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1. Introduction 
 

The aim of this homework is to make us familiarize with the image representations such as PIL 

and torch tensor. It also introduces the necessary concepts to implement an image dataloader within 

PyTorch framework. 

 

 

 

 

2. Understanding Data Normalization 
 

The results in Slides 26 and 28 are same although the methods are different. We obtain the results 

in Slide 26 through manual computation (dividing the pixel values in ALL of the batch images by 

the max value of the entire batch, i.e., 255) for every image. However, tvt.ToTensor is used to get 

the results in Slide 28. It appears that tvt.ToTensor divides the pixel values of an image by the max 

pixel value in that image. As it is operating on per image basis (due to the for loop), but the 

maximum value (255) appears ONLY in second channel of the third image, the answers in two 

previously mentioned slides should be different. 

I believe, the “mystery” is tvt.ToTensor always divides the pixel values with the maximum 

possible pixel value in int8 format, i.e. 255. It does not matter if the maximum value (255) is 

present in the image channels or not. That is the reason why two results are same. 

 

 

 

 

3. Programming Tasks 
 

3.1.  Setting Up Your Conda Environment 
 

As I am using Google Colab for this assignment, this step is skipped. 
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3.2.  Becoming Familiar with torchvision.transforms 
 

Two captured images of the stop sign are given below. The image dimensions are (224, 224). 

 

(a)                       (b)  
Fig. 1. (a) Direct (target), and (b) oblique images of a stop sign 

 

Source code for loading and displaying the images in Fig. 1: 
 

# Importing necessary libraries for all programming tasks 

import torch                                   # PyTorch 

import torchvision.transforms as tvt           # Torchvision transforms 

import numpy                                   # Numpy for miscellaneous tasks 

from PIL import Image                          # Pillow for images 

import random                                  # random for random numbers 

import os                                      # os for proper directory paths 

import matplotlib.pyplot as plt                # for displaying the images 

from scipy.stats import wasserstein_distance   # Calculate the distance between histograms 

 

# Proper seed setting for reproducibility of the results 

# Taken from Slide 73 

seed = 0 

random.seed(seed) 

torch.manual_seed(seed) 

torch.cuda.manual_seed(seed) 

numpy.random.seed(seed) 

torch.backends.cudnn.deterministic=True 

torch.backends.cudnn.benchmarks=False 

os.environ['PYTHONHASHSEED'] = str(seed) 

 

path_direct = "/content/drive/MyDrive/Arghadip/DL/stop_direct.jpg"    # Path for direct image 

im_direct = Image.open(path_direct)                                   # Load as PIL object 

plt.imshow(im_direct)                                                 # To show image 

plt.show()                                                            # Display on screen 

 

path_oblique = "/content/drive/MyDrive/Arghadip/DL/stop_oblique.jpg"    # Path for Oblique image 



im_oblique = Image.open(path_oblique)                                   # Load as PIL object 

plt.imshow(im_oblique)                                                  # To show image 

plt.show()                                                              # Display on screen 

 

# Histogram computation of direct stop sign 

hist_direct = torch.histc(tvt.ToTensor()(im_direct), bins=10, min=0.0, max=1.0) 

hist_direct = hist_direct.div(hist_direct.sum()) 

# print(hist_direct) 

 

 

Best transformed images: 
 

1. Using affine parameters: 

 

        
Fig. 2. Best transformed image using tvt.RandomAffine(). The parameters are degree = (-15,-15), 

translate = (0.01,0), scale = (1.1,1.1), shear = [15,15,0,0]. The Wasserstein distance between the direct 

image (Fig. 1(a)) and the transformed image (Fig. 2) is 0.012. 

 

The exploration space of parameters is given below. 

• degree: {(-25,-25), (-20,-20), (-15,-15)} 

• translate: {(0.01,0), (0.02,0), (0.03,0)} 

• scale: {(1,1), (1.1,1.1), (1.2,1.2)} 

• shear: {[20,20,5,5], [15,15,0,0], [25,25,0,0]} 

 

Approach: 

  

 
Fig. 3. Affine transform (straight and parallel lines hold their behavior after the transform) 

 

The oblique image in Fig. 1(b) needs to be rotated anti-clockwise in order to get the target image 

in Fig. 1(a). That’s why the degree parameter is set to negative values. If carefully observed, the 

oblique image is also slightly shifted along horizontal direction. Here the translate parameter 

comes to our rescue. In a similar fashion, scale and shear parameters are also properly chosen after 

few trials and errors. 

 

Target 



Source code to select the best parameters by minimizing the distance with the target image: 

 

list_of_dist = []   # Empty list initialization to store the Wasserstein distance for diff params 

list_of_params = [] # Empty list initialization to store different combination of parameters 

 

for degree in range(-25,-14,5):                           # Start loop for parameter "degree" 

  for translate_x in [0.01,0.02,0.03]:                    # Start loop for parameter "translate"  

    for scale in [1,1.1,1.2]:                             # Start loop for parameter "scale" 

      for shear in [[20,20,5,5],[15,15,0,0],[25,25,0,0]]: # Start loop for parameter "shear" 

         

        # Creating the transformer with the proper parameters 

        affine_transfomer = tvt.RandomAffine(degrees=(degree,degree), translate=(translate_x,0), 

scale=(scale,scale), shear=shear) 

        affine_img = affine_transfomer(im_oblique)  # Transformed image 

         

        # Calculate the Wasserstein distance 

        hist_affine = torch.histc(tvt.ToTensor()(affine_img), bins=10, min=0.0, max=1.0)    # 

Histogram with 10 bins 

        hist_affine = hist_affine.div(hist_affine.sum())                                    # 

Normalize the histogram 

        dist = wasserstein_distance(hist_direct.cpu().numpy(), hist_affine.cpu().numpy())   # 

Wasserstein distance 

 

        # Appending the "dist" to the list of distances 

        list_of_dist.append(dist) 

        # Appending the parameters to the list of parameters 

        list_of_params.append((degree, translate_x, scale, shear)) 

 

# Finding the parameters for which the distance is minimum 

min_index = numpy.argmin(list_of_dist)    # Index for which the Wasserstein distance is minimum 

best_degree, best_translate_x, best_scale, best_shear = list_of_params[min_index] # Set of 

parameters corresponding to min_index 

print('Min. Wasserstein distance= ', list_of_dist[min_index], '\nBest Parameters:\nDegree= ', 

best_degree, '| translate_x= ', best_translate_x, '| scale= ', best_scale, '| shear= ', 

best_shear)  # Print the parameters 

 

# Creating the transformer with the best parameters 

best_affine_transfomer = tvt.RandomAffine(degrees=(best_degree,best_degree), 

translate=(best_translate_x,0), scale=(best_scale,best_scale), shear=best_shear) 

best_affine_img = best_affine_transfomer(im_oblique)  # Transformed image that best resembles 

with the direct image 

# Display the best image 

plt.imshow(best_affine_img) 

plt.show() 

 



Output: 

 
Min. Wasserstein distance=  0.011775881983339785  

Best Parameters: 

Degree=  -15 | translate_x=  0.01 | scale=  1.1 | shear=  [15, 15, 0, 0] 

 
 

 

2. Using projective parameters: 

 

 
Fig. 4. Best transformed image using tvt.functonal.perspective(). The parameters are startpoints = [[0,0], 

[223,0], [223,223], [0,223]], endpoints=[[0,0], [230,-60], [223,223], [0,260]]. The Wasserstein distance 

between the direct image (Fig. 1(a)) and the transformed image (Fig. 2) is 0.011. 

 

Both the startpoint and endpoint parameters consist of four corners, top-left, top-right, bottom-

right, bottom-left, respectively. Each corner is a list of two integers (x, y), e.g., top-left = [top-left-

x, top-left-y]. 

The exploration space of parameters is given below. 

• top-right-x: {230, 240, 250} 

• top-right-y: {-80, -70, -60} 

• bottom-left-x: {-20, -10, 0} 

• bottom-left-y: {260, 270, 280} 

 

Approach:  

 

 
Fig. 5. Projective transform (straight lines hold their behavior after the transform) 

Target 



 

Observing Fig. 1(b) reveals that the top-left and bottom-right corners of it almost resembles the 

target image in Fig. 1(a). Therefore, by playing with top-right and bottom-left corners Fig. 1(a) 

can be obtained from Fig. 1(b). For example, the top-right corner of the image in 1(b) needs to be 

moved along right-upward (north-east) direction to obtain the target image. The top-right-x > 224 

and top-right-y < 0 will satisfy our requirements. Similarly, the parameters are chosen for bottom-

left corner to move it along the left-downward (south-west) direction. 

 

Source code to select the best parameters by minimizing the distance with the target image: 

 

list_of_dist = []   # Empty list initialization to store the Wasserstein distance for diff params  

list_of_params = [] # Empty list initialization to store different combination of parameters 

 

for top_right_x in range(230,260,10):           # Start loop for the parameter top-right x 

coordinate 

  for top_right_y in range(-80,-50,10):         # Start loop for the parameter top-right y 

coordinate 

    for bottom_left_x in range(-20,10,10):      # Start loop for the parameter bottom-left x 

coordinate 

      for bottom_left_y in range(260,280,10):   # Start loop for the parameter bottom-left y 

coordinate 

         

        # Transformed image with proper perspective transform parameters 

        perspective_img = tvt.functional.perspective(img=im_oblique, startpoints=[[0,0], [223,0], 

[223,223], [0,223]], endpoints=[[0,0], [top_right_x,top_right_y], [223,223], 

[bottom_left_x,bottom_left_y]]) 

         

        # Calculate the Wasserstein distance 

        hist_projective = torch.histc(tvt.ToTensor()(perspective_img), bins=10, min=0.0, max=1.0)    

# Histogram with 10 bins 

        hist_projective = hist_projective.div(hist_projective.sum())                                 

# Normalize the histogram 

        dist = wasserstein_distance(hist_direct.cpu().numpy(), hist_projective.cpu().numpy())        

# Wasserstein distance 

 

        # Appending the dist to the list of distances 

        list_of_dist.append(dist) 

        # Appending the parameters to the list of parameters 

        list_of_params.append((top_right_x, top_right_y, bottom_left_x, bottom_left_y)) 

 

# Finding the parameters for which the distance is minimum 

min_index = numpy.argmin(list_of_dist)    # Index for which the Wasserstein distance is minimum 

best_top_right_x, best_top_right_y, best_bottom_left_x, best_bottom_left_y = 

list_of_params[min_index]  # Set of parameters corresponding to min_index 



print('Min. Wasserstein distance= ', list_of_dist[min_index], '\nBest Parameters:\ntop_right_x= 

', best_top_right_x, '| top_right_y= ', best_top_right_y, '| bottom_left_x= ', 

best_bottom_left_x, '| bottom_left_y= ', best_bottom_left_y)  # Print the parameters 

 

# Transformed image that best resembles with the original image 

best_perspective_img = tvt.functional.perspective(img=im_oblique, startpoints=[[0,0], [223,0], 

[223,223], [0,223]], endpoints=[[0,0], [best_top_right_x,best_top_right_y], [223,223], 

[best_bottom_left_x,best_bottom_left_y]]) 

 

# Display the best image 

plt.imshow(best_perspective_img) 

plt.show() 

 

Output: 

 
Min. Wasserstein distance=  0.011340085603296754  

Best Parameters: 

top_right_x=  230 | top_right_y=  -60 | bottom_left_x=  0 | bottom_left_y=  

260 

 
 

 

 

 

 

3.3.  Creating Our Own Dataset Class 
 

Ten images of different objects are captured using the mobile phone and uploaded to a Google 

Drive folder. The images are resized to 256256 and named from ‘0.jpg’ to ‘9.jpg’. The __len__() 

and __getitem__() functions are modified as per the instructions. Two important things to be noted 

here. Although we have only 10 images, in order to create an illusion for the dataloader that we 

have 1000 images, 

• the __len__() method returns 1000 (NOT 10); 
• and to avoid indexing error while image loading from the disk, index%10 is used in 

__getitem__() function. 
The chosen augmentation transformations, which are suitable for image classification tasks, are 

tvt.ColorJitter, tvt.RandomGrayscale, tvt.RandomHorizintalFlip. 

 



Source code for custom Dataset class implementation: 
 

# Custom dataset class definition 

class MyDataset(torch.utils.data.Dataset): 

  def __init__(self, root='/content/drive/MyDrive/Arghadip/DL/HW2/Dataset'): 

    super().__init__()  # Part of the definition is obtained from parent class 

    # Obtain meta information i.e. location of image files 

    self.path = root 

    # Initialize data augmentation transforms , etc. 

    # tvt.Compose collates multiple transforms and perform them sequentially 

    self.xform = tvt.Compose([ 

        # ColorJitter deals with altering the color properties of an image by changing its pixel 

values. 

        tvt.ColorJitter(brightness=1, contrast=0, saturation=0, hue=0), 

        # Converted into grayscale with probability 0.5 for augmentation. 

        tvt.RandomGrayscale(p=0.5), 

        # Flipped horizontally with probability 0.5 

        tvt.RandomHorizontalFlip(p=0.5), 

        # Conversion from PIL to floating point Tensor 

        tvt.ToTensor() 

    ]) 

 

  def __len__ (self): 

    # Return the total number of images 

    # IMP: Although we have only 10 images in our directory, still we want to 

    # evaluate the performance of parallel loading of 1000 images using a  

    # dataloader object. Therefore the total length is returned as 1000. 

    return 1000 

 

  def __getitem__(self, index): 

  # Read an image at index and perform augmentations 

  # Return the tuple : ( augmented tensor , integer label ) 

    # Get the path of the image 

    # As we have only 10 images, we used "index % 10" to cover the cases when index >= 10 

    path = os.path.join(self.path, str(index%10) + '.jpg') 

    image = Image.open(path)                                # Load image as PIL object 

    image = self.xform(image)                               # Apply transform 

    return (image, random.randint(0,10))                    # Return the image tensor and label 

 

 

 

 

 

 

 



Demonstration of MyDataset class: 
 

Test code: 

 

my_dataset = MyDataset('/content/drive/MyDrive/Arghadip/DL/HW2/Dataset')  # Creating an instance 

print(len(my_dataset))                                                    # Total number of 

images 

index = 10 

print(my_dataset[index][0].shape, my_dataset[index][1]) 

 

index = 50 

print(my_dataset[index][0].shape, my_dataset[index][1]) 

 

Output: 

 
1000 

torch.Size([3, 256, 256]) 6 

torch.Size([3, 256, 256]) 4 

 

 

 

 

 

 

 

 

 

 

 

Original and augmented images: 
 

Code to plot images: 

 

# Code for plotting original and augmented version of images 

index = 7   # Change the index to plot a different image 

 

# Plot Original 

image = Image.open(os.path.join('/content/drive/MyDrive/Arghadip/DL/HW2/Dataset', str(index) + 

'.jpg')) 

plt.imshow(image) 

plt.show() 

 

# Plot augmented version 

plt.imshow(tvt.ToPILImage()(my_dataset[index][0])) 

plt.show() 

 



Original version Augmented version 

  

  

  
 

Rationale behind the chosen transformations: 

 

Transformation Rationale 

tvt.ColorJitter() It alters the color properties of an image by changing its pixel 

values. In a real-life scenario, the different illumination leads to 

different brightness of a captured image. Other parameters like 

contrast, saturation and hue also varies. Therefore, this 

augmentation helps in better training of the image classifier 

network. 

tvt.RandomGrayscale() It converts color images (3 channels, RGB) to gray scale images 

(1 channel). The image classifier must be able to classify from 

all types of input images, not only the color images. This type of 

color augmentation helps in that aspect of traning. 

tvt.RandomHorizontalFlip() This is a geometry-related transform. The image classifier is 

better trained if it sees images of objects captured from different 

angles. Therefore, horizontal flip helps in learning those 

features. 



 

3.4. Generating Data in Parallel 
 

The instance of MyDataset class is wrapped within the torch.utils.data.DataLoader class so that 

the images can be processed in a multi-threaded fashion. 

 

 

Plotting all images from a batch of 4: 
 

Source code: 

 

# Code to plot a batch of 4 

import torchvision 

# function to show a batch of images 

def imshow(img): 

    npimg = img.numpy()   # Convert tensor to numpy array 

    plt.imshow(numpy.transpose(npimg, (1, 2, 0))) # shaping of array to plot properly 

    plt.show() 

 

batch_size = 4    # Setting the batch size = 4 

my_dataloader = DataLoader(my_dataset, batch_size=batch_size, shuffle=True, num_workers=0)  # 

Creating the data loader 

my_dataiter = iter(my_dataloader)   # Creating an iterator from the data loader 

data, label = next(my_dataiter)     # Load one batch of data and corresponding labels 

imshow(torchvision.utils.make_grid(data))   # Call imshow() 

 

 

Output: 

 

 
 

 

 

 

 

 



Comparison: multi-threaded DataLoader vs. only Dataset 
 

1. Time needed to load and augment 1000 images by calling my_dataset.__getitem__(): 

 

1. Source code: 
 

# Getting time for 1000 individual loading using __getitem__() 

start_time = time.time()      # Start timer 

 

for i in range(Total_images): # Loop for 1000 images 

  my_dataset.__getitem__(i) 

 

end_time = time.time()        # Stop timer 

 

print('Load time (just using Dataset)= ', end_time - start_time, ' seconds') 

 

2. Output: 

 
Load time (just using Dataset)=  7.096383094787598  seconds 

 

2. Time needed by my_dataloader to process 1000 random images (across different batch 

sizes and number of workers): 

 

I create a data loader and an iterator object from that data loader once for a certain batch_size and 

num_workers. Then in a for loop the iterator is called for (1000/batch_size) times. The considered 

batch sizes and number of workers are shown in the following source code. 

 

1. Source code 

 

# Comparison and perfomance gain for DataLoader 

for batch_size in [1,10,20,50,100]:   # Start loop for different batch sizes 

  for num_workers in [0,2,4]:         # Start loop for different num_workers 

    # Wrapping Dataset instance within a DataLoader 

    my_dataloader = DataLoader(my_dataset, batch_size=batch_size, shuffle=True, 

num_workers=num_workers) 

    # Creating an iterable from DataLoader object 

    my_dataiter = iter(my_dataloader) 

 

    start_time = time.time()          # Start timer 

 

    for i in range(int(Total_images/batch_size)): # Run loop for 1000/batch_size number of 

batches 

      next(my_dataiter)               # Iterate through the iterator 

 

    end_time = time.time()            # Stop timer 

 



    print('Batch size = ', batch_size, '| num_workers= ', num_workers, '| Load time = ', end_time 

- start_time, ' seconds') 

 

2. Output 

 
Batch size =  1 | num_workers=  0 | Load time =  7.533124685287476  seconds 
Batch size =  1 | num_workers=  2 | Load time =  6.805963039398193  seconds 
Batch size =  1 | num_workers=  4 | Load time =  6.515792608261108  seconds 
Batch size =  10 | num_workers=  0 | Load time =  5.805272102355957  seconds 
Batch size =  10 | num_workers=  2 | Load time =  4.883432865142822  seconds 
Batch size =  10 | num_workers=  4 | Load time =  4.461414575576782  seconds 
Batch size =  20 | num_workers=  0 | Load time =  5.8049585819244385  seconds 
Batch size =  20 | num_workers=  2 | Load time =  4.582255601882935  seconds 
Batch size =  20 | num_workers=  4 | Load time =  4.592945575714111  seconds 
Batch size =  50 | num_workers=  0 | Load time =  5.819510459899902  seconds 
Batch size =  50 | num_workers=  2 | Load time =  4.447611570358276  seconds 
Batch size =  50 | num_workers=  4 | Load time =  4.46168065071106  seconds 
Batch size =  100 | num_workers=  0 | Load time =  5.795533895492554  seconds 
Batch size =  100 | num_workers=  2 | Load time =  4.647416591644287  seconds 
Batch size =  100 | num_workers=  4 | Load time =  4.61956000328064  seconds 

 

Load times across different batch_size and num_workers are shown in the table and plot. 

 

batch_size num_workers Load time (s) 

1 0 4.80918 

1 2 4.72898 

1 4 5.49303 

2 0 4.73202 

2 2 4.11033 

2 4 3.65303 

5 0 4.73659 

5 2 3.73318 

5 4 3.30234 

10 0 4.80384 

10 2 3.59341 

10 4 3.07502 

20 0 4.77154 

20 2 3.42828 

20 4 3.03153 

50 0 4.69958 

50 2 3.4184 

50 4 3.01213 

100 0 4.63261 

100 2 3.45138 

100 4 3.19065 

 



 
Fig. 6. Load time vs. batch_size plot across different num_workers 

 

Discussion: 

 

From the plot, as the batch size increases, the load time first reduces and then remains almost same. 

Increasing batch size means more images are packed together. Therefore, it reduces the number of 

iterations in the for loop. This leads to reduced overhead and thereby reduces the load and 

processing time. Also, for a certain batch_size, if the num_workers are increased, then the load 

time reduces. As more threads join the process, the increased parallelism reduces the load and 

augmentation time. The results for batch_size = 1 shows some random behavior when 

num_workers are changed. However, we still see significant improvement in processing time (7.1s 

vs. 5.5s) over my_dataset.__getitem__() when data loader is used. This can be attributed to the 

efficient PyTorch back-end implementation of data loaders. 

 If we compare the data loader results with the previously obtained result for 

my_dataset.__getitem__(), we see significant improvement when batch_size and num_workers are 

significantly greater than 1. We get ~2.33X (7.1s vs. 3.0s) speed-up (performance gain) by using 

data loader with batch_size = 50 and num_workers = 4. 

 

 

4. Lessons Learned 
 

In this homework, we get familiarized with the image representations such as PIL and torch tensor. 

We also learn the necessary concepts to implement a custom dataset and an image dataloader for 

parallel loading and processing of data from disk using PyTorch framework. 

 

 

 

 

--- End of the document --- 

3

4

5

6

7

8

1 2 5 10 20 50

T
im

e 
(s

)

batch_size

0 2 4num_workers:

my_dataset.__getitems__()


	BME646 and ECE60146: Homework 2
	Spring 2023
	1. Introduction
	2. Understanding Data Normalization
	3. Programming Tasks
	4. Lessons Learned



