BMEG695DL/ECE695: Homework 3

Spring 2021
Due Date: Monday, March 01,2021 (11:59pm)

Turn in your solutions via BrightSpace.

1 Introduction

The main goal of this homework is for you to develop a greater appreciation
for the optimizations used for estimating the step size in the hyperplane
spanned all the learnable parameters in an SGD based approach to updating
the values of the parameters.

1.1 Steps

1. Download and install version 1.0.5 of your instructor’s Computation-
alGraphPrimer. You may not want to “sudo pip install” the Primer
since that would not give you the Examples directory of the distribu-
tion that you are going to need for the homework. Here is the main
documentation page for the Primer:

https://engineering.purdue.edu/kak/distCGP/ComputationalGraphPrimer-1.
0.5.html
2. Go to the Examples directory of the distribution and execute the fol-
lowing scripts:
python3 one_neuron_classifier.py
python3 multi_neuron_classifier.py
3. The final output of both these scripts is a display of the training loss
versus the training iterations.
4. Now execute the following script in the Examples directory
python3 verify_with_torchnn.py

Unless you make changes to the script in the Examples directory, the
loss vs. iterations graph that you will see is for a network that is
a “torch.nn” version of the handcrafted network you get through the
script “multi_neuron _classifier.py”



Compare mentally the output you get with the above call with what
you saw for the second script in Step 2.

. Now make a couple of changes to the file “verify_with_torchnn.py” in
order to see the “torch.nn” based output for the one-neuron model.
The changes you need to make are mentioned in the documentation
part of the file “verify_with_torchnn.py”.

Again compare mentally the loss-vs-iterations for the one-neuron case
with the handcrafted network vis-a-vis the torch.nn based network.

. For both the one-neuron and the multi-neuron cases, you will see a dra-
matic improvement in the performance with the “torch.nn” based im-
plementations of the network. A significant portion of this improvement
can be attributed to the use of step optimization for the “torch.nn”
based code.

. Now comes the hard part of this homework:

If you’d look at the code in Version 1.0.5 of the Primer, you will notice
that it does NOT use any step optimizations for the gradient descent.
In other words, the update steps in the Primer are based solely on the
current value of the gradient of the loss with respect to the parameter
in question. That is,

Pio1 = Dr — It % gryq (1)

where p; denotes learnable parameters from the previous time step,
e.g., layer weights at iteration ¢, and g;,; denotes the corresponding
gradient for the current time step ¢ + 1.

Your work for this homework must at least bring in the notion of mo-
mentum for calculating the step size. In its simplest implementation,
using momentum only involves remembering the step size used at the
previous iteration and then making the current step-size decision based
on the current value for the gradient and the previous value for the step
size.

In order the invoke the notion of momentum for step optimization,
you have to compute the step updates separately. This makes it more
convenient to base the current step size on both its previous value and
the current value of the gradient, as shown below. In the formulas
shown, the variable v is the step size and the first equation is the
recursive update formula for its update. As you can see, for calculating
the step size to use at the current iteration ¢t + 1, we use a fraction
p of its value at the previous iteration. [If you are puzzled by the
appearance of the learning-rate in the first equation rather than in



the second, that’s because the basic function of the learning rate is to
control what fraction of the current value of the gradient to use at the
current iteration.|:

Vg1 = pox vy — Ir ok gpiq,

DPiy1 = Pt + Vg

(2)

The momentum scalar 1 € [0, 1] decides weight to the previous time
step update. The v is typically initialized with all zeros.

2 Programming Task

Your main programming task is to implement SGD+, a momentum en-
hanced version of the basic SGD you see in one_neuron_classifier.py
and multi_neuron_classifier.py.

As explained in Section 1.1, the Steps 1-6 are for you to become familiar
with Version 1.0.5 of the Primer. Prof. Kak’s Week 4 lecture slides explain
the basic logic of the implementation code for one_neuron_classifier.py
and multi_neuron_classifier.py.

More specifically, your programming task is to create new versions of
the one-neuron and multi neuron-classifiers that are based on SGD with
momentum (SGD+) optimizer (Ref. Eq. 2).

Since you are going to be modifying the main module file ComputationalGraphPrimer
.py, that raises the question of what it is you are expected to submit for this
homework.

For submission, bundle all of the code you wrote for the SGD+ based
implementation of the one-neuron classifier and place it in a file named
one_neuron_classifier_sgd_plus.py.

Do the same for your SGD+ based implementation for the multi-neuron
classifier, but this time place it in a file called multi_neuron_classifier_sgd_plus

.Py-
Your homework submission will consist of these two files.

Also note that, depending on how you decide to implement SGD+,
you may need one or more helper functions of your own in the module file
ComputationalGraphPrimer.py. Feel free to add those functions to your



own install of the module. Make sure you incorporate these helper functions
in the two submission files named above.

SGD+ vs SGD Loss

—— 5SGD Training Loss

0.30 A SGD+ Training Loss

0.25 4

0.20 +

loss

0.15 A

0.10 A

0.05 4

0.00 1

T T T T T T T
0 50 100 150 200 250 300 350 400
terations

Figure 1: Sample comparative plot (SGD+ vs SGD) for the one-neuron
network. Your results could vary depending on your choice of the training
parameters. All the plot formatting related options are also flexible.

The important thing related to this homework is that you are not allowed
to use PyTorch’s built-in SGD optimizer.

The expected output from

1. python3 one_neuron_classifier_sgd_plus.py call is one_neuron_loss
-JP8

2. python3 multi_neuron_classifier_sgd_plus.py callismulti_neuron_loss
-JpPg

Fig. 1 shows an example of the comparative plots from the one-neuron
classifier. This plot is shown just to give you an idea of the improvement
achieved from SGD+ over SGD. Your results could vary based on your choice
of the parameters, such as learning rate, u, batch size, number of iterations,
etc. Note that loss-vs-epochs plots are also acceptable.



3 Submission Instructions

e Make sure to submit your code in Python 3.x and not Python 2.x.

e Create a .zip archive with the following four files:
one_neuron_classifier_sgd_plus.py, one_neuron_loss. jpg,
multi_neuron_classifier_sgd_plus.py, multi_neuron_loss. jpg.

Name the .zip archive as hwO3_<Firstname> < Lastname>.zip (with-
out any white spaces). Note that .rar file format is Windows specific
so please do NOT submit your solutions in .rar format. Your code
must be your own work.

e You can resubmit a homework assignment as many times as you want
up to the deadline. Each submission will overwrite any previous sub-
mission.



