
BME646 and ECE60146: Homework 2

Spring 2023
Due Date: 11:59pm, Jan 25, 2023

TA: Fangda Li (li1208@purdue.edu)

Turn in typed solutions via BrightSpace. Additional instructions can be
found at BrightSpace. Late submissions will be accepted with penalty: -10
points per-late-day, up to 5 days.

1 Introduction

The goal of this homework is to introduce you to the pieces needed to im-
plement an image dataloader within the PyTorch framework for training
or testing your deep neural networks. To do so, you will familiarize your-
self with image representations such as PIL and torch tensor, and the data
augmentation process. Upon completing this homework, you will be able
to construct your own image dataloader for training deep neural networks
using the torchvision library. For more information regarding the image
representations and the usage of the torchvision library, you can refer to
Prof. Kak’s tutorial [5]. Note that this homework contains a “theory” task
(Sec. 2) followed by the programming tasks (Sec. 3).

2 Understanding Data Normalization

This task is about solving what will appear to be a “mystery” in the Slides
19 through 36 of your instructor’s Week 2 lecture slides [5]. In your report,
explain in one or two paragraphs what you think would be the explanation
to the mystery as described in the rest of this section.

Slides 19 though 36 are meant to give you a deeper understanding of
what exactly is computed by the two commonly used callable instances of
tvt.ToTensor and tvt.Normalize for the basic transformations that are
typically applied to the images before they can be fed into a neural network.
The short name tvt stands for the module torchvision.transforms.

The Python statement at the bottom of Slide 19 declares a batch of 4
“images”, each with 3 channels, and each of size 5×9. As you would expect,
the pixel values in these images are unsigned one-byte integers in the range
[0, 255], as you can see in the printout for the first image of the batch on
Slide 22.

1



To prepare the 4 images of the batch for input to a neural network, we
must first scale the pixel values from the [0, 255] integer range to the [0, 1.0]
floating-point range. And then normalize the floating-point values to the
[−1.0, 1.0] range. As to what exactly is meant by normalization will be
explained in class.

What you see at the bottom of Slide 26 is a result of manual pixel-
value scaling as obtained by dividing all the pixels in the batch by the
maximum pixel value in the batch. You will see exactly the same values at
the bottom of Slide 28 where the pixel-value scaling was carried out with
the tvt.ToTensor callable instance.

You will notice that the output shown on Slide 26 was obtained by
dividing the pixel values in ALL of the batch images by the max value in
the entire batch. As shown by Line (6) in Slide 23, the max value in the
batch is in the image indexed 2 (meaning the third image) for its channel
indexed 1 (the Green channel) and at location (3, 3).

The similarity of the results shown on Slides 26 and 28 would appear
to imply that the pixel-value scaling achieved by tvt.ToTensor is nothing
more than what you get by dividing the pixel values in all the batch images
by the max pixel value in any of the images.

Now here comes the “mystery”: The piece of code shown on Slide 28
carries out pixel-value scaling on a per-image basis in the batch. The for

loop ensures that tvt.ToTensor is called on each image separately. So you
would think the scaling achieved by this code fragment would divide all the
pixel values in an image by the max value in that image. As shown on
Slide 23, the largest value in the entire batch does NOT occur in any of the
channels in the first image; it occurs in the second channel of the third image
(of index 2). So if the pixel values in the first image were to be scaled by
the max value in that image, you would NOT get exactly the same answer
as shown on Slide 26.

The mystery question: If the pixel-value scaling by the piece of code in
Slide 28 is on a per-image basis and if the same by the code shown on Slide
26 is on a batch basis, how come the two results are exactly the same?

3 Programming Tasks

3.1 Setting Up Your Conda Environment

Before writing any code, you will first need to set up an Anaconda [1] envi-
ronment, in which PyTorch and other necessary packages will be installed.

2



You should familiarize yourself with the basics of using conda for package
management. Nonetheless, what is outlined below will help you get started:

1. A very useful cheatsheet on the conda commands can be found here
[2].

2. If you are used to using pip, execute the following to download Ana-
conda:

sudo pip install conda

For alternatives to pip, follow the instructions here [3] for installation.

3. Create your ECE60146 conda environment:

conda create --name ece60146 python=3.8

4. Activate your new conda environment:

conda activate ece60146

5. Install the necessary packages (e.g. PyTorch, torchvision) for your
solutions

conda install pytorch==1.10.0 torchvision==0.11.0 cudatoolkit=10.2

-c pytorch

Note that the command above is specifically for a GPU-enabled in-
stallation of PyTorch version 1.10. Depending on your own hardware
specifications and the drivers installed, the command will vary. You
can find more about such commands for installing PyTorch here [4]
While GPU capabilities are not required for this homework, you will
need them for later homeworks.

6. After you have created the conda environment and installed the all
the dependencies, use the following command to export a snapshot of
the package dependencies in your current conda environment:

conda env export > environment.yml

7. Submit your environment.yml file to demonstrate that your conda
enviroment has been properly set up.

3.2 Becoming Familiar with torchvision.transforms

This task is about the Data Augmentation material on Slide 37 through 47
of the Week 2 slides on torchvision. Review those slides carefully and
execute the following steps:

3



1. Take a photo of a stop sign with your cellphone camera while you are
standing directly in front of the sign and the camera is pointing straight
at it. Alternatively, you can also take a picture of a photograph of a
stop sign instead.

2. Take another photo of the same stop sign, but this time from a very
oblique angle. There are two ways you can create the oblique effect:
(1) Your camera continues to point in a direction that parallels the
road while you stand off to a side. And (2) You continue to point your
camera towards the stop sign while you are standing off to a side.

3. Now experiment with applying the callable instance tvt.RandomAffine
and the function tvt.functional.perspective() that are mentioned
on Slides 46 and 47 of Week 2 to see if you can transform one image
into the other.

4. Note that for measuring the similarity between two images of the stop
sign, you can measure the distance between the two corresponding
histograms, as explained on Slides 65 through 73.

5. One possible way of solving this problem is to keep trying different
affine (or projective) parameters in a loop until you find the parameters
that will make one image look reasonably similar to the other.

6. In your report, first plot your two images of the stop sign side-by-
side. Subsequently, display your best transformed image, that is the
most similar to the target image, using either the affine or projective
parameters. Explain in one or two paragraphs on how you have solved
this task.

3.3 Creating Your Own Dataset Class

Now that you have become familiar with implementing transforms using
torchvision, the next step is to learn how to create a custom dataset class
that is based on the torch.utils.data.Dataset class for your own images.
Your custom dataset class will store the meta information about your dataset
and implement the method that loads and augments your images. The code
snippet below provides a minimal example of a custom dataset within the
PyTorch framework:

1 import torch

2

3 class MyDataset(torch.utils.data.Dataset):

4



4

5 def __init__(self , root):

6 super ().__init__ ()

7 # Obtain meta information (e.g. list of file names)

8 # Initialize data augmentation transforms , etc.

9 pass

10

11 def __len__(self):

12 # Return the total number of images

13 return 100

14

15 def __getitem__(self , index):

16 # Read an image at index and perform augmentations

17 # Return the tuple: (augmented tensor , integer label)

18 return torch.rand((3, 256 , 256)), random.randint(0, 10)

Before proceeding, take ten images with your cellphone camera of any
object and store them together within a single folder. Now, based on the
code snippet above, implement a custom dataset class that handles your
own images. More specifically, your __getitem__ method should:

1. Read from disk the image corresponding to the input index as a PIL
image.

2. Subsequently, assuming that you are using your custom dataset to
train a classifier, augment your image with three different transforms of
your choice that you think will make your classifier more robust. Note
that a suitable transform could be either color-related or geometry-
related. Note that you should use tvt.Compose to chain your aug-
mentations into a single callable instance.

3. Finally, return a tuple, with the first item being the tensor represen-
tation of your augmented image and the second the class label. For
now, you can just use a random integer as your class label.

The code below demonstrates the expected usage of your custom dataset
class:

1 # Based on the previous minimal example

2 my_dataset = MyDataset(’./path/to/your/folder ’)

3 print(len(my_dataset)) # 100

4 index = 10

5 print(my_dataset[index][0].shape , my_dataset[index][1])

6 # torch.Size([3, 256 , 256]) 6

7

8 index = 50

5



9 print(my_dataset[index][0].shape , my_dataset[index][1])

10 # torch.Size([3, 256 , 256]) 8

In your report, for at least three of your own images, plot the original version
side-by-side with its augmented version. Also briefly explain the rationale
behind your chosen augmentation transforms.

3.4 Generating Data in Parallel

For reasons that will become clear later in this class, training a deep neural
network in practice requires the training samples to be fed in batches. Since
calling __getitem__ will return you a single training sample, you now need
to build a dataloader class that will yield you a batch of training samples
per iteration. More importantly, by using a dataloader, the loading and
augmentation of your training samples is done efficiently in a multi-threaded
fashion.

For the programming part, wrap an instance of your custom dataset
class within the torch.utils.data.DataLoader class so that your images
for training can be processed in parallel and are returned in batches. In
your report, set your batch size to 4 and plot all 4 images together from the
same batch as returned by your dataloader.

Additionally, compare and discuss the performance gain by using the
multi-threaded DataLoader v.s. just using Dataset. First, record the time
needed to load and augment 1000 random images in your dataset (with
replacement) by calling my_dataset.__getitem__ 1000 times. Then, record
the time needed by my_dataloader to process 1000 random images. Note
that for this comparison to work, you should set both your batch_size and
num_workers to values greater than 1. In your report, tabulate your findings
on the timings and experiment with different settings of the batch_size and
num_workers parameters.

4 Submission Instructions

Include a typed report explaining how did you solve the given programming
tasks.

1. Turn in a zipped file, it should include (a) a typed self-contained pdf
report with source code and results and (b) source code files (only .py
files are accepted). Rename your .zip file as hw2 <First Name><Last
Name>.zip and follow the same file naming convention for your pdf
report too.

6



2. For all homeworks, you are encouraged to use .ipynb for development
and the report. If you use .ipynb, please convert it to .py and submit
that as source code.

3. You can resubmit a homework assignment as many times as you want
up to the deadline. Each submission will overwrite any previous
submission. If you are submitting late, do it only once on
BrightSpace. Otherwise, we cannot guarantee that your latest sub-
mission will be pulled for grading and will not accept related regrade
requests.

4. The sample solutions from previous years are for reference only. Your
code and final report must be your own work.

5. Your pdf must include a description of

• Your explanation to the mystery as described in Sec. 2.

• The various plots and descriptions as instructed by the subsec-
tions in Sec. 3.

• Your source code. Make sure that your source code files are
adequately commented and cleaned up.

References

[1] Anaconda, . URL https://www.anaconda.com/.

[2] Conda Cheat Sheet, . URL https://docs.conda.io/projects/conda/

en/4.6.0/_downloads/52a95608c49671267e40c689e0bc00ca/conda-

cheatsheet.pdf.

[3] Conda Installation, . URL https://conda.io/projects/conda/en/

latest/user-guide/install/index.html.

[4] Installing Previous Versions of PyTorch. URL https://pytorch.org/

get-started/previous-versions/.

[5] Torchvision and Random Tensors. URL https://engineering.

purdue.edu/DeepLearn/pdf-kak/Torchvision.pdf.

7

https://www.anaconda.com/
https://docs.conda.io/projects/conda/en/4.6.0/_downloads/52a95608c49671267e40c689e0bc00ca/conda-cheatsheet.pdf
https://docs.conda.io/projects/conda/en/4.6.0/_downloads/52a95608c49671267e40c689e0bc00ca/conda-cheatsheet.pdf
https://docs.conda.io/projects/conda/en/4.6.0/_downloads/52a95608c49671267e40c689e0bc00ca/conda-cheatsheet.pdf
https://conda.io/projects/conda/en/latest/user-guide/install/index.html
https://conda.io/projects/conda/en/latest/user-guide/install/index.html
https://pytorch.org/get-started/previous-versions/
https://pytorch.org/get-started/previous-versions/
https://engineering.purdue.edu/DeepLearn/pdf-kak/Torchvision.pdf
https://engineering.purdue.edu/DeepLearn/pdf-kak/Torchvision.pdf

	Introduction
	Understanding Data Normalization
	Programming Tasks
	Setting Up Your Conda Environment
	Becoming Familiar with [style=mypythoninline]torchvision.transforms
	Creating Your Own Dataset Class
	Generating Data in Parallel

	Submission Instructions

