
Deep Learning HW2

Shen Chang Jan 25 2023

Section 2
Question: If the pixel-value scaling by the piece of code in Slide 28 is on a per-

image basis and if the same by the code shown on Slide 26 is on a batch basis,

how come the two results are exactly the same?

Answer: Slide 26's scaling for the image is based on the maximum value of all

images, found using "images.max()." The tvt.ToTensor() function in Slide 28

applies this same maximum value, i.e, the global maximum in the batch, to all

four images (images_format = (4, 3, 5, 9)) during scaling, resulting in identical

outputs when printing images_scaled[0] using both methods.

Section 3
3.2

Figure 1. Photos input of a Stop Sign

To find out the optimal set of parameters for tvt.RandomAffine and the

tvt.functional.perspective(), I generated 100 list sets with different

parameters for attributes “degree” 、 ”scale” in RandomAffine and

“distortion_scale” in RandomPerspective. Note that instead of using

tvt.functional.perspective() for perspective transform, here I employed the

tvt.RandomPerspective() for transformation to shrink the amount of

parameters. My goal is to transform the Straight image into the Oblique one.

Function for Calculating Wasserstein Distance

Result

Wasserstein Distance Between Channel Histograms

Figure 2. The Result of the Optimal Transformation

Note that I have applied “tvt.ToTensor” to both images for generating their

histograms by “torch.histc.” However, there is a tradeoff that we can’t

successfully get the same image after transferring the tenor back to PIL format

due to the maximum problem discussed in Section 2.

3.3

Custom Dataset Class

Result

To better visualize the transformation, I built up another class without the

“tvt.ToTensor” in the tvt.Compose and applied the Affine, Perspective, and the

Color transformation with RandomAffine, RandomPerspective, and ColorJitter.

Reason for selecting these transformations for augmentation:

• Affine transformation: It can simulate various real-world scenarios such

as rotation, translation, scaling, and skewing, which can make the model

more robust and less prone to overfitting. It also increases the overall

diversity of the data, allowing the model to generalize better to unseen data.

• Perspective transformation: It can simulate changes in the viewing angle

of an image, such as when an object is viewed from different positions or

distances. Perspective transformation can also help the model to learn

about the 3D structure of an object, which can be useful for tasks such as

object detection or image segmentation.

• Color transformation: It can simulate changes in the lighting conditions

or the color balance by randomly altering the brightness, contrast, hue,

saturation and gamma correction of the image. Additionally, color

transformation can also help to the changes in color representation, like in

different devices, cameras, lighting conditions, etc.

Figure 3. Three Photos with Three Different Types of Transformation

3.4

Record the Timing with Calling __getitem__ 1000 Times

DataLoader with batch_size = 4

Figure 4. Four Images in a Batch Generated by DataLoader

Record the Timing Using DataLoader

Tabulation

Figure 5. The Timing Variation According to Different Parameters

Discussion

• “batch_size”: When I increase the batch size in the Dataloader, the time

it takes to complete one iteration may decrease. This is because larger

batch sizes allow the model to make better use of the hardware, such as a

GPU, by making more efficient use of memory and allowing for more

parallelization. Thus, when using the Pytorch Dataloader, increasing the

batch size can lead to fewer number of iterations needed to go through the

entire dataset, which can also speed up the overall training time. However,

it's not always the case, increasing the batch size too much can lead to

memory issues.

• “num_workers”: When I increase the number of 'num_workers' in a

parallel processing setting, the time it takes to complete a task may

increase because of the overhead associated with managing and

coordinating multiple worker processes. Additionally, if the task is not easily

parallelizable, increasing the number of workers may not lead to a

proportional decrease in completion time.

