Assignment-4 2/20/23, 10:10 AM

BME 646 / ECE 60146: Homework 4
Andrés C. Castillo J.
castili2@purdue.edu

February 20, 2023

1. Introduction

The focus of this assignment is to introduce us to the MS-COCO dataset, a widely used and well-regarded
dataset for many taks like: classification and object detection. Beyond the introduction to the dataset, the
assignment also introduces the concepts of convolutional neural networks (CNNs).

The assignment asks us to curate the COCO dataset and select 1500 training images as well as 500 testing
images for 5 different classes. It then asks us to implement a classification task on these classes by using
three differently architected CNNs and compare their performance.

2. Methodology

In order to curate the MS-COCO Dataset to fit the requirements, | first familiarized myself with the COCO API
in the following link: https://github.com/cocodataset/cocoapi/blob/master/PythonAPIl/pycocotools/coco.py
(https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/coco.py)

After becoming familiar with the API, | opted to downloaded the COCO dataset so it would reside in my
machine locally. An advantage of this method is not having to rely on the internet to populate the training
and testing datasets by downloading the images directly from their URL.

Once downloaded, | created two sub-folders: Training and Testing. Within these sub-folders | will
dynamically create and populate folders with images belonging to each class. Doing it this way, will allow for
easier labeling when retrieving images through a custom dataset class.

After curating the dataset, | then passed them through three different CNNs as requested, and obtained a
comparison plot for all networks training loss as well as testing accuracy via a confusion matrix.

file:///Users/castil12/Documents/ECE%2060146/Homework%20%23%204/Assignment-4.html Page 1 of 28

https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/coco.py

Assignment-4 2/20/23, 10:10 AM

3. Implementation and Results

3.1 Creating Your Own Image Classification Dataset

As mentioned in the methodology section, my thought was to have the dataset locally and dynamically build
from it everytime | ran the program. In order to do this, | created a Training and Testing sub-folder within my
CustomCOCO folder.

Using the desired categories from the homework assignment: ['airplane', 'bus', 'cat', 'dog',
'pizza'] |randomly extracted 1500 training images and 500 testing images from each class, and saved
them in their respective category folders. The structure can be seen on Figure 1 below.

B
&)

0 Testing ay o> [COCO_train...0122017.jpg

= Training D> &7 dog COCO_train...0216197.jpg
= COCO_train...0511550.jpg
COCO_train...0194154.jpg
COCO_train...0115018.jpg
COCO_train...389391.jpg
COCOQ_train...467572.jpg
COCO_train...029005.jpg
COCOQ_train...200528.jpg
COCO_train...460568.jpg
COCO_train...0157989.jpg
COCOQ_train...0141988.jpg
COCO_train...402820.jpg
COCO_train...182505.jpg
[COCO_train...0517403.jpg

! &l |

)

RN E S D R E

T cat
7 bus

7 airplane

00D e

coooOBEBOOODDD DD

Figure 1. Folder Structure for Curated COCO Dataset.

Images in the COCO dataset can have multiple categories and the instructions were to make sure there were
no duplicate images. | made sure to run a master list of all available COCO images, whenever any image
was picked, the picked image was removed from the master list, ensuring that whenever new images
needed to be picked they would not repeat with previously chosen images. After an image was chosen, it
was then re-sized to 64x64 as requested and saved in its specific category. The logic for this can be seen on
Figure 2 below.

file:///Users/castil12/Documents/ECE%2060146/Homework%20%23%204/Assignment-4.html Page 2 of 28

Assignment-4 2/20/23, 10:10 AM

def data_creation(count, coco, desired_cats, training_size, testing_size, new_size, root_images,
parent_dir_root_train, parent_dir_root_testing):

if count == 10000:
return

Master List
full_img_list_with_bw = coco.getImgIds()
full_img_list = []
for image_id in full_img_list_with_bw:
potential_img = coco.loadImgs(int(image_id)) [0]
img_to_open = Image.open(os.path.join(root_images, potential_img['file_name']))
img_class = img_to_open.mode
if img_class == 'RGB':
full_img_list.append(image_id)

for category in desired_cats:
print("Populating Training and Testing folders with {} images".format(category))
cat_id = coco.getCatIds(catNms=[categoryl)
cat_img_list = coco.getImgIds(catIds=[cat_id[@]]) # Get images of a specific category
final_cat_img_list = [id for id in cat_img_list if id in full_img_list] # Only get images that have not been picked
random_training_images = list(np.random.choice(final_cat_img_list, training_size, replace=False)) # Pick random training
new_cat_list_no_repeat = [id for id in final_cat_img_list if id not in random_training_images] # Create new list with pickable testing images
random_testing_images = list(np.random.choice(new_cat_list_no_repeat, testing_size, replace=False)) # Pick random testing
full_img_list = [id for id in full_img_list if id not in final_cat_img_list] # Remove picked training and testing images
for img_number in random_training_images:

im = coco.loadImgs(int(img_number)) [0]

orig_img_train = Image.open(os.path.join(root_images, im['file_name'l))

resized_img_train = orig_img_train.resize(new_size)

final_img = resized_img_train.save(os.path.join(parent_dir_root_train + "/" + category, im['file_name'l))

img_number in random_testing_images:

im = coco.loadImgs(int(img_number)) [0]

orig_img_test = Image.open(os.path.join(root_images, im['file_name']))

resized_img_test = orig_img_test.resize(new_size)

Add if image exists condition here

final_img = resized_img_test.save(os.path.join(parent_dir_root_testing + "/" + category, im['file_name']))

fo

3

print("Finished Populating Dataset")

Figure 2. Custom COCO Logic

Once the images popoulated the Training and Testing sub-folders, | focused on creating a custom Dataset
class. The class is CuratedCOCO and can be seen on Figure 3 below. This class inherits from
torch.utils.data.Dataset and in here, beyond assigning labels to the images, | also made sure to
normalize the images and transform them into tensors by modifying the class' __ init and defining a
transform, then in the class' _ getitem the Image is opened, transformed, a label assigned to it
depending on its category and returned.

file:///Users/castil12/Documents/ECE%2060146/Homework%20%23%204/Assignment-4.html Page 3 of 28

Assignment-4 2/20/23, 10:10 AM

class CuratedCOCO(torch.utils.data.Dataset):

def __init_ (self, root_path, desired_categories):
self.root_path = root_path
self.desired_categories = desired_categories
self.images_and_labels = []

for categories in self.desired_categories:
img_file_path = os.path.join(root_path, categories)
label = self.desired_categories.index(categories) # Index of Categories, need to create a dictionary
for path in os.listdir(img_file_path):
info_to_append = [os.path.join(img_file_path,path), labell
self.images_and_labels.append(info_to_append)
Do I need to do augmentations here?

self.transforms = tvt.Compose([tvt.ToTensor(),
tvt.Normalize((0.5, 0.5, 0.5)
(0.5, 0.5, 0.5))1)
def __len_ (self):

self.dataset_length = len(self.images_and_labels)
return self.dataset_length

def _ getitem_ (self, index):
file_name = self.images_and_labels[index] [0]
label = self.images_and_labels[index] [1]
img = Image.open(file_name)
img = self.transforms(img)

Need to return file_name
return img, label

Figure 3. CuratedCOCO class

In order to test the functionality of CuratedcocCo , three different images for each of the five classes are
plotted. They can be seen on Figure 4 below.

file:///Users/castil12/Documents/ECE%2060146/Homework%20%23%204/Assignment-4.html Page 4 of 28

Assignment-4 2/20/23, 10:10 AM

Selection of Images from Curated COCO

Image # 1 Image # 2 Image # 3

-

airplane

cat

dog

pizza

Figure 4. Sample Images from CuratedCOCO

3.2 Image Classification using CNNs - Training and Validation

This section requested the implementation of three different CNNs. | will be discussing each one below:
CNN Task # 1

This tasked asked us to implement the provided network into our program. However, there were some
values that were missing and that we needed to calculate. This network consisted of 2 Convolutional Layers,
2 Maxpool Layers and 2 Linear Layers. In order to calculate the missing parameters in order to successfully
implement this network. | used PyTorch's official Conv2d and MaxPool2d documentation to see how they
calculated their output dimensions. The image can be seen on Figure 5 below.

file:///Users/castil12/Documents/ECE%2060146/Homework%20%23%204/Assignment-4.html Page 5 of 28

Assignment-4 2/20/23, 10:10 AM

Shape:

e Input: (N, Cin, Hin, Win) or (Cin, Hin, Win)
e output: (N, Couty Hout, Wout) or (Couty Hout, Wout), where

H;, + 2 x padding[0] — dilation[0] x (kernel_size[0] — 1) — 1
Hout — . +1
i stride[0]
Win + 2 x padding[1] — dilation[1] x (kernel_size[l] —1) — 1
Wout = . +1
i stride[1]

file:///Users/castil12/Documents/ECE%2060146/Homework%20%23%204/Assignment-4.html Page 6 of 28

Assignment-4 2/20/23, 10:10 AM

Figure 5. Official Formula for Conv2d

These formula, applied to both Conv2d and MaxPool2d, and by using them | was able to determine the
missing XXX values for the network. For this network the first XXX value was determinedtobe 32 * 14
* 14 . The calculation is as follows after the first convolutional layer:
H,;, = 64, padding = 0, KernelSize = 3, stride = 1
H,, = L64+2*(0)—1(1)(3—1)—1 +1]
H,, =|61+1]
H,,; =62

A similar calculation can be made for W, as the image is square. After calculating the dimension after
passing through the convolutional layer, the dimensions need to be calculated for the MaxPool2d layer.
These are as follows:
H,;, = 62, padding = 0, KernelSize = 2, stride = 2
H,, = L62+2>x<(0)—2(1)(2—1)—1 +1]
H,;=|30+1]
H,, =31

Again, since the image is square, a similar calculation can be used for W,; .

Lastly, the dimensions after the second convolutional layer are:
H;, = 31, padding = 0, KernelSize = 3, stride = 1
314+2(0)—(1(3=1)-1
Hout = L - 1 + 1J
H,, =[28+1]

Hout =29

And for the second MaxPool layer:
H;, =29, padding = 0, KernelSize = 2, stride = 2

Hout _ L29+2*(0)—2(1)(2—1)—1 + 1J
H,,=[13.5+1]

H,, = 14

The value above, is the dimension of the image after the last MaxPool layer. This in turn, will be fed to the
first linear layer. In order to calculate the first xXxXx we need to multiply the image dimensions by the
number of channels to get the number of parameters. In this case we get:
Input Features = 32 * 14 % 14
Input Features = 6272

As for the last XXX , this value is the output of the last linear layer. Since we are trying to classify images
into 5 specific categories. This value will be 5 . Figure 6, below shows the values on Net1.

file:///Users/castil12/Documents/ECE%2060146/Homework%20%23%204/Assignment-4.html Page 7 of 28

Assignment-4 2/20/23, 10:10 AM

class HW4Net(nn.Module):
def __init_ (self, net):
super(HW4Net, self)._ init_ ()
self.net = net
if self.net == 'Netl':
self.convl = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3)
self.pool = nn.MaxPool2d(kernel_size=2,stride=2)
self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3)
INPUT FEATURES CALCULATED BY 'FLATTENING THE OUTPUT OF CONV2 AND POOL
FINAL OUTPUT AFTER THAT LAYER HAS SHAPE BATCHSIZE X 32 X 16 X 16 (CONV2D FORMULA)
THEREFORE NUMBER OF INPUT PARAMETERS ARE 32%16%16
self.fcl = nn.Linear(in_features=32 x 14 x 14, out_features=64)
OUTPUT FEATURES OF LAST LAYER SHOULD BE NUMBER OF DESIRED CATEGORIES TO DISCRIMINATE FROM

IN THIS CASE, IT IS 5 CLASSES
self.fc2 = nn.Linear(in_features=64, out_features=5)

Figure 6. Values for Net1

CNN Task # 2

This tasked asked us to implement the CNN network #1, except that each convolutional layer would have a
padding of 1. This required having to recalculate the missing XxX values for the network as the addition of
the padding would result in different dimensions as the image passed through the network. In order to
calculate the missing parameters | used PyTorch's official Conv2d and MaxPool2d documentation to see
how they calculated their output dimensions.

H;, = 64, padding = 1, KernelSize = 3, stride = 1

64+2x(1)—(1)(3—-1)—-1
Hout = L 1 + 1J

H,;=|63+1]
Hout = 64

A similar calculation can be made for W,,; as the image is square. After calculating the dimension after
passing through the convolutional layer, the dimensions need to be calculated for the MaxPool2d layer.
These are as follows:
H,;, = 64, padding = 0, KernelSize = 2, stride = 2
H,, = L64+2*(O)—2(1)(2—1)—1 +1]
H,, =|31+1]

H,, = 32

Again, since the image is square, a similar calculation can be used for W, .

Lastly, the dimensions after the second convolutional layer are:
H;, = 32, padding = 1, KernelSize = 3, stride = 1

324+2x(1)—(1)(3—-1)—-1
Hout = L 1 + 1_]

H,;=|31+1]
H,,, =32

file:///Users/castil12/Documents/ECE%2060146/Homework%20%23%204/Assignment-4.html Page 8 of 28

Assignment-4 2/20/23, 10:10 AM

And for the second MaxPool layer:
H,;, =32, padding = 0, KernelSize = 2, stride = 2

3242%(0)—(1)(2—1)—1
Hout = L . 2 + lJ

Hyy =15+ 1]
H,, = 16

The value above, is the dimension of the image after the last MaxPool layer. This in turn, will be fed to the
first linear layer. In order to calculate the first XXXX we need to multiply the image dimensions by the

number of channels to get the number of parameters. In this case we get:
Input Features = 32 % 16 % 16
Input Features = 8192

As for the last XXX , this value is the output of the last linear layer. It does not change from the previous
network. Since we are trying to classify images into 5 specific categories. This value will be 5 . Figure 7
below, shows the values for Net2.

elif self.net == 'Net2':
self.convl = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2,stride=2)
self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, padding=1)
INPUT FEATURES CALCULATED BY 'FLATTENING THE OUTPUT OF CONV2 AND POOL
FINAL OUTPUT AFTER THAT LAYER HAS SHAPE BATCHSIZE X 32 X 16 X 16 (CONV2D FORMULA)
THEREFORE NUMBER OF INPUT PARAMETERS ARE 32%16%16
self.fcl = nn.Linear(in_features=32 x 16 x 16, out_features=64)
OUTPUT FEATURES OF LAST LAYER SHOULD BE NUMBER OF DESIRED CATEGORIES TO DISCRIMINATE FROM
IN THIS CASE, IT IS 5 CLASSES
self.fc2 = nn.Linear(in_features=64, out_features=5)

file:///Users/castil12/Documents/ECE%2060146/Homework%20%23%204/Assignment-4.html Page 9 of 28

Assignment-4 2/20/23, 10:10 AM

Figure 7. Values for Net2
CNN Task # 3

This tasked asked us to chain 10 additional convolutional layers, except that each new convolutional layer
would have a padding of 1 and the output would only go through an activation function. This required having
to recalculate the missing XxX values for the network after passing it through 10 additional convolutions of
padding 1. as the addition of the padding would result in different dimensions as the image passed through
the network. In order to calculate the missing parameters | used PyTorch's official Conv2d and MaxPool2d
documentation to see how they calculated their output dimensions. From CNN Task # 2, we know that after
the second convolution and MaxPool layer, the dimension is 16. Using this value with the above formulas we
get the following:

H;, = 16, padding = 1, KernelSize = 3, stride = 1

16+2:(1)—(1)(3—1)—1
Hout = L 1 + 1J

Hoy = |15+ 1]
Hout == 16

A similar calculation can be made for W,,; as the image is square. After calculating the dimension after
passing through the convolutional layer it can be noted that the dimension stays the same. Therefore, if we
were to pass this through 10 additional convolutional layers with the same kernel and padding. The final
dimension would be 16x16 .

The value above, is the dimension of the image after the tenth convolutional layer. This in turn, will be fed to
the first linear layer. In order to calculate the first XXXX we need to multiply the image dimensions by the
number of channels to get the number of parameters. In this case we get:
Input Features = 32 % 16 % 16
Input Features = 8192

As for the last XXX , this value is the output of the last linear layer. It does not change from the previous
network. Since we are trying to classify images into 5 specific categories. This value will be 5 . Figure 8
below, shows the values for Net3.

file:///Users/castil12/Documents/ECE%2060146/Homework%20%23%204/Assignment-4.html Page 10 of 28

Assignment-4 2/20/23, 10:10 AM

elif self.net == 'Net3':
self.convl = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2,stride=2)
self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, padding=1)
self.conv_layers = nn.ModuleList()
for _ in range(10):
self.conv_layers.append(nn.Conv2d(in_channels=32,out_channels=32,kernel_size=3,padding=1))
INPUT FEATURES CALCULATED BY 'FLATTENING THE OUTPUT OF 10 LAYERS OF CONVOLUTION
FINAL OUTPUT AFTER THAT LAYER HAS SHAPE BATCHSIZE X 32 X 16 X 16 (CONV2D FORMULA)
THEREFORE NUMBER OF INPUT PARAMETERS ARE 32%16%16
self.fcl = nn.Linear(in_features=32 x 16 x 16, out_features=64)
OUTPUT FEATURES OF LAST LAYER SHOULD BE NUMBER OF DESIRED CATEGORIES TO DISCRIMINATE FROM

IN THIS CASE, IT IS 5 CLASSES
self.fc2 = nn.Linear(in_features=64, out_features=5)

Figure 8. Values for Net3

Once the missing values of XXX were determined for each network. The training for each network was
done with the following parameters:

e Learning Rate of 1e—3

¢ Both training and testing batchsizes were set to 4

e Adam as an optimizer with the following beta values: f; = 0.9, f, = 0.99

e Loss is measured throuh CrossEntropy. The reason this loss is chosen is because it performs well for
classification tasks as it provides a probability value for each class. With the determined class being the
one with the highest probability.

e Epochs: 15

¢ Note that losses are stored (and displayed) every 100 batches

After training the networks with these parameters, the following training loss plot and confusion matrices
were obtained.

file:///Users/castil12/Documents/ECE%2060146/Homework%20%23%204/Assignment-4.html Page 11 of 28

Assignment-4 2/20/23, 10:10 AM

Training Loss Comparison for each Net

1.6 —— Original Convolutional Netl
—— Convolutional with Padding Net2
1.4 —— Extra 10 Convolutional Layers Net3
1.2 -
1.0
w
§ 0.8 1
0.6
0.4 1
0.2 1
0.0 -
0 50 100 150 200 250
lterations

Figure 9. Training Loss Comparison.

As can be seen on Figure 9 above. After training these networks, we can see that both Network # 1 and
Network # 2 have similar performance with Network # 2 performing slightly better loss wise.

However, Network # 3 does not perform as well as the other two networks. It does not seem to be learning
as much as the ther networks as the loss does not decrease to the same levels of the previous netwokrs
over the same iterations.

file:///Users/castil12/Documents/ECE%2060146/Homework%20%23%204/Assignment-4.html Page 12 of 28

Assignment-4 2/20/23, 10:10 AM

Confusion Matrix for Netl, Accuracy: 58.44%

350
@
[
©
= 300
5 250
Ne]

o

)

2 200

T ®©

c O

3

s - 150
(@]
(@]
T - 100

- 50

23 53

pizza

| | | |
airplane bus cat dog pizza

Predicted Labels

Figure 10. Confusion Matrix for Network 1

file:///Users/castil12/Documents/ECE%2060146/Homework%20%23%204/Assignment-4.html Page 13 of 28

Assignment-4

Ground Truth

Confusion Matrix for Net2, Accuracy: 59.92%

cat bus airplane

dog

14 70 49

pizza

| | | |
airplane bus cat dog pizza

Predicted Labels

Figure 11. Confusion Matrix for Network 2

file:///Users/castil12/Documents/ECE%2060146/Homework%20%23%204/Assignment-4.html

350

300

250

200

- 150

- 100

- 50

2/20/23, 10:10 AM

Page 14 of 28

Assignment-4

Ground Truth

Confusion Matrix for Net3, Accuracy: 57.60%

Q
5 38 51 3
£ 300
©
w27 89 18 250
Q
200
®- 21 105 48
o
- 150
(&)}
S - 33 164 37 - 100
© - 50
N - 3 14 101 38
a
| | | |
airplane bus cat dog pizza

Predicted Labels

Figure 12. Confusion Matrix for Network 3

file:///Users/castil12/Documents/ECE%2060146/Homework%20%23%204/Assignment-4.html

2/20/23, 10:10 AM

Page 15 of 28

Assignment-4 2/20/23, 10:10 AM

As can be seen from figures 10 - 12. The accuracy results on the networks are as follows:

e Net # 1:58.44%
e Net #2: 59.92%
e Net # 3: 57.60%

These results fall in line with the respective training losses, noting that Network # 3 had the highest loss and
lowest testing accuracy.

With the training losses and confusion matrices readily available, the following questions can be answered:

1. Does adding padding to the convolutional layers make a difference in classification performance?
Based on the confusion matrix results, it seems to 'boost' the classification performance. By
including the padding, we are keeping the image dimensions the same as they move through the
convolutional network. This seems to have a positive effect in training and classification as can
be seen from the training loss and confusion matrices for both Network # 1 and Network # 2.

2. As you may have known, naively chaining a large number of layers can result in difficulties in training.
This phenomenon is often referred to as vanishing gradient. Do you observe something like that in Net3
? Yes, it is evident from both the training loss and confusion matrix for this network that passing
through so many layers create a negative effect in the training and inference as can be seen on
the plots above. The model does not seem to 'learn' as well for Net # 3 when compared to Net # 2
and Net # 1.

3. Compare the classification results by all three networks, which CNN do you think is the best performer?
When comparing classification results, Network # 2 seems to perform the best. One thing of note,
however, is that it still struggles with the animal categories, presumably because they have
similar features.

4. By observing your confusion matrices, which class or classes do you think are more difficult to correctly
differentiate and why? Definitely the animals as they score very low in the confusion matrices
across the networks. Even though cats and dogs are clearly different (at least to humans), their
disntiguishing features 'vanish' as these images pass through the network. Because of this, the
network learns these features, but is unable to accuratley pinpoint which class it belongs to.
Also, compounded by the fact that COCO images are difficult as some of the animals shown are
sometimes a small portion of the image and in some cases both animals can be in the same
image.

5. What is one thing that you propose to make the classification performance better? |1 think something
that improve classification performance is to use more images for training. By having a bigger
training pool, more features can be extracted from each class and the network will have more
varied features to learn.

file:///Users/castil12/Documents/ECE%2060146/Homework%20%23%204/Assignment-4.html Page 16 of 28

Assignment-4 2/20/23, 10:10 AM

4. Lessons Learned

The assignment introduced the MS-COCO dataset and the many classes that it included. Through this
assignment | was able to take a raw dataset and adapt it to my own needs for training. | was also able to
learn about how CNNs work and that they may not be the end-all solution for our problems.

5. Suggested Enhancements

The assignment provided a great introduction to CNNs and curating one's own dataset. The only
enhancement | would suggest is including some sort of expected performance range to try and gauge
whether our networks are performing as expected.

6. Code
In []: # Mount Google Drive
from google.colab import drive
drive.mount('/content/drive')
Mounted at /content/drive
In []: # Import necessary libraries for the assignment

import os

import torch

import torchvision.transforms as tvt
from PIL import Image

import numpy as np

import glob

import torch

import torch.nn as nn

import torch.nn.functional as F
import seaborn as sns

import matplotlib.pyplot as plt
import random

import time

from pycocotools.coco import COCO

Import from self-developed files
from DataCreation import *

from CustomCOCODataset import *
from Networks import *

from ModelTrainingTesting import *

file:///Users/castil12/Documents/ECE%2060146/Homework%20%23%204/Assignment-4.html Page 17 of 28

Assignment-4 2/20/23, 10:10 AM

from Plotting import *

class CuratedCOCO(torch.utils.data.Dataset):

def init (self, root path, desired categories):
self.root path = root path
self.desired categories = desired categories
self.images and labels = []

for categories in self.desired categories:
img file path = os.path.join(root path, categories)
label = self.desired categories.index(categories) # Index
of Categories, need to create a dictionary
for path in os.listdir(img file path):
info to append = [os.path.join(img file path,path), la
bel]
self.images and labels.append(info to append)

self.transforms = tvt.Compose([tvt.ToTensor(),
tvt.Normalize((0.5,

+ 0.5),
(0.5, 0.5

0.5
0.5

14

def len (self):

self.dataset length = len(self.images_ and labels)
return self.dataset_ length

def getitem (self, index):
file name = self.images and labels[index][0]
label = self.images_and labels[index][1]
img = Image.open(file name)
img = self.transforms(img)

Need to return file name
return img, label

def directory creation(desired cats, parent dir root train, parent dir
_root testing):
for categories in desired cats:
path training = parent dir root train + "/" + categories
path testing = parent dir root testing + "/" + categories
if not os.path.exists(path training):

print("Making Training Directory for: ".format (categorie
s))

os.makedirs(path training)

print("Finished Making Training Directory for: ".format (
categories))

file:///Users/castil12/Documents/ECE%2060146/Homework%20%23%204/Assignment-4.html Page 18 of 28

Assignment-4 2/20/23, 10:10 AM

if not os.path.exists(path testing):
print("Making Testing Directory for: ".format (categories
))
os.makedirs(path testing)
print ("Finished Making Testing Directory for: ".format (c
ategories))

def file count(desired cats, parent dir root train, parent dir root te
sting):
count = 0
for category in desired cats:
for path in os.listdir(parent dir root train + "/" + category)

if os.path.isfile(os.path.join(parent dir root train + "/"
+ category, path)):
count += 1
for path2 in os.listdir(parent dir root testing + "/" + catego

ry):
if os.path.isfile(os.path.join(parent dir root testing + "
/" + category, path2)):

count += 1

return count

def data creation(count, coco, desired cats, training size, testing_ si
ze, new_size, root images,
parent dir root train, parent dir root testing):

if count == 10000:
return

Master List
full img list with bw = coco.getImgIds()
full img list = []
for image id in full img list with bw:
potential img = coco.loadImgs(int(image id))[0]
img to open = Image.open(os.path.join(root images, potential i
mg['file name']))
img class = img_ to_ open.mode
if img class == 'RGB':
full img list.append(image_ id)

for category in desired cats:
print("Populating Training and Testing folders with images"
.format (category))
cat_id = coco.getCatIds(catNms=[category])
cat_img list = coco.getImgIds(catIds=[cat id[0]]) # Get images
of a specific category

file:///Users/castil12/Documents/ECE%2060146/Homework%20%23%204/Assignment-4.html Page 19 of 28

Assignment-4

2/20/23, 10:10 AM

final cat img list = [id for id in cat img list if id in full
img list] # Only get images that have not been picked

random training images = list(np.random.choice(final cat img 1
ist, training size, replace=False)) # Pick random training

new cat list no repeat = [id for id in final cat img list if i

d not in random training images] # Create new list with pickable testi
ng images

random testing images = list(np.random.choice(new cat list no
repeat, testing size, replace=False)) # Pick random testing
full img list = [id for id in full img list if id not in final

_cat _img list] # Remove picked training and testing images
for img number in random training images:
im = coco.loadImgs(int(img number))[0]
orig img train = Image.open(os.path.join(root images, im['
file name']))
resized img train = orig img train.resize(new_size)
final img = resized img train.save(os.path.join(parent dir
_root_train + "/" + category, im['file name']))
for img number in random testing images:
im = coco.loadImgs(int(img number))[0]
orig img test = Image.open(os.path.join(root images, im['f
ile name']))
resized img test = orig img test.resize(new_size)
Add if image exists condition here
final img = resized img test.save(os.path.join(parent dir
root testing + "/" + category, im['file name']))

print("Finished Populating Dataset")

def remove files(desired cats, parent dir root train, parent dir root
testing):
for categories in desired cats:
path training = parent dir root train + "/" + categories
path testing = parent dir root testing + "/" + categories
if not os.path.exists(path training):
os.makedirs(path training)
if not os.path.exists(path testing):
os.makedirs(path_testing)

for categories in desired cats:
path training = parent dir root train + "/" + categories
path testing = parent dir root testing + "/" + categories

imgs files training = glob.glob(os.path.join(path training, '*
-Jpg’))

imgs files testing = glob.glob(os.path.join(path testing, '*.j
Pg'))

for file path in imgs files training:

file:///Users/castil12/Documents/ECE%2060146/Homework%20%23%204/Assignment-4.html Page 20 of 28

Assignment-4 2/20/23, 10:10 AM

try:
os.remove(file path)
except OSError as e:
print ("Error: " % (file path, e.strerror))

for file path in imgs files testing:
try:
os.remove(file path)
except OSError as e:
print ("Error: : " % (file path, e.strerror))

try:
os.rmdir (path training)
except OSError as e:
print ("Error: : % (path_training, e.strerror))

try:
os.rmdir (path_ testing)
except OSError as e:
print ("Error: : % (path _training, e.strerror))

class HW4Net (nn.Module):
def init (self, net):

super (HW4Net, self). init ()
self.net = net
if self.net == 'Netl':

self.convl = nn.Conv2d(in channels=3, out channels=16, ker
nel size=3)

self.pool = nn.MaxPool2d(kernel size=2,stride=2)

self.conv2 = nn.Conv2d(in_channels=16, out channels=32, ke
rnel size=3)

INPUT FEATURES CALCULATED BY 'FLATTENING THE OUTPUT OF C
ONV2 AND POOL

FINAL OUTPUT AFTER THAT LAYER HAS SHAPE BATCHSIZE X 32 X
16 X 16 (CONV2D FORMULA)

THEREFORE NUMBER OF INPUT PARAMETERS ARE 32*16*16

self.fcl = nn.Linear(in features=32 * 14 * 14, out feature
s=64)

OUTPUT FEATURES OF LAST LAYER SHOULD BE NUMBER OF DESIRE
D CATEGORIES TO DISCRIMINATE FROM

IN THIS CASE, IT IS 5 CLASSES

self.fc2 = nn.Linear(in features=64, out features=5)

elif self.net == 'Net2':

self.convl = nn.Conv2d(in_channels=3, out_channels=16, ker
nel size=3, padding=1)

self.pool = nn.MaxPool2d(kernel size=2,stride=2)

self.conv2 = nn.Conv2d(in_channels=16, out channels=32, ke
rnel size=3, padding=1l)

INPUT FEATURES CALCULATED BY 'FLATTENING THE OUTPUT OF C

file:///Users/castil12/Documents/ECE%2060146/Homework%20%23%204/Assignment-4.html Page 21 of 28

Assignment-4 2/20/23, 10:10 AM

ONV2 AND POOL

FINAL OUTPUT AFTER THAT LAYER HAS SHAPE BATCHSIZE X 32 X
16 X 16 (CONV2D FORMULA)

THEREFORE NUMBER OF INPUT PARAMETERS ARE 32*16*16

self.fcl = nn.Linear(in features=32 * 16 * 16, out feature
s=64)

OUTPUT FEATURES OF LAST LAYER SHOULD BE NUMBER OF DESIRE
D CATEGORIES TO DISCRIMINATE FROM

IN THIS CASE, IT IS 5 CLASSES

self.fc2 = nn.Linear(in features=64, out features=5)

elif self.net == 'Net3':

self.convl = nn.Conv2d(in_channels=3, out_channels=16, ker
nel size=3, padding=1)

self.pool = nn.MaxPool2d(kernel size=2,stride=2)

self.conv2 = nn.Conv2d(in_channels=16, out channels=32, ke
rnel size=3, padding=1l)

self.conv_layers = nn.ModuleList()

for in range(10):

self.conv_layers.append(nn.Conv2d(in_ channels=32,out c

hannels=32,kernel size=3,padding=1))

INPUT FEATURES CALCULATED BY 'FLATTENING THE OUTPUT OF 1
0 LAYERS OF CONVOLUTION

FINAL OUTPUT AFTER THAT LAYER HAS SHAPE BATCHSIZE X 32 X
16 X 16 (CONV2D FORMULA)

THEREFORE NUMBER OF INPUT PARAMETERS ARE 32*16*16

self.fcl = nn.Linear(in features=32 * 16 * 16, out feature
s=64)

OUTPUT FEATURES OF LAST LAYER SHOULD BE NUMBER OF DESIRE
D CATEGORIES TO DISCRIMINATE FROM

IN THIS CASE, IT IS 5 CLASSES

self.fc2 = nn.Linear(in features=64, out features=5)

def forward(self, x):

if self.net == 'Netl':
x originally has size batchsize x 3 x 64 x 64
x = self.pool(F.relu(self.convl(x))) # x now has size batc
hsize x 16 x 31 x 31
X = self.pool(F.relu(self.conv2(x))) # X now has size batc

hsize x 32 x 14 x 14
X = x.view(x.shape[0], -1)
x = F.relu(self.fcl(x))
x = self.fc2(x)

return x
elif self.net == 'Net2':
x originally has size batchsize x 3 x 64 x 64
x = self.pool(F.relu(self.convl(x))) # x now has size batc
hsize x 16 x 32 x 32
x = self.pool(F.relu(self.conv2(x))) # x now has size batc

hsize x 32 x 16 x 16
x = x.view(x.shape[0], -1)

file:///Users/castil12/Documents/ECE%2060146/Homework%20%23%204/Assignment-4.html Page 22 of 28

Assignment-4

2/20/23, 10:10 AM

x = F.relu(self.fcl(x))
x = self.fc2(x)
return x

elif self.net == 'Net3':
x originally has size batchsize x 3 x 64 x 64
x = self.pool(F.relu(self.convl(x))) # x now has size batc

hsize x 16 x 32 x 32 - Original Convolution # 1

x = self.pool(F.relu(self.conv2(x))) # x now has size batc

hsize x 32 x 16 x 16 - Original Convolution # 2

for m in self.conv_ layers:
x = F.relu(m(x))

x = x.view(x.shape[0], -1)

x = F.relu(self.fcl(x))

x = self.fc2(x)

return x

def model training(net, epochs, train data loader, device, save path):

14

training loss = []
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=le-3, betas=(0.9

0.99))

print("Begin Training...\n")
net = net.to(device)
net.train()
for epoch in range(epochs):
running loss = 0.0
for i, data in enumerate(train data loader):
inputs, labels = data
inputs = inputs.to(device)
labels labels.to(device)
optimizer.zero grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running loss += loss.item()
if (i + 1) % 100 == 0:
print (" [epoch: , batch:] loss: " % (epoch + 1

, 1 + 1, running loss / 100))

training loss.append(running loss / 100)
running loss = 0.0

print("Finished Training!\n")
torch.save(net.state dict(), save path)

return training loss

def model testing(net, test_data loader, batch size, device, desired_c
ats, save path):

file:///Users/castil12/Documents/ECE%2060146/Homework%20%23%204/Assignment-4.html Page 23 of 28

Assignment-4

Part of the code Borrowed from Dr. Kak's DL Studio Module

print("Begin Evaluation...\n")
net.load state dict(torch.load(save path))
net.eval()
correct, total = 0, 0
confusion matrix = torch.zeros(5, 5)
class correct = [0] * 5
class _total = [0] * 5
with torch.no grad():
for i, data in enumerate(test data loader):
inputs, labels = data
inputs = inputs.to(device)
labels labels.to(device)
output net (inputs)
_, predicted = torch.max(output.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
comp = predicted == labels
for label, prediction in zip(labels, predicted):
confusion matrix[label][prediction] += 1

for j in range(batch size):
label = labels[]]
class_correct[label] += comp[j].item()
class total[label] += 1

for j in range(5):

2/20/23, 10:10 AM

print('Prediction accuracy for : % (desired cats[]

], 100 * class _correct[]j] / class_total[]]))
print("Finished Evaluation!\n")

print('Accuracy of the network on 2500 test images: %' .format (10

0 * float(correct / total)))

return confusion matrix, float(correct / total)

def cf matrix plot(cf matrix, title, desired cats):

sns.heatmap(cf matrix, annot=True, cmap='Blues', fmt='g', xticklab

els=desired cats, yticklabels=desired cats)
plt.xlabel('Predicted Labels')
plt.ylabel('Ground Truth')
plt.title(title)
plt.show()

def dataset plot(classes, num imgs, train dataset, idx list, desired c

ats, title):

img net mean = [0.5, 0.5, 0.5]
img net std = [0.5, 0.5, 0.5]

file:///Users/castil12/Documents/ECE%2060146/Homework%20%23%204/Assignment-4.html

Page 24 of 28

Assignment-4

file:///Users/castil12/Documents/ECE%2060146/Homework%20%23%204/Assignment-4.html

2/20/23, 10:10 AM

fig, axes = plt.subplots(nrows=classes, ncols=num_imgs)
for i in range(classes):
for j in range(num imgs):
img, = train dataset[idx list[i * num imgs + j]]
for 1 in range(3):
img[l] = (img[l] * img net std[l]) + img net mean[1l]
img = img.numpy().transpose(l, 2, 0)

if i == 0:
axes[i, j].set title('Image # '".format(j + 1))
if j == 0:

axes[i, j].set ylabel(desired cats[i])
axes[i, j].imshow(img)
axes[i, Jj].set yticks([0], labels=[])
axes[i, j].set xticks([0], labels=[])
axes[i, j].tick params(axis=u'both', which=u'both', length

fig.suptitle(title)
plt.show()

def train loss_plot(train loss, title):

plt.plot(train loss[0], 'r', label='Original Convolutional Netl')

plt.plot(train loss[1l], 'b', label='Convolutional with Padding Net
2")

plt.plot(train loss[2], 'g', label='Extra 10 Convolutional Layers
Net3')

plt.title(title)

plt.legend(loc="upper right")

plt.xlabel("Iterations")

plt.ylabel("Loss")

plt.show()

Set seeds

seed = 123
random.seed(seed)
np.random.seed(seed)

See 1f GPU is available

if torch.backends.mps.is available() == True:
device = torch.device("mps")
else:

device = torch.device("cpu")

Print out current device (either GPU or CPU)
print("Currently using: ".format (device))

Page 25 of 28

Assignment-4

2/20/23, 10:10 AM
training size = 1500 # Amount of training images (per category)
testing size = 500 # Amount of testing images (per category)

new_size = (64, 64) # New Image ssize

List of Directories

root_images = "/Users/castill2/Documents/ECE 60146/Homework # 4/train2
014"

root annotations = "/Users/castill2/Documents/ECE 60146/Homework # 4/a
nnotations/instances_train2014.json"

parent dir root train = "/Users/castill2/Documents/ECE 60146/Homework
4/CustomCOCODataset/Training"

parent dir root testing = "/Users/castill2/Documents/ECE 60146/Homewor
k # 4/CustomCOCODataset/Testing"

directory name training = "CustomCOCOTraining"

directory name testing = "CustomCOCOTesting"

save_path = "/Users/castill2/Documents/ECE 60146/Homework # 4/"

Need 1500 Training Images & 500 Testing Images of Each Category
Desired Categories of Images
desired cats = ['airplane', 'bus’',

cat', 'dog', 'pizza']
start time = time.time()

Create directory which will host each image
directory creation(desired cats, parent dir root train, parent dir roo
t testing)

Count if training and testing directories have been populated

count = file count(desired cats, parent dir root train, parent dir roo
t testing)

print("File count for Training and Testing: ".format (count))

Instantiate COCO
coco = COCO(root annotations)

Populate folders with training and testing images
data_creation(count, coco, desired cats, training size, testing size,
new size, root images,

parent dir root train, parent dir root testing)

Create training and testing datasets
train dataset = CuratedCOCO(parent dir root train, desired cats)
test dataset = CuratedCOCO(parent dir root testing, desired cats)

Need to plot 3 images of 5 classes
idx list = []
j=0

for cat in range(len(desired cats)):

file:///Users/castil12/Documents/ECE%2060146/Homework%20%23%204/Assignment-4.html Page 26 of 28

Assignment-4 2/20/23, 10:10 AM

for idx in range(len(train dataset)):
_, label = train dataset[idx]

if label == cat:
idx list.append(idx)
jo+= 1
if j == 3:
j =0
break

Plot 3 images of each class from Curated Dataset
dataset plot(classes=5, num imgs=3, train dataset=train dataset, idx 1
ist=idx_ 1list,

desired cats=desired cats, title='Selection of Images fro
m Curated COCO')

Create train and test dataloaders

train data loader = torch.utils.data.DataLoader(train dataset, batch s
ize = 4, shuffle=True)

test data loader = torch.utils.data.Dataloader(test dataset, batch siz
e = 4, shuffle=False)

Create Network # 1 and generate confusion matrix plot

netl = HW4Net("Netl")

epochs_netl = 15

batch size netl = 4

training loss _netl = model training(netl, epochs netl, train data_ load

er, device, os.path.join(save path, 'netl.pth'))

confusion matrix netl, testing acc _netl = model testing(netl, test dat

a_loader, batch size netl, device, desired cats,
os.path.join(save path, 'netl.pth'))

cf matrix plot(confusion matrix netl, 'Confusion Matrix for Netl, Accu

racy: '.format (testing acc netl), desired cats)

Create Network # 2 and generate confusion matrix plot

net2 = HW4Net("Net2")

epochs_net2 = 15

batch size net2 = 4

training loss _net2 = model training(net2, epochs net2, train data_ load

er, device, os.path.join(save path, 'net2.pth'))

confusion matrix net2, testing acc _net2 = model testing(net2, test dat

a_loader, batch size net2, device, desired cats,
os.path.join(save path, 'net2.pth'))

cf matrix plot(confusion matrix net2, 'Confusion Matrix for Net2, Accu

racy: '.format (testing acc net2), desired cats)

Create Network # 3 and generate confusion matrix plot

net3 = HW4Net("Net3")

epochs_net3 = 15

batch size net3 = 4

training loss net3 = model training(net3, epochs net3, train data_ load

file:///Users/castil12/Documents/ECE%2060146/Homework%20%23%204/Assignment-4.html Page 27 of 28

Assignment-4 2/20/23, 10:10 AM

er, device, os.path.join(save path, 'net3.pth'))

confusion matrix net3, testing acc net3 = model testing(net3, test dat

a_loader, batch_size net3, device, desired cats,
os.path.join(save path, 'net3.pth'))

cf matrix plot(confusion matrix net3, 'Confusion Matrix for Net3, Accu

racy: '.format (testing acc_net3), desired cats)

Append losses to plot

train loss = []

train loss.append(training loss netl)

train loss.append(training loss net2)

train loss.append(training loss_ net3)

train loss plot(train loss, 'Training Loss Comparison for each Net')

Remove images and directories after training

#remove files(desired cats, parent dir root train, parent dir root tes
ting)

end time = time.time()

print ("Finished executing program. Elapsed time: ".format(end time -
start time))

file:///Users/castil12/Documents/ECE%2060146/Homework%20%23%204/Assignment-4.html Page 28 of 28

