ECE 695DL - Deep Learning - HW3 Report

Brad Fitzgerald
February 8, 2022

1 Introduction

Successful training of a neural network involves minimization of a loss function in order
to find parameters values that result in better model performance. One basic method for
minimizing a loss function is using the gradient descent algorithm, however in its simplest
form this method suffers from the potential of getting "trapped” in local minimums of the
loss function. Stochastic gradient descent (SGD), in which model parameters are updated
based on multiple training samples (i.e. a batch) at a time, can help overcome this issue. Yet,
without some form of step size optimization, plain SGD can suffer from slow convergence.
In this assignment, we add momentum to a ”from-scratch” implementation of SGD in order
to improve performance and convergence speed of network training on a single-neuron and
on a multi-neuron network.

2 Methodology

The central theory for completing this assignment - the theory of how to implement momen-
tum to improve learning in SGD - was described in the assignment prompt in Section 1.1.7.
Specifically, momentum was added to the existing SGD learning framework by implementing
Equation 2 from the assignment instructions. The momentum parameter pu was set to be
0.99. This code was developed using Google Colab.

This implementation was completed by first installing the Computational Graph Primer
software version 1.0.8 (provided by Prof. Kak at https://engineering.purdue.edu/kak/
distCGP/ComputationalGraphPrimer-1.0.8.html). The existing ComputationalGraph-
Primer class was imported and used to create two child classes called CGP and CGP_SGDplus.
The first class, CGP, served as a nearly exact copy of the imported class with the simple
modification that the class method run_training loop_multi_neuron_model was edited
to return the loss_running_record variable (so that the performance of the initial training
method could be compared with the performance of the updated method). This change was
implemented for both of the new created classes.

The second class, CGP_SGDplus, was used to add the momentum method to the SGD
parameter updates. To do this, new class variables called prev_step and prev_bias_step
were created to keep track of the previous steps taken for each learnable parameter and bias
values, respectively. The class methods in which parameter updates occur were adjusted to

https://engineering.purdue.edu/kak/distCGP/ComputationalGraphPrimer-1.0.8.html
https://engineering.purdue.edu/kak/distCGP/ComputationalGraphPrimer-1.0.8.html

function as described by the momentum equations (Equation 2) described by the assignment
instructions.

3 Implementation and Results

3.1 Single Neuron Model

The code used to adjust the training of the one-neuron-model is shown below (also see script
named one_neuron_classifier_sgd_plus.py). The run_training loop_one_neuron_
model method was overwritten in the child class CGP_SGDplus to include the definition
of new class variables prev_step and prev_bias_step to keep track of previous parameter
steps (code lines 123-124). The backprop_and_update_params_one_neuron_model method
was overwritten to implement learning steps which incorporated momentum (code lines 212-
217). A comparison of the training loss for the one-neuron model produced by the original
SGD implementation with the SGD+ (with momentum) implementation is shown in Figure
1.

#!/usr/bin/env python
one_neuron_classifier.py

ERIE

A one—neuron model is characterized by a single expression that you see in the value
supplied for the constructor parameter ”expressions”. In the expression supplied, the
names that being with ’x’ are the input variables and the names that begin with the

other letters of the alphabet are the learnable parameters.
5

import random

import numpy

import sys

sys.path.append(” /work/BF/Classes /695/HW3/ComputationalGraphPrimer —1.0.8/ ComputationalGraphPrimer /”)

seed = 0
random . seed (seed)
numpy . random . seed (seed)

I note here that the original Computational Graph Primer code used in this

script was designed by Professor Avi Kak, Purdue University , shared via

his website at

https://engineering.purdue.edu/kak/distCGP/ComputationalGraphPrimer —1.0.8.html.
#
#

The methods re—defined below are copies of Prof. Kak’s code with minor
changes made to add momentum for the Deep Learning 2022 HW3 assignment.

7 7

from ComputationalGraphPrimer import =

class CGP(ComputationalGraphPrimer):
def run_training_loop_one_neuron_model(self, training_data):

»
The training loop must first initialize the learnable parameters. Remember, these are the
symbolic names in your input expressions for the neural layer that do not begin with the
letter ’x’. In this case, we are initializing with random numbers from a uniform distribution
over the interval (0,1).
99
self.vals_for_learnable_params = {param: random.uniform (0,1) for param in self.learnable_params}
self . bias = random.uniform (0,1)

class DataLoader:
995
The data loader’s job is to construct a batch of randomly chosen samples from the
training data. But, obviously, it must first associate the class labels 0 and 1 with
the training data supplied to the constructor of the DataLoader. NOTE: The training
data is generated in the Examples script by calling ’cgp.gen_training_data ()’ in the
s%kx Utility Functions*xxx section of this file. That function returns two normally
distributed set of number with different means and variances. One is for key value ’0’
and the other for the key value ’'1°. The constructor of the DataLoader associated a’
class label with each sample separately.

ERIED

def __init__(self, training_-data, batch_size):

self.training_data = training_-data

self.batch_size = batch_size

self.class_O_samples = [(item, 0) for item in self.training_data[0]]
self.class_1l_samples = [(item, 1) for item in self.training_data[1]]

def __len__(self):
return len(self.training_data[0]) 4 len(self.training_-data[1])
def _getitem (self):
cointoss = random.choice ([0,1])
if cointoss == O0:
return random.choice(self.class_O_samples)
else:
return random.choice(self.class_1_samples)
def getbatch(self):

batch_data , batch_labels = [],[]
maxval = 0.0
for _ in range(self.batch_size):
item = self._getitem ()
if np.max(item [0]) > maxval:
maxval = np.max(item [0])

batch_data.append (item [0])
batch_labels.append(item [1])
batch_data = [item /maxval for item in batch_data]
batch = [batch_data, batch_labels]
return batch

data_loader = DataLoader(training_-data , batch_size=self.batch_size)

loss_running_-record = []
i =0
avg_loss_over_literations = 0.0

for i in range(self.training_iterations):
data = data_loader.getbatch ()
data_tuples = data[0]

class_labels = data[1l]

y-preds, deriv_sigmoids = self.forward_prop_-one_neuron_model(data_tuples)

loss = sum ([(abs(class_labels [i] y-preds[i]))**2 for i in range(len(class_labels))])
loss_avg = loss / float (len(class_labels))

avg-loss_over_literations 4= loss_avg

if i%(self.display_loss_how_often) == 0:

avg_loss_over_literations /= self.display_loss_how_often
loss_running_record .append(avg_-loss_over_literations)
print ("[iter=%d] loss = %.4f” % (i+1, avg_-loss_over_literations))

avg-loss_over_literations = 0.0
y-errors = list (map(operator.sub, class_labels , y_preds))
y-error_-avg = sum(y-errors) / float(len(class_labels))
deriv_sigmoid_avg = sum(deriv_sigmoids) / float(len(class_labels))
data_tuple_avg = [sum(x) for x in zip(xdata_tuples)]
data_tuple_avg = list (map(operator.truediv, data_tuple_avg,
[float (len(class_labels))] = len(class_labels)))
self .backprop_and_update_params_one_neuron_model(y_error_avg , \
data_tuple_avg , deriv_sigmoid_avg)

plt.figure ()

plt.plot (loss_running_record)
#plt .show ()

return loss_running_record

class CGP_SGDplus(ComputationalGraphPrimer):

def run_training_loop-one_neuron_model(self, training_data, mu):
P

The training loop must first initialize the learnable parameters. Remember, these are the
symbolic names in your input expressions for the neural layer that do not begin with the
letter ’'x’. In this case, we are initializing with random numbers from a uniform distribution

over the interval (0,1).
»

self.vals_for_learnable_params = {param: random.uniform (0,1) for param in self.learnable_params}
self.bias = random.uniform (0,1)

self .mu = mu

self.prev_step = np.zeros(len(cgp.vals_for_learnable_params))

self.prev_bias_step = 0

class DataLoader:
509
The data loader ’s job is to construct a batch of randomly chosen samples from the
training data. But, obviously , it must first associate the class labels 0 and 1 with
the training data supplied to the constructor of the DataLoader. NOTE: The training
data is generated in the Examples script by calling ’cgp.gen_training_data ()’ in the
w%%% Utility Functionsx*x%x section of this file. That function returns two normally
distributed set of number with different means and variances. One is for key value 0’
and the other for the key value ’1’. The constructor of the DataLoader associated a’

class label with each sample separately.

def __init__(self, training_data, batch_size):
self.training_data = training_data
self.batch_size = batch_size
self.class_O_samples = [(item, 0) for item in self.training_-data [0]]
self.class_l_samples = [(item, 1) for item in self.training_data[1]]

def __len__(self):
return len (self.training_data[0]) + len(self.training_data[1])
def _getitem (self):
cointoss = random.choice ([0,1])
if cointoss == 0:
return random.choice(self.class_O_samples)

else:
return random.choice(self.class_1_samples)
def getbatch(self):

batch_data ,batch_labels = [],[]
maxval = 0.0
for - in range(self.batch_size):
item = self._getitem ()
if np.max(item [0]) > maxval:
maxval = np.max(item [0])

batch_data.append(item [0])
batch_labels.append(item [1])

batch_data = [item/maxval for item in batch_data]
batch = [batch_data, batch_labels]
return batch
data_loader = DataLoader(training_data , batch_size=self.batch_size)
loss_running_record = []
i =0
avg_loss_over_literations = 0.0
for i in range(self.training_iterations):

data = data_loader.getbatch ()
data_tuples = data[0]

class_labels = data[1l]
y-preds , deriv_sigmoids = self.forward_prop-one_neuron_-model(data_tuples)
loss = sum ([(abs(class_labels[i] — y-preds[i]))**2 for i in range(len(class_labels))])
loss_avg = loss / float(len(class_labels))
avg-loss_over_literations += loss_avg
if i%(self.display_-loss_how_often) == O0:
avg_loss_over_literations /= self.display_loss_how_often
loss_running._record .append(avg_loss_over_literations)
print ("[iter=%d] loss = %.4f” % (i+41, avg_loss_over_literations))
#print ("Im actually doing it”)
avg_loss_over_literations = 0.0
y-errors = list (map(operator.sub, class_labels , y_preds))
y-error_avg = sum(y-errors) / float (len(class_labels))
deriv_sigmoid_avg = sum(deriv_sigmoids) / float (len(class_labels))
data_tuple_avg = [sum(x) for x in zip(xdata_tuples)]
data_tuple_avg = list (map(operator.truediv, data_-tuple_avg,

[float (len(class_labels))] = len(class_labels)))
self.backprop-and_update_params_one_neuron_-model(y_error_avg , data_tuple_avg , deriv_sigmoid-avg)

plt.figure ()
plt.plot(loss_running_record)
#plt .show ()
return loss_running-record
def backprop_and_update_params_one_neuron_model(self, y_error, vals_for_input_vars , deriv_sigmoid):
As should be evident from the syntax used in the following call to backprop function,
self.backprop_and_update_params_one_neuron_model(y_error_avg , data_tuple_avg , deriv_sigmoid_avg)
the values fed to the backprop function for its three arguments are averaged over the training

samples in the batch. This in keeping with the spirit of SGD that calls for averaging the
information retained in the forward propagation over the samples in a batch.

See

nnn

input_vars

vals
vals
for

Slides 103 through 108 of Week 3 slides for the logic implemented There.

self.independent_vars

_for_input_-vars_dict = dict(zip(input-vars, list(vals_for_input_-vars)))
_for_learnable_params = self.vals_for_learnable_params

i,param in enumerate(self.vals_for_learnable_params):

calculate the next step in the parameter hyperplane

bias
self
self

cgp-plus =

cgp = CGP(

step = self.learning_rate * y_error * vals_for_input_vars_dict[input_vars[i]] * deriv_sigmoid + \
self .muxself.prev_step[i]
self.vals_for_learnable_params [param]| += step

self.prev_step[i] = step

_step = self.learning_rate * y_error * deriv_sigmoid 4+ self .muxself.prev_bias_step
.bias 4= bias_step ## the step to take for the bias

.prev_bias_step = bias_step

CGP_SGDplus (

one_neuron-model = True,

expressions = [’xw=abxxa+bcxxb+cdxxctackxd’] ,
output_vars = [’'xw’],

dataset_size = 5000,

learning_rate = le—3,

learning.-rate = 5 *x le—2,
training_iterations = 40000,

batch_size = 8,

display_loss_how_often = 100,

debug = True,

one_neuron_model = True,

expressions = [’xw=absxxatbcxxb+cd*xctacxxd’],
output_vars = [’'xw’],

dataset_size = 5000,

learning_-rate = le—3,

learning._rate = 5 * le—2,

training_iterations = 40000,
batch_size = 8,
display_-loss_how_often = 100,

debug = True,

cgp.parse_expressions ()
cgp-plus.parse_expressions ()

#cgp.display_networkl ()
#cgp.display_network2 ()

training_data = cgp.gen_training_data ()
loss_sgd = cgp.run_training_loop_-one_neuron_model(training_-data)
loss_sgdplus = cgp-plus.run_training_loop_-one_neuron_model(training_-data, 0.99)

import matplotlib.pyplot as plt
plt.figure ()

plt.plot(loss_sgd , label = ’'SGD Loss’)
plt.plot(loss_sgdplus, label = ’SGD+ Loss’)
plt.legend ()

plt.xlabel (’Iterations / 100’)

plt.ylabel (’Training Loss’)

#plt .show ()
plt.savefig(’one_neuron_loss.jpg’)

—— SGD Loss
0.30 ~ —— SGD+ Loss

0.25 1

0.20

0.15

Training Loss

0.10 ~

0.05 +

0.00 +

T T T T T T T
0 50 100 150 200 250 300 350 400
Iterations / 100

Figure 1: Original SGD training loss (blue) vs. updated SGD+ (with momentum) training
loss (orange) for the one-neuron model.

3.2 Multi-Neuron Model

The code used to adjust the training of the multi-neuron-model is shown below (also see script
named multi_neuron_classifier_sgd_plus.py). The run_training_loop_multi_neuron_
model method was overwritten in the child class CGP_SGDplus to include the definition
of new class variables prev_step and prev_bias_step to keep track of previous parame-
ter steps (code lines 124-131). The backprop_and_update_params_multi_neuron_model
method was overwritten to implement learning steps which incorporated momentum (code
lines 198-204). A comparison of the training loss for the multi-neuron model produced by the
original SGD implementation with the SGD+ (with momentum) implementation is shown
in Figure 2.

#!/usr/bin/env python
multi_neuron_classifier .py

import random
import numpy

import sys
sys.path.append(”/work/BF/Classes /695/HW3/ComputationalGraphPrimer —1.0.8/ComputationalGraphPrimer /")

seed = 0
random . seed (seed)
numpy .random . seed (seed)

L f L TN TRIR IR L L

I note here that the original Computational Graph Primer code used in this

script was designed by Professor Avi Kak, Purdue University , shared via his

website at

https://engineering.purdue.edu/kak/distCGP/ComputationalGraphPrimer —1.0.8.html.
#

#

The methods re—defined below are copies of Prof. Kak’s code with minor
changes made to add momentum for the Deep Learning 2022 HW3 assignment.

7 i i
from ComputationalGraphPrimer import =

class CGP(ComputationalGraphPrimer):
def run_training_loop_-multi_neuron_model(self, training_data):

class DataLoader:
def __init__(self, training-data, batch_size):
self.training_data = training_data
self .batch_size = batch_size
self.class_O_samples = [(item, 0) for item in self.training_data[0]]
self.class_1l_samples = [(item, 1) for item in self.training_data[1]]
def __len__(self):
return len(self.training_-data[0]) 4 len(self.training_data[1l])
def _getitem (self):
cointoss = random.choice ([0,1])
if cointoss == 0:
return random.choice(self.class_O_samples)
else:
return random.choice(self.class_1_samples)
def getbatch(self):
batch_data , batch_labels = [],[]
maxval = 0.0
for _ in range(self.batch_size):
item = self._getitem ()
if np.max(item [0]) > maxval:
maxval = np.max(item [0])
batch_data.append(item [0])
batch_labels.append(item [1])
batch_data = [item /maxval for item in batch_data]
batch = [batch_data, batch_labels]
return batch

We must initialize the learnable parameters

self.vals_for_learnable_params = {param: random.uniform (0,1) for param in self.learnable_params}
self.bias = [random.uniform (0,1) for _ in range(self.num_layers—1)]

data_loader = DataLoader(training_data , batch_size=self.batch_size)

loss_running_record = []

i =0

avg-loss_over_literations = 0.0

for i in range(self.training_iterations):
data = data_loader.getbatch ()

data_tuples = data[0]

class_labels = data[1l]
self.forward_prop_-multi_neuron_model (data_tuples)
predicted_labels_for_batch = self.forw_prop._vals_at_layers[self.num_layers—1]
y-preds = [item for sublist in predicted_labels_for_batch for item in sublist]
loss = sum ([(abs(class_labels[i] — y_preds[i]))**2 for i in range(len(class_labels))])
loss_avg = loss / float(len(class_labels))
avg-loss_over_literations 4= loss_avg
if i%(self.display_-loss_how_often) == 0:
avg_loss_over_literations /= self.display-loss_how_often

loss_running_-record .append(avg-loss_over_literations)
print (" [iter=%d] loss = %.4f” % (i+1, avg_loss_over_literations))
avg_-loss_over_literations = 0.0
y-errors = list (map(operator.sub, class_labels, y_preds))
y-error_avg = sum(y-errors) / float(len(class_labels))
self.backprop-and_update_params_multi_neuron_model(y_-error_avg , class_labels)
plt.figure ()
plt.plot (loss_running_record)
#plt .show ()
return loss_running_record

class CGP_SGDplus(ComputationalGraphPrimer):
def run_training_loop-multi_neuron_model(self, training_data , mu):
class DataLoader:
def __init_-_(self, training_-data, batch_size):

self.training_-data = training-data

self . batch_size = batch_size

self.class_O_samples = [(item, 0) for item in self.training_-data[0]]
self.class_1_samples = [(item, 1) for item in self.training_data[1l]]

def __len__(self):
return len(self.training_data [0]) + len(self.training_data[1])
def _getitem (self):

cointoss = random.choice ([0,1])
if cointoss == 0:

return random.choice(self.class_O_samples)
else:

return random.choice(self.class_1_samples)
def getbatch(self):

batch_data , batch_labels = [] ,[]
maxval = 0.0
for _ in range(self.batch_size):
item = self._getitem ()
if np.max(item [0]) > maxval:
maxval = np.max(item [0])

batch_data.append (item [0])
batch_labels.append(item [1])
batch_data = [item/maxval for item in batch_data]
batch = [batch_data, batch_labels]
return batch

We must initialize the learnable parameters

self.vals_for_learnable_params = {param: random.uniform (0,1) for param in self.learnable_params}
self.bias = [random.uniform (0,1) for _ in range(self.num_layers—1)]

self .mu = mu

L L L L L L L
self . prev_bias_step = np.zeros(self.num_layers)

self . prev_step = {}

ind , val = enumerate (cgp.layer_params)

for a in ind:
for b in range(len(cgp.layer_params|val[a]]))
for ¢ in range(len(cgp.layer_params|[val[a]][b])):
self.prev_step [cgp.layer_params[val[a]][b][c]]

data_loader = DataLoader(training_data , batch_size=self.batch_size)
loss_running_record = []
i =0
avg_loss_over_literations = 0.0
for i in range(self.training_iterations):
data = data_loader.getbatch ()
data_tuples = data [0]
class_labels = data[1]
self.forward_prop-multi_neuron_model (data_tuples)
predicted_labels_for_batch = self.forw_prop-vals_at_layers[self.num_layers—1]
y-preds = [item for sublist in predicted-labels_for_batch for item in sublist]

loss = sum ([(abs(class_labels[i] — y_preds[i]))**2 for i in range(len(class_labels))])

loss_avg = loss / float(len(class_labels))

avg-loss_over_literations 4= loss_avg

if i%(self.display_-loss_how_often) == 0:
avg_loss_over_literations /= self.display_loss_how_often
loss_running_record .append(avg_loss_over_literations)
print (" [iter=%d] loss = %.4f” % (i+1, avg_loss_over_literations))

avg_-loss_over_literations = 0.0
y-errors = list (map(operator.sub, class_labels, y_preds))
y-error_avg = sum(y-errors) / float(len(class_labels))

self.backprop-and_-update_params_multi_neuron_model(y_-error_avg , class_labels)
plt.figure ()
plt.plot (loss_running_record)
#plt .show ()
return loss_running_record

def backprop-and_-update_params_multi_neuron_model(self, y_error, class_labels):
50

ERIED

backproped prediction error:

pred_err_backproped_at_layers = {i : [] for i in range(l,self.num_layers—1)}
pred_err_backproped_at_layers|[self.num_layers —1] = [y_error]
for back_layer_index in reversed(range(l,self.num_layers)):

input-vals = self.forw_prop-vals_at_layers[back_layer_index —1]

input-vals_avg = [sum(x) for x in zip(*input-vals)]

input-vals_avg = list (map(operator.truediv, input-vals_avg, [float(len(class_labels))] = \

len(class_labels)))

deriv_sigmoid = self.gradient_vals_for_layers|[back_layer_index]

deriv_sigmoid_avg = [sum(x) for x in zip(*xderiv_sigmoid)]

deriv_sigmoid_-avg = list (map(operator.truediv, deriv_sigmoid-avg,

[float (len(class_labels))] * len(class_labels)
vars_in_layer = self.layer_vars|[back_layer_index] ## a list like [’xo0’]
vars_in_next_layer_back = self.layer_vars[back_layer_index — 1] ## a list like [’'xw’, ’'xz’]
layer_params = self.layer_params|[back_layer_index]

note that layer_params are stored in a dict like
o {1: [["ap’, 'aa’, 'ar’, 'as’], [’bp’, ’ba’, ’br’, ’bs’]], 2: [[’ep’, ’ca’]l}
backproped_error = [None] * len(vars_in_next_layer_back)

for k,varr in enumerate(vars_in_next_-layer_back):
for j,var2 in enumerate(vars_in_layer):
backproped_-error [k] = sum([self.vals_for_learnable_params [transposed_-layer_params [k][i]
pred_err_backproped_at_layers|[back_layer_index][i]
for i in range(len(vars_in_layer))])

7# deriv_sigmoid_avg[i] for i in range(len(vars_in_layer))])
pred_err_backproped_at_layers|[back_layer_index — 1] = backproped_error
input_vars_to_layer = self.layer_vars|[back_layer_index —1]
for j,var in enumerate(vars_in_layer):
layer_params = self.layer_params|[back_layer_index|[j]
for i,param in enumerate(layer_params):
gradient_of_loss_for_param = input_vals_avg[i] * \
pred_err_backproped_at_layers[back_layer_index][]]
step = self.learning_rate * gradient_of_loss_for_param = deriv_sigmoid_avg[j] + \

self .muxself.prev_step [param]
self.vals_for_learnable_params [param]| += step
self . prev_step [param] = step

bias_step = self.learning_rate * sum(pred_err_backproped_at_layers|[back_layer_index]) =x \
sum(deriv_sigmoid_-avg)/len(deriv_sigmoid_-avg) +
self .muxself.prev_bias_step[back_layer_index —1]

self . bias[back_layer_index —1] += bias_step

self . prev_bias_step [back_layer_index —1] = bias_step
cgp = CGP(
num_layers = 3
layers_config [4,2,1], # num of nodes in each layer
expressions = [’xw=ap*xp+aq*xq+tar*xr+asxxs’,
’xz=bp*xp+bq*xq+brxxr+bs*xs’,
’xo=cp*xwtcqxxz '] ,
output_vars = ['x0’],
dataset_size = 5000,
learning_rate = le—3,
learning._-rate = 5 % le—2,
training_-iterations = 40000,
batch_size = 8,
display-loss_how_often = 100,

debug = True,

)

cgp-plus = CGP_SGDplus(

num_layers = 3,

layers_config [4,2,1], # num of nodes in each layer

expressions = [’xw=ap#*xptaqxxqtar*xrtassxs’,
’xz=bp*xp+bqg*xq+brxxr+bsxxs’,
’xo=cp*xwtcqxxz '],

output_vars = ['x0’],

dataset_size = 5000,

learning_-rate = le—3,

learning._-rate = 5 % le—2,

training_-iterations = 40000,

batch_size = 8,

display-loss_how_often = 100,

debug = True,

)

cgp.parse_multi_layer_expressions ()
cgp-plus.parse_multi_layer_expressions ()

#cgp . display_networkl ()
#cgp . display_network2 ()
training_data = cgp.gen_training_data ()

loss_sgd = cgp.run_training_loop_-multi_neuron_model(training_data)

loss_sgd_plus = cgp-plus.run_training_loop-multi_neuron_model(training_data, 0.99)

plt. figure ()

plt.plot(loss_sgd , label = ’'SGD Loss’)
plt.plot(loss_sgd_plus , label = ’'SGD+ Loss’)
plt.legend ()

plt.xlabel (’Iterations / 100’)

plt.ylabel (’Training Loss’)

#plt.show ()
plt.savefig(’multi_neuron_loss.jpg’)

0.40
—— 5GD Loss

0.35 4 SGD+ Loss

0.30

0.25 4 v

0.20

Training Loss

0.15 A

0.10 A

0.05 A

0.00

T T T T T T T
0 50 100 150 200 250 300 350 400
Iterations / 100

Figure 2: Original SGD training loss (blue) vs. updated SGD+ (with momentum) training
loss (orange) for multi-neuron model.

4 Lessons Learned

One of the major lessons I learned in this assignment was the usefulness of the class in-
heritance structure in Python. As a novice in Python I was tempted to copy and paste
the entire Computational Graph Primer class definition in my new script, but later realized
that I could adjust the code in a much more efficient way by creating a child class and
only overwriting the necessary methods. In addition, I learned a bit about momentum from
getting to experiment with different values for the momentum parameter p. I tested valued
ranging from 0 to 1 and found that a value very close to, but still less than, 1 provided
the optimal performance, while setting the value to exactly 1 caused erratic behavior in the
training loss. Finally, I struggled a bit with understanding how to create a good variable to

9

store the previous parameter update steps in the multi-neuron model, due to the fact that
the parameters and parameter values were not stored in ”arrays” like I would be previously
used to. This provided a good opportunity to better understand ways of structuring lists
and dictionaries in Python.

5 Suggested Enhancements

My only minor suggestion is that newer versions of the ” Computational GraphPrimer” code
might benefit from already including a line of code at the end of the "run_training_loop...”
class methods which returns the ”loss_running_record” variable, so that we don’t have to
modify the original code just to be able to store the training loss for the default imple-
mentation. Otherwise, I thought this assignment was very educational and appreciated the
opportunity to learn about the basic workings of neural network training.

10

	Introduction
	Methodology
	Implementation and Results
	Single Neuron Model
	Multi-Neuron Model

	Lessons Learned
	Suggested Enhancements

