
BME646/ECE695DL: Homework 1

Spring 2022
Due Date: Monday, January 17,2022 (11:59pm ET)

1 Introduction

This homework covers some basics in programming using object oriented
Python. The goal of this homework is to improve your understanding of
the Python OO code in general, especially with regard to how it is used
in PyTorch. This is the only homework you will get on general Python
OO programming. Future homework assignments will be specific to using
PyTorch classes directly or your own extensions of those classes for creating
your DL solutions.

2 Goals

1. Handle classes and their inheritance.

2. Write a function that returns a custom function as output.

3 Background

3.1 Functions

Functions are treated as first-class objects in Python. They are allowed to
accept one or more functions as arguments and return one or more functions.
Just as:
def summation(nums):

return sum(nums)

def main(fun, args)

result = fun(args)

print(result)

if __name__ == "__main__":

main(summation, [1,2,3])

3.2 Classes and their inheritance

Inheritance is a fundamental property of Python OO. It introduces us to
its ability to obtain certain features (variables and methods) from its parent
classes and make modifications, as well as come up with new ones. For ex-
ample,
class Person():

def __init__(self, name):

self.name = name

def get_name(self):

return self.name

class Employee(Person):

def get_salary(self):

return 1000

if __name__ == "__main__":

ob1 = Employee("Ahmed")

name = ob1.get_name()

print(name)

4 Tasks

1. Create a class named Countries that has two instance variables named:

• capital

• population

2. Create an instance of your class (within if __name__ == "__main__

") and set capital to Piplipol and population to [40,30,20].
The list population represents the [birth, death, last_count]

count (in the units of one thousand) of an instance of class Countries
, in a given year. last_count denotes the net population from the
immediate past year.

3. Expand your class Countries and define a new function net_population
(). In this function, use the formula: birth - death + last_count

to compute the local variable current_net and return it.

4. Extend your Countries class into a subclass named GeoCountry. En-
dow this class with two instance variables:

• area

• density

5. Create an instance of this class GeoCountry (within if __name__ == "

__main__"), and set capital to Polpip, population to [55,10,70],
area to 230. Note: density will be calculated later and should not be
passed as a function parameter.

6. Expand your class GeoCountry and define three new functions:

• density_calculator1(): In this function, invoke net_population
() in the parent class, to calculate and set the instance variable
density as current_net / area.

• density_calculator2(): While computing the population of the
current year, an undetected bug resulted in last_count being
replaced by current_net. In this function, you should correct
this error in the instance variable population, and compute the
new density with the corrected values.

• net_density(): In this function, you must provide an argument
variable choice in the function definition. This variable can only
accept the values 1 or the value 2. If choice is set to 1 from the
invoking instance, you must return the function
density_calculator1() and if the choice is set to 2, then you
must return the density_calculator2(). Please remember to
return the function and not the outcome. You may verify this
using the following code (within if __name__ == "__main__"):
fn = obj.net_density(2)

print(fn()) #where obj is your instance.

7. While working with this data, you realise that often births and deaths
are not accurately reported. This leads to a margin of error, which
skews your data. In order to overcome this you have three new modi-
fications to incorporate:

• Overwrite the parent class’s function net_population(), in the
child class.

• Increase the size of the instance variable population by 1 and
append the calculated current_net to it. The list population

now is represented as [birth, death, second_last_count,

last_count]. The new length of the instance variable population
must be 4. second_last_count, now represents your prior
last_count, and last_count is your prior current_net.

• Modify the future calculations of current_net to: birth - death

+ (second_last_count + last_count) / 2.

5 Submission Instructions

• Make sure to submit your code in Python 3.x and not Python 2.x.

• Compress your Python source code and pdf report(see the submission
template) into a singular zip file, naming it as your lastname firstname.zip
and upload it onto the assignment link on BrightSpace.

• Your code must be your own work. We will use your source code
for plagiarism detection and verification of performance. Submission of
both your source code and the report (in pdf) is mandatory to receive
a grade.

• You can resubmit a homework assignment as many times as you want
up to the deadline. Each submission will overwrite any previous sub-
mission.

https://engineering.purdue.edu/DeepLearn/2021_hw/submission_template.pdf
https://engineering.purdue.edu/DeepLearn/2021_hw/submission_template.pdf

	Introduction
	Goals
	Background
	Functions
	Classes and their inheritance

	Tasks
	Submission Instructions

