BMEG646 and ECE60146: Homework 2
Spring 2023
Arghadip Das
das169@purdue.edu

1. Introduction

The aim of this homework is to make us familiarize with the image representations such as PIL
and torch tensor. It also introduces the necessary concepts to implement an image dataloader within
PyTorch framework.

2. Understanding Data Normalization

The results in Slides 26 and 28 are same although the methods are different. We obtain the results
in Slide 26 through manual computation (dividing the pixel values in ALL of the batch images by
the max value of the entire batch, i.e., 255) for every image. However, tvt. ToTensor is used to get
the results in Slide 28. It appears that tvt. ToTensor divides the pixel values of an image by the max
pixel value in that image. As it is operating on per image basis (due to the for loop), but the
maximum value (255) appears ONLY in second channel of the third image, the answers in two
previously mentioned slides should be different.

I believe, the “mystery” is tvt. ToTensor always divides the pixel values with the maximum
possible pixel value in int8 format, i.e. 255. It does not matter if the maximum value (255) is
present in the image channels or not. That is the reason why two results are same.

3. Programming Tasks

3.1. Setting Up Your Conda Environment

As | am using Google Colab for this assignment, this step is skipped.

mailto:das169@purdue.edu

3.2. Becoming Familiar with torchvision.transforms

Two captured images of the stop sign are given below. The image dimensions are (224, 224).

200

(b)

Fig. 1. (a) Direct (target), and (b) oblique images of a stop sign

Source code for loading and displaying the images in Fig. 1:

t numpy

from PIL import

seed = 0

random. seed

torch.

torch.cuda.manual

numpy.random. seed
torch.backends.cudnn.deterministic=
torch.backends.cudnn.benchmarks=

viron['PYTHONHASHSEED']

path di content

im direct = Image.open (path direct)

plt.imshow (im direct)

plt.show()

path oblique = content

1e = Image.open(path oblique)

show (im_oblique)

hist direct = torch.histc(tvt.ToTensor () (im direct), bins=10, min=0.0, max=1.0)

hist direct hist direct.div(hist direct.sum())

Best transformed images:

1. Using affine parameters:

150
Fig. 2. Best transformed image using tvt. RandomAffine(). The parameters are degree = (-15,-15),

translate = (0.01,0), scale = (1.1,1.1), shear = [15,15,0,0]. The Wasserstein distance between the direct
image (Fig. 1(a)) and the transformed image (Fig. 2) is 0.012.

The exploration space of parameters is given below.
degree: {(-25,-25), (-20,-20), (-15,-15)}
translate: {(0.01,0), (0.02,0), (0.03,0)}
scale: {(1,1), (1.1,1.1), (1.2,1.2)}

shear: {[20,20,5,5], [15,15,0,0], [25,25,0,0]}

Approach:

Affine

Fig. 3. Affine transform (straight and parallel lines hold their behavior after the transform)

The oblique image in Fig. 1(b) needs to be rotated anti-clockwise in order to get the target image
in Fig. 1(a). That’s why the degree parameter is set to negative values. If carefully observed, the
oblique image is also slightly shifted along horizontal direction. Here the translate parameter
comes to our rescue. Inasimilar fashion, scale and shear parameters are also properly chosen after
few trials and errors.

Source code to select the best pa inimizi e distance with the target image:

list of dist =

list of params

for degree in range(-25,-14,5):
translate x in [0.01,0.02,0.03]:
for scale in [1,1.1,1.2]:

for shear in [[20,20,5,5],[15,15,0,0],[25,25,0,0]1]:

affine transfomer = tvt.RandomAffine (degrees=(degree,degree), translate=(translate x,0),
scale=(scale,scale), shear=shear)

affine img = affine transfomer (im oblique)

hist affine torch.histc (tvt.ToTensor () (affine img), bins=10, min=0.0, max=1.0)

hist affine hist affine.div(hist affine.sum())

dist = wasserstein distance (hist direct.cpu() .numpy (), hist affine.cpu() .numpy ()

list of dist.append (dist)

list of params.append((degree, translate x, scale, shear))

min index = numpy.argmin(list of dist)

best degree, best translate x, best scale, best shear = list of params[min_ index]
print ('Min. ¥ stein dista , list of dist[min_index], '\nBest P
best degree, '| translate x= ', best translate x, '| scale= ', best scale,

best shear)

best affine transfomer = tvt.RandomAffine (degrees=(best degree,best degree),
translate=(best translate x,0), scale=(best scale,best scale), shear=best shear)

best affine img = best affine transfomer (im oblique)

plt.imshow (best affine img)

plt.show ()

Output:

Min. Wasserstein distance= 0.011775881983339785

Best Parameters:
Degree= -15 | translate x= 0.01 | scale= 1.1 | shear= [15,

© 100 150 200 P — 0
Fig. 4. Best transformed image using tvt.functonal.perspective(). The parameters are startpoints = [[0,0],
[223,0], [223,223], [0,223]], endpoints=[[0,0], [230,-60], [223,223], [0,260]]. The Wasserstein distance
between the direct image (Fig. 1(a)) and the transformed image (Fig. 2) is 0.011.

Both the startpoint and endpoint parameters consist of four corners, top-left, top-right, bottom-
right, bottom-left, respectively. Each corner is a list of two integers (X, y), e.g., top-left = [top-left-
X, top-left-y].

The exploration space of parameters is given below.

top-right-x: {230, 240, 250}

top-right-y: {-80, -70, -60}

bottom-left-x: {-20, -10, 0}

bottom-left-y: {260, 270, 280}

Approach:

Projective

=
>

Fig. 5. Projective transform (straight lines hold their behavior after the transform)

Observing Fig. 1(b) reveals that the top-left and bottom-right corners of it almost resembles the
target image in Fig. 1(a). Therefore, by playing with top-right and bottom-left corners Fig. 1(a)
can be obtained from Fig. 1(b). For example, the top-right corner of the image in 1(b) needs to be
moved along right-upward (north-east) direction to obtain the target image. The top-right-x > 224
and top-right-y < 0 will satisfy our requirements. Similarly, the parameters are chosen for bottom-
left corner to move it along the left-downward (south-west) direction.

Source code to select the best parameters by minimizing the distance with the target image:

list of params = []
for top right x in range 260,10) :
for top right y in range (-80,-50,10):

for bottom left x in range(-20,10,10) :

for bottom left y in range (260 10) :

perspective img = tvt.functional.perspective (img=im oblique, startpoints=[[0,0], [223,0],

2311, endpoints=[[0,0], [top_right x,top right y], 2 3]

om left x,bottom left y]])

hist projectiv torch.histc (tvt.ToTensor () (perspective img), bins=10, min=0.0, max=1.0)

hist projective hist projective.div(hist projective.sum())

wasserstein distance (hist direct.cpu() .numpy (), hist projective.cpu() .numpy ())

list of dist.append(dist)

list of params.append((top right x, top right y, bottom left x, bottom left y))

min index = numpy.argmin(list of dis

best top right x, _top right y, best bottom left x, best bottom left y =

list of params[min index]

print ('Min. Wasserstein distance list of dist[min index], '\nBest Parame

', best top right x, = ', best top right y, '| bottom le

2311, endpoints=[[0

[best bottom left x,best bottom left y]])

best perspective img)

Min. Wasserstein distance= 0.011340085603296754
Best Parameters:
top right x= 230 | top right y= -60 | bottom left x= | bottom left y=

3.3. Creating Our Own Dataset Class

Ten images of different objects are captured using the mobile phone and uploaded to a Google
Drive folder. The images are resized to 256x256 and named from ‘0.jpg’ to ‘9.jpg’. The __len_ ()
and __getitem__ () functions are modified as per the instructions. Two important things to be noted
here. Although we have only 10 images, in order to create an illusion for the dataloader that we
have 1000 images,

e the len_ () method returns 1000 (NOT 10);

e and to avoid indexing error while image loading from the disk, index%210 is used in

__getitem__ () function.

The chosen augmentation transformations, which are suitable for image classification tasks, are
tvt.ColorJitter, tvt. RandomGrayscale, tvt.RandomHorizintalFlip.

Source code for custom Dataset class implementation:

.RandomHorizontalFlip (p=0.5),

image =

return (image, random.randint (0

Demonstration of MyDataset class:

Test code:

content/drive/MyDrive/A

index = 10

print (my dataset[index] [0].shape dataset[index] [1])

index = 50

print (my dataset[index] [0].shape, my dataset[index] [1])

([3, 256, 256]) 6
torch.Size ([3, 256, 256]) 4

Original and augmented images:

Code to plot images:

index

bath.join ('
'.Jpg'))
.imshow (image)

.show ()

.imshow (tvt.ToPILImage () (my dataset[index][0]))

.show ()

Original version

Augmented version

0

50

100

150

200

250

0 50

0

50

100

150

200

250

0 50

0

50

100

150

200

250

100 150 200 250

o
g.

Rationale behind the chosen transformations:

Transformation

Rationale

tvt.ColorJitter()

It alters the color properties of an image by changing its pixel
values. In a real-life scenario, the different illumination leads to
different brightness of a captured image. Other parameters like
contrast, saturation and hue also varies. Therefore, this
augmentation helps in better training of the image classifier
network.

tvt.RandomGrayscale()

It converts color images (3 channels, RGB) to gray scale images
(1 channel). The image classifier must be able to classify from
all types of input images, not only the color images. This type of
color augmentation helps in that aspect of traning.

tvt.RandomHorizontalFlip()

This is a geometry-related transform. The image classifier is
better trained if it sees images of objects captured from different
angles. Therefore, horizontal flip helps in learning those
features.

3.4, Generating Data in Parallel

The instance of MyDataset class is wrapped within the torch.utils.data.Datal.oader class so that
the images can be processed in a multi-threaded fashion.

Plotting all images from a batch of 4:

Source code:

plt.imshow (numpy.transpose (npimg, (1, 2, 0)))

plt.show ()

batch si

my dataloader = Dataloader (my dataset, batch size=batch size, shuffle= , num workers=0)

my dataiter = iter

data, label = next(my dataiter)

imshow (torchvision.utils.make grid(data))

100

200

0 200 400 600 800 10b0

Comparison: multi-threaded Datal oader vs. only Dataset

1. Time needed to load and augment 1000 images by calling my dataset. getitem ():

1. Source code:

start time = time.time ()

for 1 in range(Total images):

my dataset. getitem (i)

end time = time.time ()

print ('Load time (just using)= ', end time - start time, ' seconds')

2. Output:

Load time (just using Dataset)= 7.096383094787598 seconds

2. Time needed by my dataloader to process 1000 random images (across different batch
sizes and number of workers):

| create a data loader and an iterator object from that data loader once for a certain batch_size and
num_workers. Then in a for loop the iterator is called for (1000/batch_size) times. The considered
batch sizes and number of workers are shown in the following source code.

1. Source code

my dataloader = Dataloader (my dataset, batch size=batch size, shuffle=

num workers=num workers)

my dataiter = iter (my dataloader)

start_time = time.time ()

for 1 in range (int (Total images/batch size)):

next (my dataiter)

end time = time.time ()

Batch size = 1 | num_workers= 0 | Load time = 7.533124685287476 seconds
Batch size = 1 | num_workers= 2 | Load time = 6.805963039398193 seconds
Batch size = 1 | num_workers= 4 | Load time = 6.515792608261108 seconds
Batch size = 10 | num_workers= 0 | Load time = 5.805272102355957 seconds

Batch size = 10 | num_workers= 2 | Load time = 4.883432865142822 seconds
Batch size = 10 | num_workers= 4 | Load time = 4.461414575576782 seconds
Batch size = 20 | num_workers= 0 | Load time = 5.8049585819244385 seconds
Batch size = 20 | num_workers= 2 | Load time = 4.582255601882935 seconds
Batch size = 20 | num_workers= 4 | Load time = 4.592945575714111 seconds
Batch size = 50 | num_workers= 0 | Load time = 5.819510459899902 seconds
Batch size = 50 | num_workers= 2 | Load time = 4.447611570358276 seconds
Batch size = 50 | num_workers= 4 | Load time = 4.46168065071106 seconds
Batch size = 100 | num_workers= 0 | Load time = 5.795533895492554 seconds
Batch size = 100 | num_workers= 2 | Load time = 4.647416591644287 seconds
Batch size = 100 | num_workers= 4 | Load time = 4.61956000328064 seconds

Load times across different batch_size and num_workers are shown in the table and plot.

batch size | num workers | Load time (s)
1 0 4.80918

1 2 4.72898

1 4 5.49303

2 0 4.73202

2 2 4.11033

2 4 3.65303

5 0 4.73659

5 2 3.73318

5 4 3.30234
10 0 4.80384
10 2 3.59341
10 4 3.07502
20 0 4.77154
20 2 3.42828
20 4 3.03153
50 0 4.69958
50 2 3.4184
50 4 3.01213
100 0 4.63261
100 2 3.45138
100 4 3.19065

num_workers: =@=0 =0=2 —A—4

my_dataset. _getitems__ ()

7 B _ R _B_N _R_B_NR__N_HR_H§R R _ 8B &R _ &R _HNR_§R_H§R_R_§B_§B_BR_§B_§B_BR_HBR_§B_BR_HR__§B

—@-
—O—
1 2 5 10 20 50
batch_size

Fig. 6. Load time vs. batch_size plot across different num_workers
Discussion:

From the plot, as the batch size increases, the load time first reduces and then remains almost same.
Increasing batch size means more images are packed together. Therefore, it reduces the number of
iterations in the for loop. This leads to reduced overhead and thereby reduces the load and
processing time. Also, for a certain batch_size, if the num_workers are increased, then the load
time reduces. As more threads join the process, the increased parallelism reduces the load and
augmentation time. The results for batch _size = 1 shows some random behavior when
num_workers are changed. However, we still see significant improvement in processing time (7.1s
vs. 5.55) over my_dataset. _getitem__ () when data loader is used. This can be attributed to the
efficient PyTorch back-end implementation of data loaders.

If we compare the data loader results with the previously obtained result for
my_dataset. _getitem__ (), we see significant improvement when batch_size and num_workers are
significantly greater than 1. We get ~2.33X (7.1s vs. 3.0s) speed-up (performance gain) by using
data loader with batch_size = 50 and num_workers = 4.

4. Lessons Learned
In this homework, we get familiarized with the image representations such as PIL and torch tensor.

We also learn the necessary concepts to implement a custom dataset and an image dataloader for
parallel loading and processing of data from disk using PyTorch framework.

--- End of the document ---

	BME646 and ECE60146: Homework 2
	Spring 2023
	1. Introduction
	2. Understanding Data Normalization
	3. Programming Tasks
	4. Lessons Learned

