BME646 and ECE60146: Homework 5

Spring 2023
Due Date: 11:59pm, Mar 06, 2023
TA: Fangda Li (1li1208@purdue.edu)

Turn in typed solutions via BrightSpace. Additional instructions can
be found at BrightSpace. Late submissions will be accepted with penalty:
-10 points per-late-day, up to 5 days. This can be a challenging
homework. Start early!

1 Introduction

The main goal of this HW is for you to create your own, unironically, pizza
detector. To do so, you’ll need to:

1. Implement your own Skip-Connection block or ResBlock. Use that
block to implement a deep network for extracting convolutional fea-
tures of an input image.

2. Using the deep features extracted by your deep network, implement
additional layers for predicting the class label and the bounding box
parameters of the dominant object in an image.

3. Incorporate the CloU (Complete IoU) Loss in your object detection
network. For this you can simply call the PyTorch class for CloU
available at

https://pytorch.org/vision/stable/generated/torchvision.ops.
complete_box_iou_loss.html

This would be for the purpose of comparing your Ls-Loss based results
with the CloU Loss based results.

4. Implement the logic for training and evaluating your deep neural net-
work.

Just like HW4, you will again create your own dataset based on the COCO
dataset according to the guidelines specified later in this homework.

2 Getting Ready for This Homework

Before embarking on this homework, do the following:

https://pytorch.org/vision/stable/generated/torchvision.ops.complete_box_iou_loss.html
https://pytorch.org/vision/stable/generated/torchvision.ops.complete_box_iou_loss.html

1. Review the Week 6 slides on “Using Skip Connections and ...” with
the goal of understanding the relationship between the building-block
class SkipBlock on Slides 14 through 18 and the BMEnet network on
Slides 20 through 23. The better you understand the relationship
between the SkipBlock class and the BMEnet class in DLStudio, the
faster you will zoom in on what you need to do for this homework.
Roughly speaking, you will have the same relationship between your
own skip block and your network for object detection and bounding-
box regression.

2. Review the Week 7 slides on “Object Detection and Localization ...”
to understand how both classification and regression can be carried
out simultaneously by a neural network.

3. Before you run the demo script for object detection and localization
in DLStudio, you will need to also install the following datasets that
are included in the link “Download the image datasets for the main
DLStudio module” at the main webpage for DLStudio:

PurdueShapes5-10000-train.gz
PurdueShapes5-1000-test.gz

Alternatively, you can also download them directly by clicking the link
below:

https://engineering.purdue.edu/kak/distDLS/datasets_for_DLStudio.
tar.gz

The integer value you see in the names of the datasets is the number
of images in each. Follow the instructions on the main webpage for
DLStudio on how to unpack the image data archive that comes with
DLStudio and where to place it in your directory structure. These in-
structions will ask you to download the main dataset archive and store
it in the Examples directory of the distribution. Subsequently, you
would need to execute the following (Linux) command in the Examples
directory:

tar xvf datasets_for_DLStudio.tar.gz

This will create a subdirectory data in the Examples directory and
deposit all the datasets in it.

4. Execute the following script in the Examples directory of DLStudio:

https://engineering.purdue.edu/kak/distDLS/datasets_for_DLStudio.tar.gz
https://engineering.purdue.edu/kak/distDLS/datasets_for_DLStudio.tar.gz

1] {

2

object_detection_and_localization.py

Your own CNN for this homework should produce the sort of results
that are displayed by the script object_detection_and_localization

. As you’ll recall, the second goal of this homework asks you to conjure

up a building-block class of your own design that would serve as your
skip block. Towards that end, you are suppose to familiarize your-
self with such classes in ResNet and in DLStudio. The better you
understand the logic that goes into such building-block classes, the
greater the likelihood that you’ll come up with something interesting
for your own skip-block class. ResNet has two different kinds of skip
blocks, named BasicBlock and BottleNeck. BasicBlock is used as
a building-block in ResNet-18 and ResNet-34. The numbers 18 and
34 refer to the number of layers in these two networks. For deeper
networks, ResNet uses the BottleNeck class. Here is the URL to the
GitHub code for ResNet [2]:

https://github.com/pytorch/vision/blob/master/torchvision/
models/resnet.py

. In this homework, you will also be comparing two different loss func-

tions for the regression loss: The Lo-norm based loss as provided
by torcn.nn.MSELoss and the CloU Loss as provided by PyTorch’s
complete_box_iou_loss that is available at the link supplied in the
Intro section. To prepare for this comparison, review the material on
Slides 32 through 41 of the Week 7 slides on Object Detection.

3 How to Use the COCO Annotations

For this homework, you will need labels and bounding boxes from the COCO
dataset. This section shows how to access and plot images with annotations
as shown in Fig. 1. The code given in this section should give you enough
insights into COCO annotations and how to access that information to pre-
pare your own dataset and write your dataloader for this homework.

First of all, it’s important to understand some key entries in COCO
annotations. The COCO annotations are stored in the list of dictionaries
and what follows is an example of such a dictionary:

"id": 1409619, # annotation ID

https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

10

11

(a) Example 1 (b) Example 2

Figure 1: Sample COCO images with bounding box and label annotations.

"category_id": 1, # COCO category ID
"iscrowd": O, # specifies whether the

segmentation is for a single
object or for a group/cluster
of objects

"segmentation": [

[86.0, 238.8, ..., 382.74, 241.17]

1, # a list of polygon vertices
around the object (x, y pixel
positions)

"image_id": 245915, # integer ID for COCO image

"area": 3556.2197000000015, # Area measured in pixels
"bbox": [86, 65, 220, 334] # bounding box [top left x

position, top left y position,
width, height]

The following code (ref. inline code comments) shows how to access the
required COCO annotation entries and display a randomly chosen image
with desired annotations for visual verification. After importing the required
python modules (e.g. cv2, skimage, pycocotools, etc.), you can run the
given code and visually verify the output yourself.

Input
input_j
class_1

son = ’instances_train2014. json’
ist = [’pizza’, ’bus’, ’cat’]

RARRHAARBHAARRHAARRHHARRRHHA

Mappi

coco =
catlds
categor

ng from COCO label to Class indices

il coco_labels_inverse = {}

COCO(input_json)
= coco.getCatIds(catNms=class_list)
ies = coco.loadCats(catIds)

10
11
12

30
31
32
33
34
35
36

38
39
40
41

categories.sort (key=lambda x: x[’id’])
print (categories)

[{’supercategory’: ’vehicle’, ’id’: 6, ’name’: ’bus’}, {’

supercategory’: ’animal’,
17, ’name’: ’cat’}, {~’

’id’:

supercategory’: ’food’, ’id’:

59, ’name’: ’pizza’l}]

for idx, in_class in enumerate(class_list):

for ¢ in categories:

if c[’name’] == in_class:
coco_labels_inverse[c[’id’]] = idx

print (coco_labels_inverse)
{6: 0, 17: 1, 59: 2}
RARBHAARBHAARBHBARRRHARRRHAHAY
Retrieve Image list
imgIds = coco.getImgIlds(catIds=catIds)
RARBHAARBHBARBHBARRRHRARRRHAHAY
Display one random image with annotation
idx = np.random.randint (0, len(imgIds))
img = coco.loadImgs (imgIds[idx]) [0]
I = io.imread(img[’coco_url’])
if len(I.shape) == 2:

I = skimage.color.gray2rgb(I)
annIds = coco.getAnnIds (imgIlds=img[’id’], catIds=catlds,

iscrowd=False)

anns = coco.loadAnns (annIds)
fig, ax = plt.subplots(1l, 1)
image = np.uint8(I)
for ann in anns:

[x, y, w, h] = ann[’bbox’]

label = coco_labels_inverse[ann[’category_id’]]

image = cv2.rectangle(image, (int(x), int(y)), (int(x + w),
int(y + h)), (36, 255, 12), 2)

image = cv2.putText(image, class_list[labell, (int(x),
y - 10)), cv2.
FONT_HERSHEY_SIMPLEX,
0.8, (36, 255, 12), 2)

ax.imshow (image)

ax.set_axis_off ()

plt.axis(’tight’)

plt.show ()

int (

4 Programming Tasks

4.1 Creating Your Own Object Localization Dataset

In this exercise, you will create your own dataset based on the following
steps:

1. Similar to what you have done in HW4, first make sure the COCO API
is properly installed in your conda environment. As for the image files
and their annotations, we will be using both the 2014 Train images
and 2014 Val images, as well as their accompanying annotation files:
2014 Train/Val annotations. For instructions on how to access
them, you can refer back to the HW4 handout.

2. Now, your main task is to use those files to create your own object
localization dataset. More specifically, you need to write a script that
filters through the images and annotations to generate your training
and testing dataset such that any image in your dataset meets the
following criteria:

e Contains at least one object from any of the following three cat-
egories: [’bus’, ’cat’, ’pizza’].

e Contains one dominant object whose bounding box area exceeds
200 x 200 = 40000 pixels. The dominant object in an image is
defined as the one object with the largest area and is from any of
the aforementioned three classes. Note that there can be only at
most one dominant object in an image since we are dealing with
single object localization for this homework. If there is none, that
image should be discarded. Such images shall become useful in a
future homework dealing with multi-instance localization. Also,
note that you can use the area entry in the annotation dictionary
instead of calculating it yourself.

e When saving your images to disk, resize them to 256 x 256. Note
that you would also need to scale the bounding box parameters
accordingly after resizing.

e Use only images from 2014 Train images for the training set
and 2014 Val images for the testing set.

Again, you have total freedom on how you organize your dataset as
long as it meets the above requirements. If done correctly, you will
end up with roughly 4k training images and 2k testing images.

3. In your report, make a figure of a selection of images from your created
dataset. You should plot at least 3 images from each of the three
classes like what is shown in Fig. 1 but only with the annotation of
the dominant object.

4.2 Building Your Deep Neural Network

Once you have prepared the dataset, you now need to implement your deep
convolutional neural network (CNN) for simultaneous object classification
and localization. The steps for creating your CNN are as follows:

1. You must first create your own Skip-Connection Block or ResBlock.
You can refer to how it is written in either DLStudio or ResNet in
Torchvision [2]. However, your implementation must be your
own.

2. The next step is to use your ResBlock to create your deep CNN. Your
deep CNN should input an image and predict the following two items
for the dominant object in the image:

e The class label, similar to what you have done in HW4.

e The bounding box parameters in the following order: [x1, y1,

x2, y2], where (x1, y1) is the location of the top left corner

of the bounding box, and (x2, y2) is the location of the bottom
right corner.

3. Again, you have total freedom on how you design your CNN for this
task. Nonetheless, here is a recommended skeleton for building your
network (inspired by [1]):

1 import torch
2 from torch import nn

1| class HW5Net (nn.Module):

5 """Resnet ~based encoder that consists of a few

6 downsampling + several Resnet blocks as the backbone
7 and two prediction heads.

nonn

10 def __init__(self, input_nc, output_nc, ngf=8,
n_blocks=4):

11 o

12 Parameters:

13 input_nc (int) -- the number of channels
in input images

14 output_nc (int) -- the number of channels
in output images

15 ngf (int) -- the number of filters
in the first conv layer

16 n_blocks (int) -—- the number of ResNet
blocks

17 e

18 assert (n_blocks >= 0)

19 super (HW5Net , self).__init__()

20 # The first conv layer

21 model = [nn.ReflectionPad2d(3),

22 nn.Conv2d (input_nc, ngf, kernel_size=7,
padding=0),

23 nn.BatchNorm2d (ngf),

24 nn.ReLU(True)]

25 # Add downsampling layers

26 n_downsampling = 4

27 for i in range(n_downsampling):

28 mult = 2 **x i

29 model += [nn.Conv2d(ngf * mult, ngf * mult * 2

, kernel_size=3, stride=2,
padding=1),

30 nn.BatchNorm2d (ngf * mult * 2),

31 nn.ReLU(True)]

32 # Add your own ResNet blocks

33 mult = 2 ** n_downsampling

34 for i in range(n_blocks):

35 model += [ResnetBlock(...)]

36 self .model = nn.Sequential (*model)
37 # The classification head

38 class_head = [

39

40]

41 self.class_head = nn.Sequential (*class_head)
42 # The bounding box regression head
43 bbox_head = [

14

45]

46 self .bbox_head = nn.Sequential (*bbox_head)
47

48 def forward(self, input):

49 ft = self.model(input)

50 cls = self.class_head(ft)

51 bbox = self.bbox_head(ft)

52 return cls, bbox

4. No matter how your CNN is built, it should be “deep enough” — that
is, it should contain at least 50 learnable layers. More specifically, you

can check the number of learnable layers using the following statement:

I|num_layers = len(list(net.parameters()))

5. In your report, designate a code block listing your ResBlock and your
HW5Net implementations. Make sure they are commented in detail.
Additionally, report the total number of learnable layers in your net-
work.

4.3 Training and Evaluating Your Trained Network

Now that you have finished designing your deep CNN, it is finally time to
put your glorious pizza detector in action. To do so, you’ll need the following
steps:

1. Write your own dataloader similar to what you did in HW4. For
single-instance object localization, your dataloader should return not
only the image and its label, but also the groundtruth bounding box
parameters: [x1, y1, x2, y2]. Note that you should make sure
the coordinate values reside in the range (0, 1). Additionally, if
there is any geometrical augmentation taking place, the bounding box
parameters would also need to be updated accordingly.

2. Write your own training code. Note that this time you will need two
losses for training your network: a cross-entropy loss for classification
and another loss for bounding box regression. More specifically for the
latter, you’ll need to experiment with two different losses: the mean
squre error (MSE) loss and the Complete IoU loss. Note that if ops
.complete_box_iou isn’t available in your installed Torchvision, you
can alternatively use ops.generalized_box_iou instead.

3. Write your own evaluation code. To quantitative evaluation of your
trained pizza (and bus and cat) detector, first report the confusion
matrix on the testing set for classification similar to what you have
done in HW4. Subsequently, report the mean Intersection over Union
(IoU) for bounding box regression (i.e. localization). You might find
the bounding box operators in torchvision very useful for calculat-
ing the bounding box IoU: https://pytorch.org/vision/main/ops.
html#box-operators.

4. In your report, include the confusion matrix as well as the overall
classification accuracy of your pizza detector on the testing set. Ad-
ditionally, report two mean IoU values of your pizza detector, trained

https://pytorch.org/vision/main/ops.html#box-operators
https://pytorch.org/vision/main/ops.html#box-operators

with the MSE-based bounding box regression loss or the CloU-based
loss. For visualization, display at least 3 images from each of the three
classes with both the GT annotation (i.e. class label and bounding
box) and the predicted annotation of the dominant object. Those
images can be a mixture of successful cases as well as failed cases. In-
clude a paragraph discussing the performance of your pizza detector
and how you think can further improve it.

5 Submission Instructions

Include a typed report explaining how did you solve the given programming
tasks.

1. Your pdf must include a description of

e The figures and descriptions as mentioned in Sec. 4.

e Your source code. Make sure that your source code files are
adequately commented and cleaned up.

2. Turn in a zipped file, it should include (a) a typed self-contained pdf
report with source code and results and (b) source code files (only .py
files are accepted). Rename your .zip file as hw5_<First Name><Last
Name>.zip and follow the same file naming convention for your pdf
report too.

3. Do NOT submit your network weights.

4. For all homeworks, you are encouraged to use .ipynb for development
and the report. If you use .ipynb, please convert it to .py and submit
that as source code.

5. You can resubmit a homework assignment as many times as you want
up to the deadline. FEach submission will overwrite any previous
submission. If you are submitting late, do it only once on
BrightSpace. Otherwise, we cannot guarantee that your latest sub-
mission will be pulled for grading and will not accept related regrade
requests.

6. The sample solutions from previous years are for reference only. Your
code and final report must be your own work.

7. To help better provide feedbacks to you, make sure to number your
figures.

10

References

[1] pytorch-CycleGAN-and-pix2pix. URL https://github.com/junyanz/
pytorch-CycleGAN-and-pix2pix.

[2] Torchvision ResNet. ~URL https://github.com/pytorch/vision/
blob/main/torchvision/models/resnet.py.

11

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py
https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py

	Introduction
	Getting Ready for This Homework
	How to Use the COCO Annotations
	Programming Tasks
	Creating Your Own Object Localization Dataset
	Building Your Deep Neural Network
	Training and Evaluating Your Trained Network

	Submission Instructions

