
BME646/ ECE695DL:Homework 1

Aditya Chauhan

17 January 2021

1 Introduction

In this homework Basics of Python Object Oriented Programming are covered by using a Parent
and Child Class. We go over a Parent Class Countries with two instance variables and one function
and than define a child class GeoCountry with inheritance of two variables from Parent class and
two of it’s own variables. Plus in child class we also expand it have three functions and overwrite
one of the Parent class function.

2 Methodology

We defined two classes Countries and GeoCountry. Class Countries holds the information of the
birth, death and last year count of population in a List[int] population(of size 3) variable and
string variable capital to hold name. Countries class also expands to a function net population
that uses the Countries instance variable to calculate the current net population (birth - death +
last count) using equation below.

currentNet = self.population[0]− self.population[1] + self.population[2] (1)

Second class GeoCountry is made as a child class of Countries and inherits instance variable of
parent class. It also has two of it’s own instance variables density and area. area is passed during
object initialization of class GeoCountry and density is set to zero at this point by default. There is
also a scenario where we overwrite a function from parent class into child class and there we expand
the length of inherited population variable to 4 from 3. Other functions in GeoCountry are two
version of calculating density and one function that take the choice from user between which method
to chose for density calculation. Also by the end we updates the current net population(birth -
death + (second last count + last count)/2) calculation method to work with 4 length population
List.

currentNet = self.population[0]− self.population[1] + (self.population[2] + self.population[3])/2
(2)

Finally the function that takes the choice of user to calculate the density return the function
instance and that instance can be used by adding () operator also called a function call operator.

1



3 Implementation and Results

3.1 Class Countries

Figure 1: Class Countries Python Implementation

In this class(see Figure 1) we have a method to initialize the object of this class with two instance
variables capital and population which are given as a input during the initialization.

Next we have a function that takes the population and calculates the net population of this
year (check equation 1).

Below are the input and result

1. ob = Countries(’AAA’, [20,100,1000])

2. print(ob.netPopulation())

3. Result = 920

3.2 Class GeoCountry

3.2.1 init function

Figure 2: GeoCountry Init function

Here we defined the init function(see Figure 2) that inherits the instance variable from Class
Countries. super() is used to accomplish this task and the use of this can be seen in other function
calls of this Class GeoCountry

2



3.2.2 density calculator 1

Figure 3: Density Calculator function 1

In this implementation(see Figure 3) we take to a basic density calculation where the data provided
didn’t have any form of error associated with it. We take two cases of length of population is 3 or 4.
If 3 we used the current net population calculation mentioned in equation 1. If we have population
length 4 we use equation 2 for current net population calculation.

3.2.3 density calculator 2

Figure 4: Density Calculator function 2

In this implementation(see Figure 4) we have an error in data as the last population was updated
by current net population and we rectify it using equation 3 or equation 4 based on the length of
population List. We take two cases of length of population is 3 or 4. If 3 we used the current net
population calculation mentioned in equation 1. If we have population length 4 we use equation 2
for current net population calculation.

self.population[2] = self.population[2]− self.population[0] + self.population[1] (3)

self.population[3] = 2∗(self.population[3]−self.population[0]+self.population[1])−self.population[2]
(4)

3



3.2.4 net density

Figure 5: Net Density function

In this function(see Figure 5) we take a choice argument between 1 or 2. If it’s 1 we calculate
density using density calculator 1. If it’s 1 we calculate density using density calculator 2. In
both these cases we return the function instance and than we add () function operator to these
function call objects and get result.

3.2.5 net population

Figure 6: Overridden Net Population function

Through this function(see Figure 6) we override the net population function in Class Countries.
Here we increase the size of population list from 3 to 4 by appending the current population after
the last population and in each iteration we keep doing this by replacing the second last net with
last net and append current net after that, thus keeping size to 4.

Refer below(see Figure (7b)) to see how this works in multiple net population calls.

(a) Net Population update test case (b) Result of multiple net population calls

4



3.2.6 Results

Figure 8: test cases to test different cases

Figure 9: Results of the test case

5



4 Lessons Learned

Covered the basics of how OOP programming works with scripting language and how robust coding
can be done with these concepts.

6


	Introduction
	Methodology
	Implementation and Results
	Class Countries
	Class GeoCountry
	init function
	density calculator 1
	density calculator 2
	net density
	net population
	Results


	Lessons Learned

