, I will explain my inference YOLO
logic and go through the important parts of the code.

In the training, loss was calculated given the knowledge of ground truths. As opposed to that, in
the inference, this is impossible as we do not have an access to the labels or cell-anchor box pairs
that include objects. Thus, we cannot choose its corresponding predicted yolo vector and report
this as a predicted bounding box. However, setting a threshold for objectness, one can report the
predicted bounding boxes. If algorithm generalizes well to the data and if the threshold is set
properly, then predicted objects that exceeds the threshold should be in the same cell and anchor
box ids with its ground truth and its classification should match with it. Although this approach
seems good, it has a shortcoming. In prediction yolo tensor, there can be several bounding boxes
with high confidence in objectness. To overcome this, I used Non-maximum Supression algorithm
in the inference.

3.4 Non-maximum supression (NMS)

This algorithm removes the additional bounding boxes for the same object and make the model
display the most confident bounding box per object in an image. It is as follows: yolo vectors are
divided into groups with respect to their predicted classes. For each group, yolo vector with the
highest confidence is chosen. In our setting, it is the predicted probability of the objectness. Then,
intersection over union (IoU) scores were calculated between the most confident bounding box and
other bounding boxes for each class. Bounding boxes whose IoU score exceed the IoU threshold are
removed from the list for each class. And remaining boxes are displayed as final predictions. This
algorithm assumes that if there are multiple objects with the same class in an image, they should
be far from each other because if they are close, then their IoU should be high and one of them
which has a lower confidence will be eliminated. However, it mitigates the problem of multiple
bounding boxes to some extent.

As opposed to previous homeworks, performance of the model will be evaluated quantitatively
rather than qualitatively. Because examining the performance of object detector is much more
complicated than evaluating a classifier or regressor and it can be beyond the scope of this HW.
So, I will present the train and test results and comment on them.

3.5 YOLO Test Code & inference()

Inference/Test code of the YOLO was implemented in model.py module. It is an instance function
of YoloNet so self in the code represents the YOLO model. I will go through the important steps
and you can check the source code for more.

The first part of inference() can be found in Figure 9. It has 3 input variables: model path,
test loader, and sample num. The first one is the path for a model whose results will be dis-
played. The second variable is Dataloader which consists of either train or test samples. The last
variable is the number of samples to be displayed per row and there are three row in the figure.
So, if sample num=2, then in total, there should be 6 images with predictions and ground truth
bounding boxes. First lines in Figure 9 consists of loading model from local disk, initalize the

9

ECE 60146: Deep Learning Spring 2023 – Purdue University

Figure 9: inference() implementation part 1

figure object from matplotlib.pyplot package and setting the device and class indices. For loop
iterates through the given dataset with batch size 1, which was determined before this function
call. If the iteration number exceed the total number to be plotted, then program quits for loop.
After that if statement, I extracted the ground truths, put the image tensor into displayable image
format and conducted forward pass via ”self(imgs)” line. Lastly, ground truth yolo tensor and
output of the network is reshaped into the structure in Section 3.2. The second part of the func-
tion can be seen in Figure 10. Before explaining it, I need to mention the convention I followed

Figure 10: inference() implementation part 2

in data generator() to prepare my dataset. As mentioned previously, there can be at most 14
objects in one image. So, for the image in which there are less than 14 objects, remaining entries
were filled with 13 meaning that there is no object at that entry. Therefore, in the first line of part
2, I filtered the anchor boxes that are not equal to 13 so that I will get the number of objects in an
image, which is equivalent to len(yolo idx). For loop iterates through the objects and following
4 lines extract the anchor box id, row and column cell ids and the class label for the object from

10

ECE 60146: Deep Learning Spring 2023 – Purdue University

ground truths. To get the coordinates of top left and bottom right of the bounding box, the same
logic in Figure 2 and 3 were followed, which was explained in Section 2.1. In the last two lines, cv2
package was used to draw the ground truth bounding box with its label as we did in last homework.

Up to this point, program draw the ground truth bounding boxes for each object. What remains
is drawing the predicted bounding boxes, which is implemented in Figure 11. In the first line, object

Figure 11: inference() implementation part 3

predictions are passed through Sigmoid activation function to estimate probability of objectness.
Then, yolo vectors with objectness not exceeding the threshold are filtered out and box cand only
includes yolo vectors that includes object(s) with high probability or confidence. Then, to get
the top left and bottom right corners of the predicted bounding boxes, box cand is passed through
bbox to corners() function. It does a very similar job as in Figure 2, 3 ,and 10, which I explained
previously. After that, predicted class indices were acquired via torch.argmax() function. It is
followed by a for loop which iterates through class indices. For each class, it performs NMS and
yolo vectors that exceed the IOU threshold are added to a list. Lastly, yolo vectors in bboxes

are plotted as in the last lines of Figure 10.

4 Results

In this section, I will present the results of both training and test sets with the sample predictions
from those sets. And to demonstrate the learning of the algorithm, I will provide the reader with
the training loss curves for BCE, MSE and CE losses.

4.1 Experiment Setting

I conducted the experiment with the following hyperparamters: learning rate is 10−3, yolo interval

is 20, number of anchor boxes is 5, batch size is 32, image size is 256 × 256, objectness threshold
is 0.9, IOU threshold is 0.4, λcoord = 5 and λnoobj = 0.5 as in [1], and the training is run over
100 epochs. To prevent overfitting, I saved the best model into memory. And the best model is
determined based on the average test performance of the model over BCE, MSE and CE losses.
Training was conducted on NVIDIA A100 GPU.

4.2 Training Results

In this section, I will present plots for training losses per epoch to demonstrate that my model is
learning and YOLO logic works correctly. Then, I will present sample predictions from training
dataset. Training losses over epochs can be found in Figure 12. As it can be seen on the loss plots,

11

ECE 60146: Deep Learning Spring 2023 – Purdue University

(a) BCE loss v.s. epochs (b) MSE v.s. epochs (c) CE loss v.s. epochs

Figure 12: Training losses per epoch

all losses get very close to 0. That implies power and complexity of my model is sufficient the learn
the data so it did not underfit. Losses in the plots are mean values over the training data. Although
training is done with weighting coefficients, these losses are saved without any weighting, which are
λnoobj and λcoord. And MSE and CE losses are calculated over the predictions that corresponds to
the yolo vectors with objectness 1. In Figure 12, plot of MSE and CE is smoother than BCE
and BCE is noiser than others. You can see the plot of all losses together in Figure 13. I seems

Figure 13: Losses v.s. epochs

that there is more loss in MSE than CE and BCE losses so it decreases more than other losses.
Another observation is that no matter where the losses started, all of them converged on 0, which
is the global minimum. That indicates model is powerful enough so I did not try to implement
more powerful or more complex model to increase the accuracy of the predictions. Additionally,
from Figure 12, it seems that model is capable of learning to detect whether there is an object in
any region of the image (objectness), the sizes of the bounding box (localization), and determine
its class (multi-instance classification).

To demonstrate the performance of the model on training dataset, I picked some samples from
training set and plot them on 3× 3 grid, which can be seen in Figure 14. Since the task is multi-
instance object detection, I put images having more tha one objects to see multi-object detection
performance of the training model. Ground truths are denoted with green bounding boxes and
predictions of my YOLO model are denoted with red bounding boxes. And corresponding class
names for bounding boxes can be found on the top left corner of each box. Each row of Figure 14
and 15 is allocated to one class, which can be bus, cat or pizza. Row and column indices of 3× 3

12

ECE 60146: Deep Learning Spring 2023 – Purdue University

grid start from 1. Henceforth, I will refer to an image at row i and column j by saying image (i, j).

Figure 14: YOLO predictions and ground truths from training dataset

In Figure 14, it seems that model learned the localization and classification of the pizza class
better than bus and cat classes. All classifications are correct and bounding boxes are very close
to each other. In image (1, 2) and image (1, 3), although predicted bounding boxes for one object
may be loose or not overlap very well the ground truth bounding box, they are reasonable and
other object was found perfectly. In image (1, 1), although the cell centers of the images are close
and anchor boxes are similar, model is able to distinguish the two models belonging to a same
class. Also, this shows that the threshold that I set for NMS algorithm is reasonable because
if it was too low, then one of the predicted bounding boxes would be removed in image (1, 1).
Regarding this, one may ask why there are overlapping bounding boxes in image (3, 2), this is
because boxes belong to different classes and as explained previously, NMS algorithm is run on
each class separately. Another observation is model learns to detect small and incomplete objects

13

ECE 60146: Deep Learning Spring 2023 – Purdue University

Figure 15: YOLO predictions and ground truths from test dataset

as in images (3, 1), (2, 1), (3, 3), and (2, 2). Next I will discuss test data results.

I presented the test (unseen data) results of the model in Figure 15. I tried to put good predictions
as well as bad ones. I believe model did well on the following images: (1, 3), (2, 1), (2, 2), (3, 1),
and (3, 2). There is no classification error in these images and localization performances are good
considering the fact that model has not seen these images before. In image (3, 2), big bounding box
covered most of the object very well and there is an extra bounding box, which is also classified
as bus. Such incidences are expected because IOU and objectness thresholds are set manually so
they are very likely not ideal. And model missed a single very small ground truth, which is also
difficult for me to distinguish. In image (3, 3), model drawed a bounding box for car, which is not
a class in our task, and classified it as a bus. This is not very suprising because car and bus share
some features like having tires and being on traffic or road and CNNs are scale invariant, there can
be such cases. That problem can be mitigated by either introducing a car class or using extensive

14

ECE 60146: Deep Learning Spring 2023 – Purdue University

data augmentation techniques as done in [1]. Furthermore, in image (1, 1), there are 8 pizza slices
and each of them has bounding boxes. Instead of classifying them separately, my model drawed
a large bounding box which covers all pizza objects in it. I think this is acceptable because pizza
object definition in the training set does not have clear bounds. For example, in Figure 14, image
(1, 2), although the slices of pizza object at the left are distinct, there are no bounding boxes for
each of them. Similarly, in test set, image (1, 3), there are two bounding boxes for the whole pizza
and just one slice, which implies pizza ground truths are not very clear in the dataset. Thus, we
should not expect a good performance for network to make separate bounding boxes of each pizza
objects that are close to each other.

4.3 How to improve the performance further?

My main problem was overfitting. As I saved the model whose mean performance on the test set
is the best, my final model is not overfitted model but I could not increase the test performance
further due to overfitting. I have tried to implement some augmentation techniques and dropout
techniques but they did not affect the results significantly. In the original YOLO paper [1], they
did extensive augmentations on their data set and the pre-trained their CNN backbone over the
entire ImageNet dataset before the training of YOLO. I was going to use the same technique and
loaded pre-trained Resnet models but as the datasize is not as large as in the paper, I suspected it
could overfit due to large model size and relatively low datasize. I believe, the performance of my
model on test samples and training loss plots indicate that my model generalizes the data, makes
relatively good and sufficient object detection, and YOLO logic was implemented correctly. My
model architecture can be seen on Figure 16.

4.4 How to run the code?

Lastly, I want to explain how to run the code if TA wants to perform data generation, training and
inference to see sample predictions. Steps for running the code as follows: i) after downloading the
COCO dataset from its website, one can run the following command:

python dataset.py --coco dir <path for parent folder of coco>

and coco is a folder that contains following folders: test2014, train2014, and annotations2014. They
include test, train and annotation files downloaded from COCO webpage. To run the program,
same name convention should be adopted. This command will create two dataset folders, which
are ”train data” and ”test data”. They are pre-processed images from COCO dataset. ii) To run
the training, following command should be run:

python hw6 MehmetBerkSahin.py --coco dir <path for parent folder of coco>

To change the hyperparameters of the network and training, one can check the source code for
their names, and make arbitrary changes via command. For example, epochs and yolo interval

are 100 and 20 respectively. To change them, one needs to write the following:

python hw6 MehmetBerkSahin.py --coco dir <path for parent folder of coco> --epochs

100 --yolo interval 30

Lastly, iii) to make inference and get the sample results, one needs to write the following command:

python hw6 MehmetBerkSahin.py --coco dir <path for parent folder of coco>

--inference True

15

ECE 60146: Deep Learning Spring 2023 – Purdue University

Predictions on test set will be saved to the local disk as ”test pred.jpeg”. As I performed the
training on NVIDIA A100 GPU, running the program may require a GPU support.

5 Appendix

5.1 Model Summary

Figure 16: My YOLO model summary

16

ECE 60146: Deep Learning Spring 2023 – Purdue University

5.2 Source Code

5.3 dataset.py

import torch

from pycocotools.coco import COCO

import pickle

import argparse

import os

import numpy as np

import random

import torch.nn as nn

import cv2

import torchvision.transforms as tvt

from torch.utils.data import DataLoader

import matplotlib.pyplot as plt

from skimage import io

from skimage.transform import resize

import skimage

class YoloDataset(nn.Module):

def __init__(self, coco, catIds, data_path, coco_inv_labels=None,

yolo_interval=20, img_size=256, max_obj=14, anchor_num=5, transform=True,

train=True):

super(YoloDataset, self).__init__()

dataset

self.coco = coco

self.catIds = catIds

self.data_path = data_path

self.train = train

self.img_size = img_size

self.coco_inv_labels = coco_inv_labels

pre-processing

self.transform = tvt.Compose([tvt.ToTensor()]) if (transform != None) else None

yolo parameters

self.yolo_interval = yolo_interval

self.num_cells_width = self.num_cells_height = img_size // self.yolo_interval

self.anchor_num = anchor_num

self.max_obj = max_obj

dataset generator

self.folder_name = "train_data" if train else "test_data"

self.data = self.data_generator() if not os.path.exists(self.folder_name + ".pkl") \

else pickle.load(open(self.folder_name + ".pkl", "rb"))

self.file_list = os.listdir(self.folder_name)

def __len__(self):

return len(self.file_list)

def __getitem__(self, item):

get the image

I = io.imread(os.path.join(self.folder_name, self.file_list[item]))

image = np.uint8(I)

if self.transform != None:

image = self.transform(image)

get annotations

ground_truths = self.data[self.file_list[item]]

return image, ground_truths

def yolo_extractor(self, anns, x_scale, y_scale):

yolo_tensor = np.zeros((self.num_cells_width * self.num_cells_height, self.anchor_num, 8)) # you may need to add 9th element later

save cell index, anchor num and label

cell_anc_cat = np.zeros((self.max_obj, 4))

cell_anc_cat[:,-2:] = 13 # 13 means there is no object

for i, ann in enumerate(anns):

take the bounding box

class_idx = self.coco_inv_labels[ann['category_id']]

[x, y, w, h] = ann['bbox']

scale the images due to resizing

[x, y, w, h] = [x * x_scale, y * y_scale, w * x_scale, h * y_scale]

bbox center

x_center, y_center = y + h/2, x + w/2

cell index (i, j)

row_cell_idx = min(x_center // self.yolo_interval, self.num_cells_height - 1) # ith row

col_cell_idx = min(y_center // self.yolo_interval, self.num_cells_width - 1) # jth column

bounding box scale

bw = w / self.yolo_interval

bh = h / self.yolo_interval

cell center

cell_i_center = row_cell_idx * self.yolo_interval + self.yolo_interval / 2

cell_j_center = col_cell_idx * self.yolo_interval + self.yolo_interval / 2

calculate difference between centers

dx = (x_center - cell_i_center) / self.yolo_interval

dy = (y_center - cell_j_center) / self.yolo_interval

aspect ratio

AR = h / w

if AR <= 0.2: anc_idx = 0

if 0.2 < AR <= 0.5: anc_idx = 1

if 0.5 < AR <= 1.5: anc_idx = 2

if 1.5 < AR <= 4.0: anc_idx = 3

17

ECE 60146: Deep Learning Spring 2023 – Purdue University

if 4.0 < AR: anc_idx = 4

yolo_vector = np.array([1, dx, dy, bh, bw, 0, 0, 0])

yolo_vector[5 + class_idx] = 1

save the yolo_vector to yolo_tensor

yolo_tensor[int(row_cell_idx * self.num_cells_width + col_cell_idx), anc_idx, :] = yolo_vector

cell_anc_cat[i,:2] = (row_cell_idx, col_cell_idx)

cell_anc_cat[i, 2] = anc_idx

cell_anc_cat[i, 3] = class_idx

return cell_anc_cat, yolo_tensor

def data_generator(self):

keeps the file names as keys and annotations as values

data = {}

for cat_id in catIds:

imgIds = self.coco.getImgIds(catIds=cat_id)

for img_id in imgIds:

get annotations

annIds = self.coco.getAnnIds(imgIds=img_id, catIds=cat_id,

iscrowd=False,

areaRng=[64*64, float('inf')])

load annotations

anns = self.coco.loadAnns(annIds)

if len(anns) < 1:

continue

load the image with resizing

img = self.coco.loadImgs(img_id)[0]

I = io.imread(os.path.join(self.data_path, img['file_name']))

if len(I.shape) == 2:

I = skimage.color.gray2rgb(I)

img_h, img_w = I.shape[0], I.shape[1]

I = resize(I, (self.img_size, self.img_size), anti_aliasing=True, preserve_range=True)

image = np.uint8(I)

scale annotation bounding boxes

x_scale, y_scale = self.img_size / img_w, self.img_size / img_h

get yolo_tensor and other annotations

cell_anc_cat, yolo_tensor = self.yolo_extractor(anns, x_scale, y_scale)

data[img['file_name']] = {"cell_idx" : cell_anc_cat[:,:2],

"anchor_idx" : cell_anc_cat[:,2],

"label" : cell_anc_cat[:,3],

"yolo_tensor" : yolo_tensor}

save the image

if self.train:

io.imsave(os.path.join("train_data", img['file_name']), image)

else:

io.imsave(os.path.join("test_data", img['file_name']), image)

print("data generation finished and dictionary was saved.")

save the data as .pkl

pickle.dump(data, open(self.folder_name + '.pkl', 'wb'))

return data

def plot_images(self, data_loader, sample_num=3):

class_list = ['bus', 'cat', 'pizza'] # class list

class_counter = {idx: 0 for idx in range(3)}

display the predictions in a figure

fig, axs = plt.subplots(3, sample_num)

#fig.tight_layout()

img_counter = 0

for k, data in enumerate(data_loader):

if class_counter[0] == sample_num and class_counter[1] == sample_num and class_counter[2] == sample_num:

break

imgs, gts = data

yolo_tensor, anchor_idx = gts['yolo_tensor'].numpy(), gts['anchor_idx'].numpy()

cell_idx, labels = gts['cell_idx'].numpy(), gts['label'].numpy()

yolo_tensor = yolo_tensor.reshape(self.num_cells_height, self.num_cells_width, self.anchor_num, 8)

prepare image for display

img = np.uint8(imgs[0].numpy() * 255)

img = img.transpose((1, 2, 0))

img = np.ascontiguousarray(img)

label = int(labels[0, 0].item())

if class_counter[label] >= sample_num:

continue

else:

class_counter[label] += 1

class_name = class_list[label]

obj_idxs = np.where(anchor_idx[0] != 13)[0]

iterate through objects

for obj_idx in range(len(obj_idxs)):

ground truths

label = int(labels[0, obj_idx].item())

row_cell_idx, col_cell_idx = cell_idx[0, obj_idx]

18

ECE 60146: Deep Learning Spring 2023 – Purdue University

anc_idx = anchor_idx[0, obj_idx]

[row_cell_idx, col_cell_idx, anc_idx] = list(map(lambda x: int(x.item()), [row_cell_idx, col_cell_idx, anc_idx]))

pick the yolo_vector

yolo_vector = yolo_tensor[row_cell_idx, col_cell_idx, anc_idx]

calculate ground truth bbox size

h = yolo_vector[3].item() * self.yolo_interval

w = yolo_vector[4].item() * self.yolo_interval

calculate cell centers

cell_i_center = row_cell_idx * self.yolo_interval + self.yolo_interval / 2

cell_j_center = col_cell_idx * self.yolo_interval + self.yolo_interval / 2

calculate the center of gt bbox

x_center = yolo_vector[1].item() * self.yolo_interval + cell_i_center

y_center = yolo_vector[2].item() * self.yolo_interval + cell_j_center

[x1, y1, x2, y2] = [round(y_center - w / 2), round(x_center - h / 2), round(y_center + w / 2),

round(x_center + h / 2)]

draw the bounding box

img = cv2.rectangle(img, (round(x1), round(y1)),

(round(x2), round(y2)),

(36, 256, 12), 2)

img = cv2.putText(img, class_list[label], (round(x1), round(y1 - 10)), cv2.FONT_HERSHEY_SIMPLEX,

0.8, (36, 256, 12), 3) #0.8

plot the image

row, col = img_counter // sample_num, img_counter % sample_num

axs[row, col].imshow(img)

axs[row, col].axis('off')

axs[row, col].set_title(f"class: {class_name}", size=8)

img_counter += 1

if self.train:

name = "train_samples"

else:

name = "test_samples"

plt.savefig(f"{name}.jpeg")

print("Predictions are plotted and figure is saved!")

if __name__ == "__main__":

important directories

parser = argparse.ArgumentParser()

parser.add_argument("--coco_dir", default="/Users/berksahin/Desktop",

help="parent directory of coco dataset")

args = parser.parse_args()

coco_dir = args.coco_dir

train_dir = os.path.join(coco_dir, "coco/train2014")

test_dir = os.path.join(coco_dir, "coco/test2014")

ann_dir = os.path.join(coco_dir, "coco/annotations2014")

class_list = ['bus', 'cat', 'pizza']

train_json = 'instances_train2014.json'

test_json = 'instances_val2014.json'

if not os.path.exists("train_data"):

os.mkdir("train_data")

if not os.path.exists("test_data"):

os.mkdir("test_data")

seed = 16 # 7

np.random.seed(seed)

random.seed(seed)

torch.manual_seed(seed)

torch.cuda.manual_seed(seed)

np.random.seed(seed)

torch.backends.cudnn.deterministic = True

torch.backends.cudnn.benchmarks = False

train and test COCOs

coco_train = COCO(os.path.join(os.path.join(coco_dir, ann_dir), train_json))

coco_test = COCO(os.path.join(os.path.join(coco_dir, ann_dir), test_json))

mapping from coco labels to my labels

coco_inv_labels = {}

catIds = coco_train.getCatIds(catNms=class_list)

for idx, catId in enumerate(sorted(catIds)):

coco_inv_labels[catId] = idx

pickle.dump(coco_inv_labels, open('inv_map.pkl', 'wb'))

print("Inverse map saved.")

train_dataset = YoloDataset(coco=coco_train, catIds=catIds, data_path=os.path.join(coco_dir, train_dir),

coco_inv_labels=coco_inv_labels, train=True)

test_dataset = YoloDataset(coco=coco_test, catIds=catIds, data_path=os.path.join(coco_dir, test_dir),

coco_inv_labels=coco_inv_labels, train=False)

train_loader = DataLoader(train_dataset, batch_size=1, shuffle=True)

test_loader = DataLoader(test_dataset, batch_size=1, shuffle=True)

print(f"Length of the train dataset: {len(train_dataset)}")

plot samples from train dataset

19

ECE 60146: Deep Learning Spring 2023 – Purdue University

train_dataset.plot_images(train_loader)

print("samples from train dataset were saved!")

plot samples from test dataset

test_dataset.plot_images(test_loader)

print("samples from test dataset were saved!")

5.4 model.py

import torch.nn as nn

import torch.nn.functional as F

import torch

from torch import optim

import time

import numpy as np

from dataset import YoloDataset

import matplotlib.pyplot as plt

from utils import IoU

import cv2

from torchvision.ops import nms, remove_small_boxes

from torchvision.ops import box_iou

from skimage import io

from pytorch_model_summary import summary

RESIDUAL BLOCK

class Block(nn.Module):

def __init__(self, width, learnable_res=False):

super(Block, self).__init__()

2 convolutional layers with batchnorm

self.conv = nn.Sequential(nn.Conv2d(width, width, 3, 1, 1),

nn.BatchNorm2d(width),

nn.ReLU(inplace=True),

nn.Conv2d(width, width, 3, 1, 1),

nn.BatchNorm2d(width))

for learnable skip-connections/residuals

self.learnable_res = learnable_res

if self.learnable_res:

self.res_conv = nn.Sequential(

nn.Conv2d(width, width, 3, 1, 1),

nn.BatchNorm2d(width)

)

def forward(self, x):

out = self.conv(x) # pass through CNN

if self.learnable_res:

out += self.res_conv(x) # pass through learnable res

else:

out += x # skip-connection

return F.relu(out) # ReLU

ENTIRE NETWORK

class YoloNet(nn.Module):

def __init__(self, in_channels=3, width=8, n_blocks=5, learnable_res=False,

max_col_cell=12, max_row_cell=12, anchor_num=5, yolo_interval=20,

threshold=0.2, iou_ths=0.5, lamb_obj=5, lamb_noobj=.5):

assert (n_blocks >= 0)

super(YoloNet, self).__init__()

hyperparamters

self.threshold = threshold

self.lamb_obj = lamb_obj

self.lamb_noobj = lamb_noobj

self.iou_ths = iou_ths

output size

self.out_dim = max_col_cell * max_row_cell * anchor_num * 8

self.max_row_cell = max_row_cell

self.max_col_cell = max_col_cell

self.yolo_interval = yolo_interval

self.anchor_num = anchor_num

base model

model = [nn.ReflectionPad2d(3),

nn.Conv2d(in_channels, width, kernel_size=7,

padding=0),

nn.BatchNorm2d(width),

nn.ReLU(True)]

downsampling layers

n_down = 4

mult = 0

for k in range(n_down):

expansion = 2 ** k

model += [nn.Conv2d(width * expansion, width * expansion * 2,

kernel_size=3, stride=2, padding=1),

nn.BatchNorm2d(width * expansion * 2),

nn.ReLU()] # relu added

mult = width * expansion * 2

add residual blocks

for i in range(n_blocks):

model += [Block(mult, learnable_res)]

20

ECE 60146: Deep Learning Spring 2023 – Purdue University

put the objects in list to nn.Sequential

self.model = nn.Sequential(*model)

classifier head

self.class_head = nn.Sequential(

nn.Linear(32768, 11520),

nn.BatchNorm1d(11520),

nn.ReLU(True),

nn.Linear(11520, self.out_dim)

)

def forward(self, x):

out = self.model(x)

out = torch.flatten(out, 1)

out = self.class_head(out)

return out

def run_train(self, train_loader, test_loader, epochs=50, lr=1e-3, betas=(0.9, 0.99)):

load model to device (cpu or gpu)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

self = self.to(device)

loss functions for binary class, mse, multi class

criterion1 = nn.BCELoss()

criterion2 = nn.MSELoss()

criterion3 = nn.CrossEntropyLoss()

choose optimization method

optimizer = optim.Adam(self.parameters(), lr, betas)

start_time = time.perf_counter()

train_loss_hist = {"bce" : [], "mse" : [], "ce" : []}

test_loss_hist = {"bce" : [], "mse" : [], "ce" : []}

min_loss = 100000000000

print("Training is running...")

training loop

for epoch in range(epochs):

losses that will be reported at each epoch

run_loss_bce = 0.0

run_loss_ce = 0.0

run_loss_mse = 0.0

self.train()

for data in train_loader:

extract data

imgs, gts = data

yolo_tensor, label = gts['yolo_tensor'], gts['label']

load them to gpu or cpu

imgs = imgs.to(device)

yolo_tensor = yolo_tensor.float().to(device)

forward pass

optimizer.zero_grad()

output = self(imgs)

output = output.view(yolo_tensor.shape)

CALCULATE TOTAL LOSS

loss = torch.tensor(0.0, requires_grad=True).float().to(device)

objectness = yolo_tensor[:,:,:,0] # objectness ground truths

yolo_idx = torch.nonzero(objectness) # consider cell&anch that have objects

CALCULATE BCE LOSS

calculate binary cross entropy for no object cases

tmp = torch.nonzero(objectness == 0)

no_obj_pred = output[tmp[:,0], tmp[:,1], tmp[:,2]]

no_obj_gt = yolo_tensor[tmp[:,0], tmp[:,1], tmp[:,2]]

loss_no_obj = criterion1(nn.Sigmoid()(no_obj_pred[:,0]), no_obj_gt[:,0])

loss += self.lamb_noobj * loss_no_obj

calculate binary cross entropy for objects cases

obj_pred = output[yolo_idx[:,0], yolo_idx[:,1], yolo_idx[:,2]]

obj_gt = yolo_tensor[yolo_idx[:,0], yolo_idx[:,1], yolo_idx[:,2]]

loss_obj = criterion1(nn.Sigmoid()(obj_pred[:,0]), obj_gt[:,0])

loss += loss_obj

save the loss for bce

run_loss_bce += loss_no_obj.item() + loss_obj.item()

CALCULATE MSE LOSS

yolo_tensor = yolo_tensor.view(-1, self.max_row_cell, self.max_col_cell, self.anchor_num, 8)

output = output.view(yolo_tensor.shape)

pull cell numbers of objects

objects = torch.nonzero(label != 13) # only include real objects

cell_nos = gts['cell_idx'][objects[:,0], objects[:,1]].type(torch.long)

anchor_nos = gts['anchor_idx'][objects[:,0], objects[:,1]].type(torch.long)

#anchor_nos = gts['anchor_idx'][objects[:,0], objects[:,1]]

output = output[objects[:,0], cell_nos[:,0], cell_nos[:,1], anchor_nos]

yolo_tensor = yolo_tensor[objects[:,0], cell_nos[:,0], cell_nos[:,1], anchor_nos]

calculate mse loss

mse_loss_obj = criterion2(output[:,1:5], yolo_tensor[:,1:5])

loss += self.lamb_obj * mse_loss_obj

run_loss_mse += mse_loss_obj.item()

calculate multi class cross entropy loss

labels = torch.argmax(yolo_tensor[:,5:], dim=1)

tmp = criterion3(output[:,5:], labels)

loss += tmp

run_loss_ce += tmp.item()

backward pass

21

ECE 60146: Deep Learning Spring 2023 – Purdue University

loss.backward()

optimizer.step()

calculate mean losses

run_loss_bce /= len(train_loader)

run_loss_mse /= len(train_loader)

run_loss_ce /= len(train_loader)

total_loss = (run_loss_bce + run_loss_mse + run_loss_ce) / 3 # equal weights

save mean losses

train_loss_hist["bce"].append(run_loss_bce)

train_loss_hist["mse"].append(run_loss_mse)

train_loss_hist["ce"].append(run_loss_ce)

report the results

print("*"*15 + "TRAIN" + "*"*15)

print(f"[EPOCH {epoch+1}/{epochs}] Total Mean Loss: {round(total_loss, 5)}")

print(f"[EPOCH {epoch+1}/{epochs}] BCE Mean Loss: {round(run_loss_bce, 5)}")

print(f"[EPOCH {epoch+1}/{epochs}] MSE Loss: {round(run_loss_mse, 5)}")

print(f"[EPOCH {epoch+1}/{epochs}] CE Mean Loss: {round(run_loss_ce, 5)}")

evaluation of the model (to check overfitting)

run_loss_bce = 0.0

run_loss_ce = 0.0

run_loss_mse = 0.0

self.eval()

for data in test_loader:

extract data

imgs, gts = data

yolo_tensor, label = gts['yolo_tensor'], gts['label']

load them to gpu or cpu

imgs = imgs.to(device)

yolo_tensor = yolo_tensor.float().to(device)

forward pass

output = self(imgs)

output = output.view(yolo_tensor.shape)

total loss

loss = torch.tensor(0.0, requires_grad=True).float().to(device)

objectness = yolo_tensor[:,:,:,0] # consider cell&anch that have no objects

yolo_idx = torch.nonzero(objectness) # consider cell&anch that have objects

CALCULATE BCE LOSS

calculate binary cross entropy for no object cases

tmp = torch.nonzero(objectness == 0)

no_obj_pred = output[tmp[:,0], tmp[:,1], tmp[:,2]]

no_obj_gt = yolo_tensor[tmp[:,0], tmp[:,1], tmp[:,2]]

loss_no_obj = criterion1(nn.Sigmoid()(no_obj_pred[:,0]), no_obj_gt[:,0])

calculate binary cross entropy for objects cases

obj_pred = output[yolo_idx[:,0], yolo_idx[:,1], yolo_idx[:,2]]

obj_gt = yolo_tensor[yolo_idx[:,0], yolo_idx[:,1], yolo_idx[:,2]]

loss_obj = criterion1(nn.Sigmoid()(obj_pred[:,0]), obj_gt[:,0])

save the loss for bce

run_loss_bce += loss_no_obj.item() + loss_obj.item()

CALCULATE MSE LOSS

yolo_tensor = yolo_tensor.view(-1, self.max_row_cell, self.max_col_cell, self.anchor_num, 8)

output = output.view(yolo_tensor.shape)

pull cell numbers of objects

objects = torch.nonzero(label != 13) # only include real objects

cell_nos = gts['cell_idx'][objects[:,0], objects[:,1]].type(torch.long)

anchor_nos = gts['anchor_idx'][objects[:,0], objects[:,1]].type(torch.long)

#anchor_nos = gts['anchor_idx'][objects[:,0], objects[:,1]]

output = output[objects[:,0], cell_nos[:,0], cell_nos[:,1], anchor_nos]

yolo_tensor = yolo_tensor[objects[:,0], cell_nos[:,0], cell_nos[:,1], anchor_nos]

calculate mse loss

mse_loss_obj = criterion2(output[:,1:5], yolo_tensor[:,1:5])

run_loss_mse += mse_loss_obj.item()

calculate multi class cross entropy loss

labels = torch.argmax(yolo_tensor[:,5:], dim=1)

tmp = criterion3(output[:,5:], labels)

run_loss_ce += tmp.item()

calculate mean losses

run_loss_bce /= len(test_loader)

run_loss_mse /= len(test_loader)

run_loss_ce /= len(test_loader)

total_loss = (run_loss_bce + run_loss_mse + run_loss_ce) / 3 # equal weights

save mean losses

test_loss_hist["bce"].append(run_loss_bce)

test_loss_hist["mse"].append(run_loss_mse)

test_loss_hist["ce"].append(run_loss_ce)

report the results

print("*"*15 + "TEST" + "*"*15)

print(f"[EPOCH {epoch+1}/{epochs}] Total Mean Loss: {round(total_loss, 5)}")

print(f"[EPOCH {epoch+1}/{epochs}] BCE Mean Loss: {round(run_loss_bce, 5)}")

print(f"[EPOCH {epoch+1}/{epochs}] MSE Loss: {round(run_loss_mse, 5)}")

print(f"[EPOCH {epoch+1}/{epochs}] CE Mean Loss: {round(run_loss_ce, 5)}")

if total_loss < min_loss:

min_loss = total_loss

save the best model

torch.save(self.state_dict(), "best_model")

print("Best model has been saved!")

save the last model Y

torch.save(self.state_dict(), "last_model")

22

ECE 60146: Deep Learning Spring 2023 – Purdue University

print("last model has been saved!")

return {"train": train_loss_hist,

"test" : test_loss_hist}

def bbox_to_corners(self, indices, yolo_tensor, device):

[dx, dy, h, w] = [yolo_tensor[:,i] for i in range(1,5)]

h *= self.yolo_interval

w *= self.yolo_interval

row_cell_idx = indices // self.max_col_cell

col_cell_idx = indices % self.max_col_cell

cell_i_center = row_cell_idx * self.yolo_interval + self.yolo_interval/2

cell_j_center = col_cell_idx * self.yolo_interval + self.yolo_interval/2

broadcast

x_center = cell_i_center + dx * self.yolo_interval

y_center = cell_j_center + dy * self.yolo_interval

x1 = (y_center - w/2).unsqueeze(dim=1)

y1 = (x_center - h/2).unsqueeze(dim=1)

x2 = (y_center + w/2).unsqueeze(dim=1)

y2 = (x_center + h/2).unsqueeze(dim=1)

bbox = torch.cat((yolo_tensor[:,0].unsqueeze(dim=1), x1, y1, x2, y2, yolo_tensor[:,5:]), dim=1).to(device)

return bbox

def inference(self, model_path, test_loader, sample_num=2):

device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # set device

class_list = ['bus', 'cat', 'pizza'] # class list

load model

self.load_state_dict(torch.load(model_path))

self.to(device)

self.eval()

set the figure and axes for display

fig, axs = plt.subplots(3, sample_num)

fig.tight_layout()

counter = 0

iterate through data loader, batch size = 1

for data in test_loader:

display only sample_num number of images per

if counter > 3 * sample_num - 1:

break

extract the annotations and images

imgs, gts = data

yolo_tensor, anchor_idx = gts['yolo_tensor'], gts['anchor_idx']

cell_idx, labels = gts['cell_idx'], gts['label']

prepare image for display

img = np.uint8(imgs[0].numpy() * 255)

img = img.transpose((1, 2, 0))

img = np.ascontiguousarray(img)

load them to gpu or cpu

imgs = imgs.to(device)

yolo_tensor = yolo_tensor.float().to(device)

output = self(imgs)

reshape the prediction and labels to (num. row cell, num. col cell, anchor id, 8)

output = output.view(yolo_tensor.shape)

yolo_tensor = yolo_tensor.view(self.max_row_cell, self.max_col_cell, self.anchor_num, 8)

forward pass for inference

yolo_idx = torch.nonzero(anchor_idx[0] != 13)

if len(yolo_idx) == 1:

continue

iterate through objects to display ground truths

for obj_idx in range(len(yolo_idx)):

extract ground truths for each object

label = int(labels[0, obj_idx].item())

row_cell_idx, col_cell_idx = cell_idx[0, obj_idx]

anch_idx = anchor_idx[0, obj_idx]

[row_cell_idx, col_cell_idx, anch_idx] = list(map(lambda x: int(x.item()), [row_cell_idx, col_cell_idx, anch_idx]))

relevant yolo vector

yolo_vector = yolo_tensor[row_cell_idx, col_cell_idx, anch_idx]

calculate ground truth bbox size

h = yolo_vector[3].item() * self.yolo_interval

w = yolo_vector[4].item() * self.yolo_interval

calculate cell centers

cell_i_center = row_cell_idx * self.yolo_interval + self.yolo_interval / 2

cell_j_center = col_cell_idx * self.yolo_interval + self.yolo_interval / 2

calculate the center of gt bbox

x_center = yolo_vector[1].item() * self.yolo_interval + cell_i_center

y_center = yolo_vector[2].item() * self.yolo_interval + cell_j_center

[x1, y1, x2, y2] = [round(y_center-w/2), round(x_center-h/2), round(y_center+w/2), round(x_center+h/2)]

draw the bounding box

img = cv2.rectangle(img, (round(x1), round(y1)),

(round(x2), round(y2)),

(36, 256, 12), 2)

23

ECE 60146: Deep Learning Spring 2023 – Purdue University

draw its class name

img = cv2.putText(img, class_list[label], (round(x1), round(y1 - 10)), cv2.FONT_HERSHEY_SIMPLEX,

0.8, (36, 256, 12), 2)

objectness prediction

output[0,:,:,0] = nn.Sigmoid()(output[0,:,:,0])

cobj_idx = torch.nonzero(output[0,:,:,0] > self.threshold)

box_cand = output[0, cobj_idx[:,0], cobj_idx[:,1]]

extract corners of the predicted bounding box

pred_boxes = self.bbox_to_corners(cobj_idx[:,0], box_cand, device)

bboxes = []

predicted categories

pred_cats = torch.argmax(pred_boxes[:,5:], dim=1)

perform non-max supression for each class

for i in range(3):

idxs = torch.nonzero(pred_cats == i)

if idxs.shape[0] != 0:

non-max supression for objectness = 1

class_tensors = pred_boxes[idxs[:,0]]

indices = nms(boxes=class_tensors[:,1:5], scores=class_tensors[:,0], iou_threshold=self.iou_ths)

bboxes.append(class_tensors[indices,:])

display predicted bounding boxes

for obj_idx in range(len(bboxes)):

yolo_pred = bboxes[obj_idx][0]

predicted class

label = torch.argmax(yolo_pred[5:]).item()

bounding box corners

[x1, y1, x2, y2] = [round(yolo_pred[i].item()) for i in range(1,5)]

draw the bounding box

img = cv2.rectangle(img, (x1, y1),

(x2, y2),

(256, 36, 12), 2)

draw predicted class name

img = cv2.putText(img, class_list[label], (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX,

0.8, (256, 36, 12), 2)

plot the image to the corresponding cell

row, col = counter // sample_num, counter % sample_num

axs[row, col].imshow(img)

axs[row, col].axis('off')

axs[row, col].set_title(f"Prediction {counter+1}", size=12)

counter += 1

save figure

plt.savefig("test_pred.jpeg")

print("Predictions are plotted and figure is saved!")

test code for CNN backbone of YoloNet

if __name__ == "__main__":

x = torch.rand((8, 3, 256, 256))

model = YoloNet()

y = model(x)

print("Input shape: ", x.shape)

print("Output shape: ", y.shape)

print model summary

model_sum = summary(model, torch.zeros((1, 3, 256, 256)), show_input=False, show_hierarchical=True)

file_obj = open("model_sum.txt", "w")

file_obj.write(model_sum)

print("Model summary was saved...")

print("Learnable layers:", len(list(model.parameters())))

5.5 hw6 MehmetBerkSahin.py
from dataset import YoloDataset

from model import YoloNet

import argparse

from torch.utils.data import DataLoader

import random

import torch, gc

import numpy as np

import os

from pycocotools.coco import COCO

import pickle

if __name__ == '__main__':

parser = argparse.ArgumentParser()

parser.add_argument("--epochs", default=10, type=int, help="number of epochs for training")

parser.add_argument("--lr", default=1e-3, type=float, help="learning rate")

parser.add_argument("--yolo_interval", default=20, type=int, help="length of one yolo cell")

parser.add_argument("--anchors", default=5, type=int, help="number of anchor boxes")

parser.add_argument("--coco_dir", default="/Users/berksahin/Desktop",

help="parent directory of coco dataset")

parser.add_argument("--batch_size", default=32, type=int, help="size of the minibatch")

parser.add_argument("--img_size", default=256, type=int, help="size of the images for training")

parser.add_argument("--threshold", default=0.9, type=float, help="threshold for predicted objectness")

parser.add_argument("--iou_threshold", default=0.4, type=float, help="iou threshold for nonmax supression")

parser.add_argument("--lambda1", default=5, type=float, help="lambda for objects (mse)") # lambda_coord

parser.add_argument("--lambda2", default=.5, type=float, help="lambda for no objects") # lambda_noobj

24

ECE 60146: Deep Learning Spring 2023 – Purdue University

parser.add_argument("--inference", default=False, type=bool, help="open inference mode")

args = parser.parse_args()

take the inputs

EPOCH = args.epochs

LR = args.lr

YOLO_INT = args.yolo_interval

ANC = args.anchors

COCO_DIR = args.coco_dir

BATCH = args.batch_size

IMG_SIZE = args.img_size

THRESHOLD = args.threshold

IOU_THS = args.iou_threshold

LAMBDA1 = args.lambda1

LAMBDA2 = args.lambda2

INFERENCE = args.inference

for reproducible results

seed = 3

random.seed(seed)

torch.manual_seed(seed)

torch.cuda.manual_seed(seed)

np.random.seed(seed)

torch.backends.cudnn.deterministic=True

torch.backends.cudnn.benchmarks=False

data file info

class_list = ['bus', 'cat', 'pizza']

train_json = 'instances_train2014.json'

test_json = "instances_val2014.json"

create data directories if doesn't exist

if not os.path.exists("train_data"):

os.mkdir("train_data")

if not os.path.exists("test_data"):

os.mkdir("test_data")

train and test COCOs

coco_train = COCO(train_json)

coco_test = COCO(test_json)

mapping from coco labels to my labels

coco_inv_labels = {}

catIds = coco_train.getCatIds(catNms=class_list)

for idx, catId in enumerate(sorted(catIds)):

coco_inv_labels[catId] = idx

save inverse maps

pickle.dump(coco_inv_labels, open('inv_map.pkl', 'wb'))

print("Inverse map saved!")

create custom dataset for training and test/inference

train_dataset = YoloDataset(coco=coco_train, catIds=catIds, data_path="",

coco_inv_labels=coco_inv_labels, train=True)

print(f"length of the train dataset: {len(train_dataset)}")

test_dataset = YoloDataset(coco=coco_test, catIds=catIds, data_path="",

coco_inv_labels=coco_inv_labels, train=False)

print(f"length of the test dataset: {len(test_dataset)}")

initialize dataloaders

train_loader = DataLoader(train_dataset, batch_size=BATCH, shuffle=True)

test_loader = DataLoader(test_dataset, batch_size=BATCH, shuffle=True)

initialize model

model = YoloNet(threshold=THRESHOLD, iou_ths=IOU_THS, lamb_obj=LAMBDA1, lamb_noobj=LAMBDA2)

if INFERENCE:

do inference and save figures

test_loader2 = DataLoader(test_dataset, batch_size=1, shuffle=True)

model.inference("best_model", test_loader2)

else:

start training

loss = model.run_train(train_loader, test_loader, epochs=EPOCH, lr=LR)

save the loss history

pickle.dump(loss, open("loss_history.pkl", "wb"))

print("training was completed succesfully and losses were saved!")

5.6 utils.py

from torchvision.ops import box_iou

import torch

import torch.nn as nn

class IoU(nn.Module):

def __init__(self, yolo_interval, device, reduction='none', image_size=256):

super(IoU, self).__init__()

self.reduction = reduction

self.yolo_interval = yolo_interval

self.device = device

self.image_size = image_size

def bbox_to_corners(self, cell_nos, dx, dy, h, w):

25

ECE 60146: Deep Learning Spring 2023 – Purdue University

h *= self.yolo_interval

w *= self.yolo_interval

row_cell_idx = cell_nos[:,0].unsqueeze(dim=1)

col_cell_idx = cell_nos[:,1].unsqueeze(dim=1)

cell_i_center = row_cell_idx * self.yolo_interval + self.yolo_interval/2

cell_j_center = col_cell_idx * self.yolo_interval + self.yolo_interval/2

broadcast

x_center = cell_i_center.repeat(1, dx.shape[1]).to(self.device) + dx * self.yolo_interval

y_center = cell_j_center.repeat(1, dy.shape[1]).to(self.device) + dy * self.yolo_interval

#CHECK THIS TOMORROW

x1 = (y_center - w/2).unsqueeze(dim=2)

y1 = (x_center - h/2).unsqueeze(dim=2)

x2 = (y_center + w/2).unsqueeze(dim=2)

y2 = (x_center + h/2).unsqueeze(dim=2)

bbox = torch.cat((x1, y1, x2, y2), dim=2).to(self.device)

return bbox

def forward(self, cell_nos, output, target):

[dx, dy, h, w] = [output[:,:,i] for i in range(1,5)]

bbox_pred = self.bbox_to_corners(cell_nos, dx, dy, h, w)

[dx, dy, h, w] = [target[:,i].unsqueeze(dim=1) for i in range(1,5)]

bbox_gt = self.bbox_to_corners(cell_nos, dx, dy, h, w).squeeze(dim=1)

calculate iou score

results = torch.zeros(bbox_pred.shape[:-1], device=self.device, requires_grad=True)

idx = torch.arange(0, results.shape[0])

for i in range(results.shape[1]):

tmp = box_iou(bbox_pred[:,i,:], bbox_gt)

results[:,i] = tmp[idx, idx]

return results

References
[1] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You only look once: Unified, real-time object detection. CoRR,

abs/1506.02640, 2015.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition, 2015.

26

	Introduction
	YOLO Logic

	Dataset Preparation
	yolo_extractor()
	data_generator()

	YOLO Train & Inference Logic
	YOLO Train Logic
	YOLO Train Code & run_train()
	YOLO Inference Logic
	Non-maximum supression (NMS)
	YOLO Test Code & inference()

	Results
	Experiment Setting
	Training Results
	How to improve the performance further?
	How to run the code?

	Appendix
	Model Summary
	Source Code
	dataset.py
	model.py
	hw6_MehmetBerkSahin.py
	utils.py

