
ECE 695DL - Deep Learning - HW7 Report

Brad Fitzgerald

April 11, 2022

1 Introduction

Up to this point in the course, we have focused on using deep networks to learn how to
characterize particular features of existing images. Now, we shift our attention to addressing
the problem of how to create synthetic data which has the characteristics to imply that it
was pulled from a particular probability distribution or set of real data. In the world of
image processing, this looks like generating synthetic images which appear to be real. To
tackle this task, we make use of the concept of a Generative Adversarial Network (GAN),
which was first introduced by [1]. GANs operate by training two networks simultaneously.
A discriminator network is trained to discriminate between real images from a training
dataset and fake images generated by a second generator network. The generator network is
trained to generate images which the discriminator will label as real. In this assignment, we
use a GANs framework to generate synthetic face images using the celebrity image dataset
provided in Brightspace.

2 Methodology

All programming completed for this assignment was done using Google Colab and followed
the instructions provided for the assignment.

2.1 Dataset

Training data for this assignment was provided by the instructors via Brightspace. Both the
training and testing sets from the dataset provided were combined (so all images were used
for training), creating a training set of 89,931 64x64 pixel celebrity face images.

2.2 Implementation of GAN Training

Network Architecture: Two networks were created: a discriminator network, and a
generator network. The purpose of the discriminator network is to discern whether input
images are real or fake. The purpose of the generator network is to generate synthetic images
which will appear ”real” to the discriminator network. The two networks were created with
the architectures shown in Figure 1.

1

Figure 1: Architecture of the designed Discriminator and Generator networks.

The Discriminator network uses the architecture of a network developed for Home-
work 4 (specifically, network 3 from Homework 4). Code for this network was copied from
my Homework 4 code, with the minor adjustment that the final fully-connected layer was
changed to output a single value and pass this value through a sigmoid function (in order
to conduct binary classification). The discriminator network was trained using binary cross
entropy (BCE) loss. In each iteration of training, the Discriminator was trained on 10 real
images and 10 fake images (as produced by the Generator network).

The Generator network uses architecture presented by Prof. Kak in his lecture notes
for GANs as presented in Week 11 of the Spring 2022 ECE 695 Deep Learning course.
Specifically, the code for the definition of the Generator class variable was copied from
slide 71 of these lecture notes, available at https://engineering.purdue.edu/DeepLearn/
pdf-kak/GAN.pdf. The Generator takes an input of a 100-value noise vector and transforms
it into a 64x64 pixel color image using five layers of transpose convolution. The Generator
network is trained by computing the BCE loss between the Discriminator classification of
images (produced by the Generator network) and ”true” labels (i.e. if the Discriminator
labelled every image as real with high confidence, the Generator loss would be low). My
code for implementing the simultaneous training of these two networks was inspired by the
code presented in the referenced lecture slides from Prof. Kak, but was implemented myself.

Network Parameters/Inputs: The following parameters were used for training the
neural network: 89,931 training images, learning rate of 1e-3, Adam optimizer, batch size of
10, and 5 epochs. It is important to note that running the hw07_training.py script assumes
that the paths hw07_data/Train/Data/Train/ and hw07_data/Train/Data/Test/exist in
the working directory where the training script is run and contains the training data shared
with us via Brightspace. The paths to these locations are coded in lines 253 and 254 of the
script and can be adjusted if desired.

Training Outputs: During training, the training script will display the total com-
puted loss every 500 iterations (batches). At each of these points, the network will also
display five sample images reflecting the outputs of Generator network using fixed, com-

2

https://engineering.purdue.edu/DeepLearn/pdf-kak/GAN.pdf
https://engineering.purdue.edu/DeepLearn/pdf-kak/GAN.pdf

mon input noise vectors. An image which shows a sampling of these outputs, showing the
evolution of these generated images over training, is shown in Figure 2.

Figure 2: Sample images produced by the Generator network at the end of each training
epoch. Images were generated using the same input noise vectors for each epoch.

Validation: Since we were only instructed to use visual inspection of the generated
images as our validation, I chose to produce 10 new noise images at the end of training as a
simple validation test. These images will be displayed in the next report section.

3 Implementation and Results

What follows is the code appearing in hw07_training.py, which contains all code used to
train and validate the face generator network.

##
ECE 695 − Deep Learning − Spring 2022
Homework #7 − Fina l Vers ion
###
pr in t (’New Vers ion ! ’)

from torch import nn
import torch

3

import os
import numpy
import random
import argparse
import glob
from torch . u t i l s . data import DataLoader , Dataset
from PIL import Image
from to r chv i s i o n import t rans forms
import torch . nn . f un c t i ona l as f un c t i ona l
import matp lo t l ib . pyplot as p l t

Make randomness r ep roduc ib l e (copied from Week 2 Kak s l i d e #73)
seed = 0
random . seed (seed)
torch . manual seed (seed)
torch . cuda . manual seed (seed)
numpy . random . seed (seed)
torch . backends . cudnn . d e t e rm in i s t i c=True
torch . backends . cudnn . benchmarks=False
os . environ [’PYTHONHASHSEED’] = s t r (seed)

de f seed worker (worker id) :
numpy . random . seed (0)

###############################
BF Dataset c l a s s − Copied from my Homework #4 s c r i p t s and modi f ied
###############################

c l a s s BF Dataset (Dataset) :
de f i n i t (s e l f , data path1 , data path2 , transform) :

s e l f . data path = data path
s e l f . t ransform = transform
s e l f . p a t h l i s t = []
s e l f . l a b e l l i s t = []
count = 0
f o r path in glob . g lob (f ’{ data path1 }/∗ ’) :

s e l f . p a t h l i s t . append (path)
count +=1

f o r path in glob . g lob (f ’{ data path2 }/∗ ’) :
s e l f . p a t h l i s t . append (path)
count += 1

pr in t (’ got ’ + s t r (count) + ’ images f o r t ra in ing ’)

de f l e n (s e l f) :
r e turn l en (s e l f . p a t h l i s t)

de f g e t i t em (s e l f , idx) :
path = s e l f . p a t h l i s t [idx]
img = Image . open (path)
img t s r = s e l f . t ransform (img)
return img t s r

###############################
TemplateNet c l a s s − Copied from my Homework #4 s c r i p t s and modi f ied
###############################

c l a s s TemplateNet (nn . Module) :
de f i n i t (s e l f , num conv layers , padding) :

super (TemplateNet , s e l f) . i n i t ()
s e l f . padding = padding
s e l f . num conv layers = num conv layers

i f s e l f . num conv layers == 1 :
i f s e l f . padding==0:

s e l f . conv1 = nn . Conv2d (3 , 128 , 3) ## (A)
s e l f . pool = nn . MaxPool2d (2 , 2)
s e l f . f c 1 = nn . Linear (31∗31∗128 , 1000) ## (C)
s e l f . f c 2 = nn . Linear (1000 , 1)

e l s e :
s e l f . conv1 = nn . Conv2d (3 , 128 , 3 , padding=s e l f . padding)
s e l f . pool = nn . MaxPool2d (2 , 2)
s e l f . f c 1 = nn . Linear (32∗32∗128 , 1000) ## (C)
s e l f . f c 2 = nn . Linear (1000 , 1)

e l i f s e l f . num conv layers == 2 :
i f s e l f . padding==0:

s e l f . conv1 = nn . Conv2d (3 , 128 , 3) ## (A)
s e l f . conv2 = nn . Conv2d (128 , 128 , 3) ## (B)
s e l f . pool = nn . MaxPool2d (2 , 2)
s e l f . f c 1 = nn . Linear (14∗14∗128 , 1000) ## (C)
s e l f . f c 2 = nn . Linear (1000 , 1)

e l s e :
s e l f . conv1 = nn . Conv2d (3 , 128 , 3 , padding=s e l f . padding) ## (A)
s e l f . conv2 = nn . Conv2d (128 , 128 , 3) ## (B)
s e l f . pool = nn . MaxPool2d (2 , 2)
s e l f . f c 1 = nn . Linear (15∗15∗128 , 1000) ## (C)
s e l f . f c 2 = nn . Linear (1000 , 1)

de f forward (s e l f , x) :
i f s e l f . num conv layers == 1 :

i f s e l f . padding == 0 :

4

x = s e l f . pool (f un c t i ona l . r e l u (s e l f . conv1 (x)))
x = x . view (−1 , 31∗31∗128) ## (E)

e l s e :
x = s e l f . pool (f un c t i ona l . r e l u (s e l f . conv1 (x)))
x = x . view (−1 , 32∗32∗128) ## (E)

e l i f s e l f . num conv layers==2:
i f s e l f . padding == 0 :

x = s e l f . pool (f un c t i ona l . r e l u (s e l f . conv1 (x)))
x = s e l f . pool (f un c t i ona l . r e l u (s e l f . conv2 (x))) ## (D)
x = x . view (−1 , 14∗14∗128) ## (E)

e l s e :
x = s e l f . pool (f un c t i ona l . r e l u (s e l f . conv1 (x)))
x = s e l f . pool (f un c t i ona l . r e l u (s e l f . conv2 (x))) ## (D)
x = x . view (−1 , 15∗15∗128) ## (E)

x = func t i ona l . r e l u (s e l f . f c 1 (x))
x = s e l f . f c 2 (x)
x = nn . Sigmoid () (x)
re turn x

##################################
Generator Net c l a s s − Ful ly Copied from Prof . Kak ’ s s l i d e 71 from GAN s l i d e s
This d e f i n i t i o n o f the c l a s s Generator Net as shown below i s a t t r i bu t ed to Pro f e s s o r
Kak at Purdue Univers i ty , acce s s ed through h i s l e c t u r e s l i d e s on GANs from
the Deep Learning c l a s s f o r Spring 2022
Link to s l i d e s : https :// eng inee r i ng . purdue . edu/DeepLearn/pdf−kak/GAN. pdf
##################################

c l a s s Generator Net (nn . Module) :
de f i n i t (s e l f) :

super (Generator Net , s e l f) . i n i t ()
s e l f . l a t en t t o image = nn . ConvTranspose2d (100 , 512 , k e r n e l s i z e =4, s t r i d e =1, padding=0, b ia s=False)
s e l f . upsampler2 = nn . ConvTranspose2d (512 , 256 , k e r n e l s i z e =4, s t r i d e =2, padding=1, b ia s=False)
s e l f . upsampler3 = nn . ConvTranspose2d (256 , 128 , k e r n e l s i z e =4, s t r i d e =2, padding=1, b ia s=False)
s e l f . upsampler4 = nn . ConvTranspose2d (128 , 64 , k e r n e l s i z e =4, s t r i d e =2, padding=1, b ia s=False)
s e l f . upsampler5 = nn . ConvTranspose2d (64 , 3 , k e r n e l s i z e =4, s t r i d e =2, padding=1, b ia s=False)
s e l f . bn1 = nn . BatchNorm2d (512)
s e l f . bn2 = nn . BatchNorm2d (256)
s e l f . bn3 = nn . BatchNorm2d (128)
s e l f . bn4 = nn . BatchNorm2d (64)
s e l f . tanh = nn . Tanh ()

de f forward (s e l f , x) :
x = s e l f . l a t en t t o image (x)
x = torch . nn . f un c t i ona l . r e l u (s e l f . bn1 (x))
x = s e l f . upsampler2 (x)
x = torch . nn . f un c t i ona l . r e l u (s e l f . bn2 (x))
x = s e l f . upsampler3 (x)
x = torch . nn . f un c t i ona l . r e l u (s e l f . bn3 (x))
x = s e l f . upsampler4 (x)
x = torch . nn . f un c t i ona l . r e l u (s e l f . bn4 (x))
x = s e l f . upsampler5 (x)
x = s e l f . tanh (x)
return x

##################################
run c od e f o r t r a i n i n g func t i on
This code f o r t r a i n i n g was heav i l y i n s p i r e d by Prof . Kak ’ s s l i d e s r e f e r en c ed
above , but implemented myse l f
##################################

def r un c od e f o r t r a i n i n g (D net , G net , ba t ch s i z e , epochs) :
var = 500
no i s e channe l s = 100
cpu = torch . dev i ce (” cuda : 0 ”)
D net = D net . to (cpu)
G net = G net . to (cpu)

#Create f i x ed no i s e ve c to r s f o r t e s t i n g throughout proce s s
t e s t n o i s e = torch . randn (batch s i z e , no i s e channe l s , 1 , 1 , dev i ce=cpu)

r e a l = 1
fake = 0

D net opt imizer = torch . optim .Adam(D net . parameters () , l r=1e−3)
G net opt imizer = torch . optim .Adam(G net . parameters () , l r=1e−3)

c r i t e r i o n = nn . BCELoss ()

f u l l D n e t l o s s = []
f u l l G n e t l o s s = []
i t e r s = 0

f o r epoch in range (epochs) :
D ne t runn ing l o s s = []
G ne t runn ing l o s s = []

f o r i , data in enumerate (t r a i n d a t a l o ad e r) :
#Train Di sc r iminator on r e a l images
D net . z e ro g rad ()
r e a l img s = data . to (cpu)

5

i t e r b a t c h s i z e = rea l img s . s i z e (0)
l a b e l = torch . f u l l ((i t e r b a t c h s i z e ,) , r ea l , dtype=torch . f l o a t , dev i ce=cpu)
r ea l ou tpu t = D net (r e a l img s) . view (−1)
D n e t r e a l e r r o r = c r i t e r i o n (rea l output , l a b e l)
D n e t r e a l e r r o r . backward (r e ta in g raph=True)

#Train Di sc r iminator on fake images
no i s e v e c s = torch . randn (i t e r b a t c h s i z e , no i s e channe l s , 1 , 1 , dev i ce=cpu)
fake images = G net (no i s e v e c s)
l a b e l . f i l l (fake)
fake output = D net (fake images . detach ()) . view (−1)
D ne t f ak e e r r o r = c r i t e r i o n (fake output , l a b e l)
D ne t f ak e e r r o r . backward ()
D n e t t o t a l e r r o r = D ne t r e a l e r r o r + D ne t f ak e e r r o r
D ne t runn ing l o s s . append (f l o a t (D n e t t o t a l e r r o r))
D net opt imizer . s tep ()

#Train Generator
G net . z e ro g rad ()
l a b e l . f i l l (r e a l)
output = D net (fake images) . view (−1)
G net e r ro r = c r i t e r i o n (output , l a b e l)
G net runn ing l o s s . append (f l o a t (G net e r ro r))
G net e r ro r . backward ()
G net opt imizer . s tep ()

i f (i +1) % var == 0 :
ave r ag e D ne t l o s s = torch .mean(torch . FloatTensor (D ne t runn ing l o s s))
ave r ag e G ne t l o s s = torch .mean(torch . FloatTensor (G net runn ing l o s s))
f u l l D n e t l o s s . append (ave r ag e D ne t l o s s)
f u l l G n e t l o s s . append (ave rag e G ne t l o s s)
p r in t (” Di sc r iminator l o s s : \n [epoch:%d , batch :%5d] l o s s : %.3 f ” %(epoch + 1 , i + 1 , av e r ag e D ne t l o s s / f l o a t (var)))
p r in t (” Generator l o s s : \n [epoch:%d , batch :%5d] l o s s : %.3 f ” %(epoch + 1 , i + 1 , ave rag e G ne t l o s s / f l o a t (var)))
G net runn ing l o s s = []
D ne t runn ing l o s s = []

#Show the images being produced by the generator
xform = trans forms . Compose ([t rans forms . Normalize ((0 , 0 , 0) , (2 , 2 , 2)) ,

t rans forms . Normalize ((−0.5 , −0.5 , −0.5 ,) , (1 , 1 , 1)) ,
t rans forms . ToPILImage ()])

gen imgs = G net (t e s t n o i s e)

f i g , axs = p l t . subp lo t s (1 , 5 , f i g s i z e =(15 ,15))
f o r k in range (5) :

image = xform (gen imgs [k])
axs [k] . imshow(image)
axs [k] . s e t a x i s o f f ()

p l t . show ()
torch . save (D net , ’ D net . pth ’)
torch . save (G net , ’ G net . pth ’)

re turn f u l l D n e t l o s s , f u l l G n e t l o s s

###############################
Main Loop
###############################

i f name == ’ main ’ :

data path = ’ hw07 data/Train/Data/Train / ’
data path2 = ’ hw07 data/Train/Data/Test / ’

#Create transform f o r data loader
xform = trans forms . Compose ([t rans forms . ToTensor () , \

t rans forms . Normalize ((0 . 5 , 0 . 5 , 0 . 5) , \
(0 . 5 , 0 . 5 , 0 . 5))])

datase t = BF Dataset (data path , data path2 , xform)
t r a i n d a t a l o ad e r = torch . u t i l s . data . DataLoader (datase t=dataset , b a t ch s i z e =10, s h u f f l e=True , num workers=2, wo r k e r i n i t f n=seed worker)
network3 = TemplateNet (num conv layers=2, padding=1)
network Gen = Generator Net ()
[f u l l D n e t l o s s , f u l l G n e t l o s s] = run c od e f o r t r a i n i n g (network3 , network Gen , 10 , 1)

p l t . f i g u r e ()
p l t . p l o t (f u l l D n e t l o s s , l a b e l = ’ Di sc r iminator Loss ’)
p l t . p l o t (f u l l G n e t l o s s , l a b e l = ’ Generator Loss ’)
p l t . l egend ()
p l t . x l ab e l (’ I t e r a t i o n s / 500 ’)
p l t . y l ab e l (’ Training (BCE) Loss ’)
p l t . s a v e f i g (’ t r a i n i n g l o s s . jpg ’)
p l t . show ()

p l t . f i g u r e ()
p l t . p l o t (f u l l D n e t l o s s , l a b e l = ’ Di sc r iminator Loss ’)
p l t . l egend ()
p l t . x l ab e l (’ I t e r a t i o n s / 500 ’)
p l t . y l ab e l (’ Training (BCE) Loss ’)
p l t . s a v e f i g (’ D lo s s . jpg ’)
p l t . show ()

p l t . f i g u r e ()

6

p l t . p l o t (f u l l G n e t l o s s , l a b e l = ’ Generator Loss ’)
p l t . l egend ()
p l t . x l ab e l (’ I t e r a t i o n s / 500 ’)
p l t . y l ab e l (’ Training (BCE) Loss ’)
p l t . s a v e f i g (’ G los s . jpg ’)
p l t . show ()

#Val idat ion Sect ion
cpu = torch . dev i ce (” cuda : 0 ”)
n ew t e s t no i s e = torch . randn (10 , 100 , 1 , 1 , dev i ce=cpu)
Gen Net = torch . load (’ G net . pth ’)
xform2 = trans forms . Compose ([t rans forms . Normalize ((0 , 0 , 0) , (2 , 2 , 2)) ,

t rans forms . Normalize ((−0.5 , −0.5 , −0.5 ,) , (1 , 1 , 1)) ,
t rans forms . ToPILImage ()])

gen imgs = Gen Net (n ew t e s t no i s e)
f i g , axs = p l t . subp lo t s (1 , 5 , f i g s i z e =(15 ,15))
f o r k in range (5) :

image = xform2 (gen imgs [k])
axs [k] . imshow(image)
axs [k] . s e t a x i s o f f ()

p l t . s a v e f i g (’ Val idat ion Imgs1 . jpg ’)
p l t . show ()

f i g2 , axs2 = p l t . subp lo t s (1 , 5 , f i g s i z e =(15 ,15))
f o r k in range (5) :

image = xform2 (gen imgs [k+5])
axs2 [k] . imshow(image)
axs2 [k] . s e t a x i s o f f ()

p l t . s a v e f i g (’ Val idat ion Imgs2 . jpg ’)
p l t . show ()

The resulting total loss computed via running this script, for both the discriminator
and generator networks, is shown in Figure 3.

Figure 3: Training loss of discriminator and generator networks over five epochs of training.
Loss was computed using BCE loss.

The final testing images produced at the end of training are shown in Figure 4. Though
not perfect, the results show promising performance in that the images do reflect many
realistic features.

7

Figure 4: Examples of final performance of face image generation by the Generator network.

4 Lessons Learned

One of the main lessons I learned while working on this assignment was how deep neural
network training can lead to getting ”stuck” in possibly sub-optimal performance. While
testing out my code, I found several times that the training would start out in a promising
way, and the generator network would begin to produce improving results (that were starting
to look like faces), but at a certain point the generator would take a sudden turn and begin
outputting very poor images that did not resemble faces at all. Sometimes the generator
would always output strange patterns, or just output a mostly black image. While I’m still
not certain of the cause of this, I hypothesized that the generator might be locking onto
some strange image type which is able to ”trick” the discriminator while also not resembling
true faces. This may have been causing issues with a then vanishing gradient. I had to work
this out by testing different methods of gradient step optimization.

5 Suggested Enhancements

I do not have any major suggestions for improving this homework assignment. I found the
assignment to be a bit easier than the last few assignments, but this was a very welcome
surprise at this stage in the semester. I feel that the assignment is good because it allows
us to see realistic and promising performance of GANs with a relatively simple network
architectures. My only minor suggestion would be to clarify the testing expectations and
better present these within the assignment document.

References

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K. Weinberger, editors, Advances in Neural Information
Processing Systems, volume 27. Curran Associates, Inc., 2014.

8

	Introduction
	Methodology
	Dataset
	Implementation of GAN Training

	Implementation and Results
	Lessons Learned
	Suggested Enhancements

