
BME646 and ECE60146: Homework 2

Spring 2023

Arghadip Das

das169@purdue.edu

1. Introduction

The aim of this homework is to make us familiarize with the image representations such as PIL

and torch tensor. It also introduces the necessary concepts to implement an image dataloader within

PyTorch framework.

2. Understanding Data Normalization

The results in Slides 26 and 28 are same although the methods are different. We obtain the results

in Slide 26 through manual computation (dividing the pixel values in ALL of the batch images by

the max value of the entire batch, i.e., 255) for every image. However, tvt.ToTensor is used to get

the results in Slide 28. It appears that tvt.ToTensor divides the pixel values of an image by the max

pixel value in that image. As it is operating on per image basis (due to the for loop), but the

maximum value (255) appears ONLY in second channel of the third image, the answers in two

previously mentioned slides should be different.

I believe, the “mystery” is tvt.ToTensor always divides the pixel values with the maximum

possible pixel value in int8 format, i.e. 255. It does not matter if the maximum value (255) is

present in the image channels or not. That is the reason why two results are same.

3. Programming Tasks

3.1. Setting Up Your Conda Environment

As I am using Google Colab for this assignment, this step is skipped.

mailto:das169@purdue.edu

3.2. Becoming Familiar with torchvision.transforms

Two captured images of the stop sign are given below. The image dimensions are (224, 224).

(a) (b)
Fig. 1. (a) Direct (target), and (b) oblique images of a stop sign

Source code for loading and displaying the images in Fig. 1:

Importing necessary libraries for all programming tasks

import torch # PyTorch

import torchvision.transforms as tvt # Torchvision transforms

import numpy # Numpy for miscellaneous tasks

from PIL import Image # Pillow for images

import random # random for random numbers

import os # os for proper directory paths

import matplotlib.pyplot as plt # for displaying the images

from scipy.stats import wasserstein_distance # Calculate the distance between histograms

Proper seed setting for reproducibility of the results

Taken from Slide 73

seed = 0

random.seed(seed)

torch.manual_seed(seed)

torch.cuda.manual_seed(seed)

numpy.random.seed(seed)

torch.backends.cudnn.deterministic=True

torch.backends.cudnn.benchmarks=False

os.environ['PYTHONHASHSEED'] = str(seed)

path_direct = "/content/drive/MyDrive/Arghadip/DL/stop_direct.jpg" # Path for direct image

im_direct = Image.open(path_direct) # Load as PIL object

plt.imshow(im_direct) # To show image

plt.show() # Display on screen

path_oblique = "/content/drive/MyDrive/Arghadip/DL/stop_oblique.jpg" # Path for Oblique image

im_oblique = Image.open(path_oblique) # Load as PIL object

plt.imshow(im_oblique) # To show image

plt.show() # Display on screen

Histogram computation of direct stop sign

hist_direct = torch.histc(tvt.ToTensor()(im_direct), bins=10, min=0.0, max=1.0)

hist_direct = hist_direct.div(hist_direct.sum())

print(hist_direct)

Best transformed images:

1. Using affine parameters:

Fig. 2. Best transformed image using tvt.RandomAffine(). The parameters are degree = (-15,-15),

translate = (0.01,0), scale = (1.1,1.1), shear = [15,15,0,0]. The Wasserstein distance between the direct

image (Fig. 1(a)) and the transformed image (Fig. 2) is 0.012.

The exploration space of parameters is given below.

• degree: {(-25,-25), (-20,-20), (-15,-15)}

• translate: {(0.01,0), (0.02,0), (0.03,0)}

• scale: {(1,1), (1.1,1.1), (1.2,1.2)}

• shear: {[20,20,5,5], [15,15,0,0], [25,25,0,0]}

Approach:

Fig. 3. Affine transform (straight and parallel lines hold their behavior after the transform)

The oblique image in Fig. 1(b) needs to be rotated anti-clockwise in order to get the target image

in Fig. 1(a). That’s why the degree parameter is set to negative values. If carefully observed, the

oblique image is also slightly shifted along horizontal direction. Here the translate parameter

comes to our rescue. In a similar fashion, scale and shear parameters are also properly chosen after

few trials and errors.

Target

Source code to select the best parameters by minimizing the distance with the target image:

list_of_dist = [] # Empty list initialization to store the Wasserstein distance for diff params

list_of_params = [] # Empty list initialization to store different combination of parameters

for degree in range(-25,-14,5): # Start loop for parameter "degree"

 for translate_x in [0.01,0.02,0.03]: # Start loop for parameter "translate"

 for scale in [1,1.1,1.2]: # Start loop for parameter "scale"

 for shear in [[20,20,5,5],[15,15,0,0],[25,25,0,0]]: # Start loop for parameter "shear"

 # Creating the transformer with the proper parameters

 affine_transfomer = tvt.RandomAffine(degrees=(degree,degree), translate=(translate_x,0),

scale=(scale,scale), shear=shear)

 affine_img = affine_transfomer(im_oblique) # Transformed image

 # Calculate the Wasserstein distance

 hist_affine = torch.histc(tvt.ToTensor()(affine_img), bins=10, min=0.0, max=1.0) #

Histogram with 10 bins

 hist_affine = hist_affine.div(hist_affine.sum()) #

Normalize the histogram

 dist = wasserstein_distance(hist_direct.cpu().numpy(), hist_affine.cpu().numpy()) #

Wasserstein distance

 # Appending the "dist" to the list of distances

 list_of_dist.append(dist)

 # Appending the parameters to the list of parameters

 list_of_params.append((degree, translate_x, scale, shear))

Finding the parameters for which the distance is minimum

min_index = numpy.argmin(list_of_dist) # Index for which the Wasserstein distance is minimum

best_degree, best_translate_x, best_scale, best_shear = list_of_params[min_index] # Set of

parameters corresponding to min_index

print('Min. Wasserstein distance= ', list_of_dist[min_index], '\nBest Parameters:\nDegree= ',

best_degree, '| translate_x= ', best_translate_x, '| scale= ', best_scale, '| shear= ',

best_shear) # Print the parameters

Creating the transformer with the best parameters

best_affine_transfomer = tvt.RandomAffine(degrees=(best_degree,best_degree),

translate=(best_translate_x,0), scale=(best_scale,best_scale), shear=best_shear)

best_affine_img = best_affine_transfomer(im_oblique) # Transformed image that best resembles

with the direct image

Display the best image

plt.imshow(best_affine_img)

plt.show()

Output:

Min. Wasserstein distance= 0.011775881983339785

Best Parameters:

Degree= -15 | translate_x= 0.01 | scale= 1.1 | shear= [15, 15, 0, 0]

2. Using projective parameters:

Fig. 4. Best transformed image using tvt.functonal.perspective(). The parameters are startpoints = [[0,0],

[223,0], [223,223], [0,223]], endpoints=[[0,0], [230,-60], [223,223], [0,260]]. The Wasserstein distance

between the direct image (Fig. 1(a)) and the transformed image (Fig. 2) is 0.011.

Both the startpoint and endpoint parameters consist of four corners, top-left, top-right, bottom-

right, bottom-left, respectively. Each corner is a list of two integers (x, y), e.g., top-left = [top-left-

x, top-left-y].

The exploration space of parameters is given below.

• top-right-x: {230, 240, 250}

• top-right-y: {-80, -70, -60}

• bottom-left-x: {-20, -10, 0}

• bottom-left-y: {260, 270, 280}

Approach:

Fig. 5. Projective transform (straight lines hold their behavior after the transform)

Target

Observing Fig. 1(b) reveals that the top-left and bottom-right corners of it almost resembles the

target image in Fig. 1(a). Therefore, by playing with top-right and bottom-left corners Fig. 1(a)

can be obtained from Fig. 1(b). For example, the top-right corner of the image in 1(b) needs to be

moved along right-upward (north-east) direction to obtain the target image. The top-right-x > 224

and top-right-y < 0 will satisfy our requirements. Similarly, the parameters are chosen for bottom-

left corner to move it along the left-downward (south-west) direction.

Source code to select the best parameters by minimizing the distance with the target image:

list_of_dist = [] # Empty list initialization to store the Wasserstein distance for diff params

list_of_params = [] # Empty list initialization to store different combination of parameters

for top_right_x in range(230,260,10): # Start loop for the parameter top-right x

coordinate

 for top_right_y in range(-80,-50,10): # Start loop for the parameter top-right y

coordinate

 for bottom_left_x in range(-20,10,10): # Start loop for the parameter bottom-left x

coordinate

 for bottom_left_y in range(260,280,10): # Start loop for the parameter bottom-left y

coordinate

 # Transformed image with proper perspective transform parameters

 perspective_img = tvt.functional.perspective(img=im_oblique, startpoints=[[0,0], [223,0],

[223,223], [0,223]], endpoints=[[0,0], [top_right_x,top_right_y], [223,223],

[bottom_left_x,bottom_left_y]])

 # Calculate the Wasserstein distance

 hist_projective = torch.histc(tvt.ToTensor()(perspective_img), bins=10, min=0.0, max=1.0)

Histogram with 10 bins

 hist_projective = hist_projective.div(hist_projective.sum())

Normalize the histogram

 dist = wasserstein_distance(hist_direct.cpu().numpy(), hist_projective.cpu().numpy())

Wasserstein distance

 # Appending the dist to the list of distances

 list_of_dist.append(dist)

 # Appending the parameters to the list of parameters

 list_of_params.append((top_right_x, top_right_y, bottom_left_x, bottom_left_y))

Finding the parameters for which the distance is minimum

min_index = numpy.argmin(list_of_dist) # Index for which the Wasserstein distance is minimum

best_top_right_x, best_top_right_y, best_bottom_left_x, best_bottom_left_y =

list_of_params[min_index] # Set of parameters corresponding to min_index

print('Min. Wasserstein distance= ', list_of_dist[min_index], '\nBest Parameters:\ntop_right_x=

', best_top_right_x, '| top_right_y= ', best_top_right_y, '| bottom_left_x= ',

best_bottom_left_x, '| bottom_left_y= ', best_bottom_left_y) # Print the parameters

Transformed image that best resembles with the original image

best_perspective_img = tvt.functional.perspective(img=im_oblique, startpoints=[[0,0], [223,0],

[223,223], [0,223]], endpoints=[[0,0], [best_top_right_x,best_top_right_y], [223,223],

[best_bottom_left_x,best_bottom_left_y]])

Display the best image

plt.imshow(best_perspective_img)

plt.show()

Output:

Min. Wasserstein distance= 0.011340085603296754

Best Parameters:

top_right_x= 230 | top_right_y= -60 | bottom_left_x= 0 | bottom_left_y=

260

3.3. Creating Our Own Dataset Class

Ten images of different objects are captured using the mobile phone and uploaded to a Google

Drive folder. The images are resized to 256256 and named from ‘0.jpg’ to ‘9.jpg’. The __len__()

and __getitem__() functions are modified as per the instructions. Two important things to be noted

here. Although we have only 10 images, in order to create an illusion for the dataloader that we

have 1000 images,

• the __len__() method returns 1000 (NOT 10);
• and to avoid indexing error while image loading from the disk, index%10 is used in

__getitem__() function.
The chosen augmentation transformations, which are suitable for image classification tasks, are

tvt.ColorJitter, tvt.RandomGrayscale, tvt.RandomHorizintalFlip.

Source code for custom Dataset class implementation:

Custom dataset class definition

class MyDataset(torch.utils.data.Dataset):

 def __init__(self, root='/content/drive/MyDrive/Arghadip/DL/HW2/Dataset'):

 super().__init__() # Part of the definition is obtained from parent class

 # Obtain meta information i.e. location of image files

 self.path = root

 # Initialize data augmentation transforms , etc.

 # tvt.Compose collates multiple transforms and perform them sequentially

 self.xform = tvt.Compose([

 # ColorJitter deals with altering the color properties of an image by changing its pixel

values.

 tvt.ColorJitter(brightness=1, contrast=0, saturation=0, hue=0),

 # Converted into grayscale with probability 0.5 for augmentation.

 tvt.RandomGrayscale(p=0.5),

 # Flipped horizontally with probability 0.5

 tvt.RandomHorizontalFlip(p=0.5),

 # Conversion from PIL to floating point Tensor

 tvt.ToTensor()

])

 def __len__ (self):

 # Return the total number of images

 # IMP: Although we have only 10 images in our directory, still we want to

 # evaluate the performance of parallel loading of 1000 images using a

 # dataloader object. Therefore the total length is returned as 1000.

 return 1000

 def __getitem__(self, index):

 # Read an image at index and perform augmentations

 # Return the tuple : (augmented tensor , integer label)

 # Get the path of the image

 # As we have only 10 images, we used "index % 10" to cover the cases when index >= 10

 path = os.path.join(self.path, str(index%10) + '.jpg')

 image = Image.open(path) # Load image as PIL object

 image = self.xform(image) # Apply transform

 return (image, random.randint(0,10)) # Return the image tensor and label

Demonstration of MyDataset class:

Test code:

my_dataset = MyDataset('/content/drive/MyDrive/Arghadip/DL/HW2/Dataset') # Creating an instance

print(len(my_dataset)) # Total number of

images

index = 10

print(my_dataset[index][0].shape, my_dataset[index][1])

index = 50

print(my_dataset[index][0].shape, my_dataset[index][1])

Output:

1000

torch.Size([3, 256, 256]) 6

torch.Size([3, 256, 256]) 4

Original and augmented images:

Code to plot images:

Code for plotting original and augmented version of images

index = 7 # Change the index to plot a different image

Plot Original

image = Image.open(os.path.join('/content/drive/MyDrive/Arghadip/DL/HW2/Dataset', str(index) +

'.jpg'))

plt.imshow(image)

plt.show()

Plot augmented version

plt.imshow(tvt.ToPILImage()(my_dataset[index][0]))

plt.show()

Original version Augmented version

Rationale behind the chosen transformations:

Transformation Rationale

tvt.ColorJitter() It alters the color properties of an image by changing its pixel

values. In a real-life scenario, the different illumination leads to

different brightness of a captured image. Other parameters like

contrast, saturation and hue also varies. Therefore, this

augmentation helps in better training of the image classifier

network.

tvt.RandomGrayscale() It converts color images (3 channels, RGB) to gray scale images

(1 channel). The image classifier must be able to classify from

all types of input images, not only the color images. This type of

color augmentation helps in that aspect of traning.

tvt.RandomHorizontalFlip() This is a geometry-related transform. The image classifier is

better trained if it sees images of objects captured from different

angles. Therefore, horizontal flip helps in learning those

features.

3.4. Generating Data in Parallel

The instance of MyDataset class is wrapped within the torch.utils.data.DataLoader class so that

the images can be processed in a multi-threaded fashion.

Plotting all images from a batch of 4:

Source code:

Code to plot a batch of 4

import torchvision

function to show a batch of images

def imshow(img):

 npimg = img.numpy() # Convert tensor to numpy array

 plt.imshow(numpy.transpose(npimg, (1, 2, 0))) # shaping of array to plot properly

 plt.show()

batch_size = 4 # Setting the batch size = 4

my_dataloader = DataLoader(my_dataset, batch_size=batch_size, shuffle=True, num_workers=0) #

Creating the data loader

my_dataiter = iter(my_dataloader) # Creating an iterator from the data loader

data, label = next(my_dataiter) # Load one batch of data and corresponding labels

imshow(torchvision.utils.make_grid(data)) # Call imshow()

Output:

Comparison: multi-threaded DataLoader vs. only Dataset

1. Time needed to load and augment 1000 images by calling my_dataset.__getitem__():

1. Source code:

Getting time for 1000 individual loading using __getitem__()

start_time = time.time() # Start timer

for i in range(Total_images): # Loop for 1000 images

 my_dataset.__getitem__(i)

end_time = time.time() # Stop timer

print('Load time (just using Dataset)= ', end_time - start_time, ' seconds')

2. Output:

Load time (just using Dataset)= 7.096383094787598 seconds

2. Time needed by my_dataloader to process 1000 random images (across different batch

sizes and number of workers):

I create a data loader and an iterator object from that data loader once for a certain batch_size and

num_workers. Then in a for loop the iterator is called for (1000/batch_size) times. The considered

batch sizes and number of workers are shown in the following source code.

1. Source code

Comparison and perfomance gain for DataLoader

for batch_size in [1,10,20,50,100]: # Start loop for different batch sizes

 for num_workers in [0,2,4]: # Start loop for different num_workers

 # Wrapping Dataset instance within a DataLoader

 my_dataloader = DataLoader(my_dataset, batch_size=batch_size, shuffle=True,

num_workers=num_workers)

 # Creating an iterable from DataLoader object

 my_dataiter = iter(my_dataloader)

 start_time = time.time() # Start timer

 for i in range(int(Total_images/batch_size)): # Run loop for 1000/batch_size number of

batches

 next(my_dataiter) # Iterate through the iterator

 end_time = time.time() # Stop timer

 print('Batch size = ', batch_size, '| num_workers= ', num_workers, '| Load time = ', end_time

- start_time, ' seconds')

2. Output

Batch size = 1 | num_workers= 0 | Load time = 7.533124685287476 seconds
Batch size = 1 | num_workers= 2 | Load time = 6.805963039398193 seconds
Batch size = 1 | num_workers= 4 | Load time = 6.515792608261108 seconds
Batch size = 10 | num_workers= 0 | Load time = 5.805272102355957 seconds
Batch size = 10 | num_workers= 2 | Load time = 4.883432865142822 seconds
Batch size = 10 | num_workers= 4 | Load time = 4.461414575576782 seconds
Batch size = 20 | num_workers= 0 | Load time = 5.8049585819244385 seconds
Batch size = 20 | num_workers= 2 | Load time = 4.582255601882935 seconds
Batch size = 20 | num_workers= 4 | Load time = 4.592945575714111 seconds
Batch size = 50 | num_workers= 0 | Load time = 5.819510459899902 seconds
Batch size = 50 | num_workers= 2 | Load time = 4.447611570358276 seconds
Batch size = 50 | num_workers= 4 | Load time = 4.46168065071106 seconds
Batch size = 100 | num_workers= 0 | Load time = 5.795533895492554 seconds
Batch size = 100 | num_workers= 2 | Load time = 4.647416591644287 seconds
Batch size = 100 | num_workers= 4 | Load time = 4.61956000328064 seconds

Load times across different batch_size and num_workers are shown in the table and plot.

batch_size num_workers Load time (s)

1 0 4.80918

1 2 4.72898

1 4 5.49303

2 0 4.73202

2 2 4.11033

2 4 3.65303

5 0 4.73659

5 2 3.73318

5 4 3.30234

10 0 4.80384

10 2 3.59341

10 4 3.07502

20 0 4.77154

20 2 3.42828

20 4 3.03153

50 0 4.69958

50 2 3.4184

50 4 3.01213

100 0 4.63261

100 2 3.45138

100 4 3.19065

Fig. 6. Load time vs. batch_size plot across different num_workers

Discussion:

From the plot, as the batch size increases, the load time first reduces and then remains almost same.

Increasing batch size means more images are packed together. Therefore, it reduces the number of

iterations in the for loop. This leads to reduced overhead and thereby reduces the load and

processing time. Also, for a certain batch_size, if the num_workers are increased, then the load

time reduces. As more threads join the process, the increased parallelism reduces the load and

augmentation time. The results for batch_size = 1 shows some random behavior when

num_workers are changed. However, we still see significant improvement in processing time (7.1s

vs. 5.5s) over my_dataset.__getitem__() when data loader is used. This can be attributed to the

efficient PyTorch back-end implementation of data loaders.

 If we compare the data loader results with the previously obtained result for

my_dataset.__getitem__(), we see significant improvement when batch_size and num_workers are

significantly greater than 1. We get ~2.33X (7.1s vs. 3.0s) speed-up (performance gain) by using

data loader with batch_size = 50 and num_workers = 4.

4. Lessons Learned

In this homework, we get familiarized with the image representations such as PIL and torch tensor.

We also learn the necessary concepts to implement a custom dataset and an image dataloader for

parallel loading and processing of data from disk using PyTorch framework.

--- End of the document ---

3

4

5

6

7

8

1 2 5 10 20 50

T
im

e
(s

)

batch_size

0 2 4num_workers:

my_dataset.__getitems__()

	BME646 and ECE60146: Homework 2
	Spring 2023
	1. Introduction
	2. Understanding Data Normalization
	3. Programming Tasks
	4. Lessons Learned

