Module 09
Value of Information

Dr. Jitesh H. Panchal
Decision Making in Engineering Design

School of Mechanical Engineering
Purdue University, West Lafayette, IN
Module Outline

1. Introduction to Value of Information
 - Information Acquisition Decisions in Design
 - Illustrative Examples
 - Key Concepts

2. Expected Value of Perfect Information

3. Expected Value of Imperfect Information
 - 1. Rain Sensor Example
 - 2. Stock Market Example

Introduction to Value of Information
Sources of Information in Engineering Design

Information Sources:
- Consultants
- Simulation Models
- Experiments
- ...

Information is costly!
Should you acquire information (or source of information)? If so, how much should you pay for it?
Is Further Refinement Necessary? A Conceptual Example

How much refinement of a simulation model is appropriate for design?

Should this model be refined further?

Simulation model predicts material strength

Material 1

Decision

Material 2

Objective: Maximize the pressure that the vessel can withstand

Selected Material Alternative

Inferences

• Improved accuracy does not imply improved usefulness in design!!!

• The appropriateness depends on the overall design problem (constraints, objectives, and variable bounds)
All models are wrong, some models are useful! [George Box]
Questions to be addressed:

- What is an appropriate basis on which to evaluate the **value of information** in a decision situation?
- What does it mean for an expert to provide **perfect information**?
- How does probability relate to the idea of information?
Illustrative Example (1)
Buying a Rain Predictor

Three alternatives:
- Party outdoors
- Party on porch
- Party indoors

Uncertainty: Payoff depends on whether it is sunny or it rains.

Information acquisition decision: Whether to purchase a rain predicting sensor.

Figure: 10.7 on Page 201 (Howard and Abbas)
Illustrative Example (2)
Investing in the Stock Market

Investor has three alternatives:
- High-risk stock
- Low-risk stock
- Savings account

Uncertainty: Payoff on stocks depends on whether the market goes up, remains same, or goes down.

Information acquisition decision: Whether to get expert advice.

Figure: 12.1 on Page 436 (Clemen)
If the decision maker will make the same decision regardless of what the new information is, then the information has no value!

Rain Prediction Sensor Example:
- The best decision without the sensor is to hold the party indoors.
- If after buying the sensor, the decision still remains the same (irrespective of what the sensor shows) ⇒ no value.
Value of information needs to be determined before actually getting the information (e.g., before hiring the expert).

- **Worst case scenario**: Decision remains the same even after hiring the expert ⇒ Zero value of information.
- **Better scenarios**: Expected value increases ⇒ Positive value of information.
- **Best case scenario**: Perfect Information (resolving all uncertainty; Expert tells us exactly what will happen) ⇒ Maximum value of information (i.e., Expected Value of Perfect Information).
Expected Value of Perfect Information
Clairvoyant: An expert’s information is said to be perfect if it is always correct.

1. When state S will occur, the information source always says so.
 - The sensor accurately states whether it will rain or not, i.e.,
 \[P(\text{Sensor predicts "Sunshine" | Weather will actually be Sunny}) = 1 \]
 - In the stock market example,
 \[P(\text{Expert says "Market Up" | Market really Does Go Up}) = 1 \]

2. Also, the expert must never say that the state S will occur if any other state (\bar{S}) will occur.
Decision Tree without Additional Information

Decision maker’s prior probabilities: Sun (0.4) and Rain (0.6).

Utility

Outdoors: u = 0.40
- Sun (0.4) → 1.0
- Rain (0.6) → 0.0

Porch: u = 0.57
- Sun (0.4) → 0.95
- Rain (0.6) → 0.32

Indoors: u = 0.63
- Sun (0.4) → 0.57
- Rain (0.6) → 0.67

Figure: 10.7 on Page 201 (Howard and Abbas)
Introduction to Value of Information

Expected Value of Perfect Information

Expected Value of Imperfect Information

Figure: 10.8 on Page 202 (Howard and Abbas)
Expected Value of Imperfect Information
Let us say that the sensor is not perfect. It has 80% accuracy.

<table>
<thead>
<tr>
<th>Sensor Prediction</th>
<th>Sunshine (S)</th>
<th>Rain (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>“S”</td>
<td>0.8</td>
<td>0.2</td>
</tr>
<tr>
<td>“R”</td>
<td>0.2</td>
<td>0.8</td>
</tr>
</tbody>
</table>

- $P(S) = 0.4$
- $P(R) = 0.6$
- $P(\text{“S”} \mid S) = 0.8$
- $P(\text{“R”} \mid R) = 0.8$
- $P(\text{“S”} \mid R) = 0.2$
- $P(\text{“R”} \mid S) = 0.2$
Uncertainties When Using the Sensor

Sensor Prediction	Future State
S | S
R | R

P("S") = ?
P("R") = ?
P(S|"S") = ?
P(R|"S") = ?
P(S|"R") = ?
P(R|"R") = ?
P("S", S) = ?
P("S", R) = ?
P("R", S) = ?
P("R", R) = ?
Flipping the Probabilities Using Bayes’ Theorem

Bayes Theorem

\[P(AB) = P(A|B)P(B) = P(B|A)P(A) \]

\[P(B|A) = \frac{P(A|B)P(B)}{P(A)} \]

Applying this to the sensor example,

\[P(S|"S") = \frac{P(\"S"|S)P(S)}{P(\"S")} \]

\[= \frac{P(\"S"|S)P(S)}{P(\"S"|S)P(S) + P(\"S"|R)P(R)} \]

\[= \frac{(0.8)(0.4)}{(0.8)(0.4) + (0.2)(0.6)} \]

\[= 0.727 \]

Similarly, \(P(R|"R") = 0.857, P(R|"S") = 0.273, P(S|"R") = 0.143, \)

\(P("S") = 0.44, P("R") = 0.56. \)
Flipping the Probabilities Using Bayes’ Theorem

Sensor Prediction	Future State
S | P(S|“S”)=0.727
P(“S”, S)=0.32
P(“S”, R)=0.12
R | P(R|“S”)=0.273

“S” | P(“S”) = 0.44
“R” | P(“R”) = 0.56

P(S|“R”)=0.143
P(R|“R”)=0.857
P(“R”, S)=0.08
P(“R”, R)=0.48

S | P(R|“S”)=0.273
P(R|“R”)=0.857

Dr. Jitesh H. Panchal
Including Decisions in the Tree

Dr. Jitesh H. Panchal
Investor has three alternatives:

- High-risk stock
- Low-risk stock
- Savings account

Uncertainty: Payoff on stocks depends on whether the market goes up, remains same, or goes down.

Information acquisition decision: Whether to get expert advice.

Figure: 12.1 on Page 436 (Clemen)
The decision maker has not yet consulted the clairvoyant. He is considering whether or not to consult!

There is 50% chance that the clairvoyant would say that the market will go up, 30% chance that the market will stay flat, and 20% chance that the market will go down.
Expected Value of Perfect Information

High-Risk Stock
(EMV = 580)

Low-Risk Stock
(EMV = 540)

Savings account
500

Consult Clairvoyant (EMV=1000)

Market up (0.5)

Up (0.5)
1500
Same (0.3)
100
Down (0.2)
-1000

Up (0.5)
1000
Same (0.3)
200
Down (0.2)
-100

Savings account
500

Figure: 12.3 on Page 440 (Clemen)
Expected Value of “Imperfect” Information

Suppose that the expert’s track record shows that if the market actually will rise, he says:

- “Up” 80% of the time
- “Flat” 10% of the time
- “Down” 10% of the time

<table>
<thead>
<tr>
<th>True Market State</th>
<th>Up</th>
<th>Flat</th>
<th>Down</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economist’s Prediction</td>
<td>0.80</td>
<td>0.15</td>
<td>0.20</td>
</tr>
<tr>
<td>“Up”</td>
<td>0.10</td>
<td>0.70</td>
<td>0.20</td>
</tr>
<tr>
<td>“Flat”</td>
<td>0.10</td>
<td>0.15</td>
<td>0.60</td>
</tr>
<tr>
<td>“Down”</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Decision Tree for the Investment Example

- **Consult Economist**
 - **Economist’s forecast**
 - **Economist says “Market up” (?)**
 - High-Risk Stock (EMV = 580)
 - Low-Risk Stock (EMV = 540)
 - Savings account (EMV = 500)
 - **Economist says “Market flat” (?)**
 - Savings Account
 - **Economist says “Market Down” (?)**
 - High-Risk Stock
 - Low-Risk Stock
 - Savings Account

Market Activity

- **Up(?) Same(?)**
 - High Risk Stock
 - Low Risk Stock
 - Savings Account
 - Values: 1500, 100, 200, -100
- **Down (?)**
 - High Risk Stock
 - Low Risk Stock
 - Savings Account
 - Values: 1000, 200, -100

Figure: 12.5 on Page 443 (Clemen)
Flipping the Probability Tree

Actual Market Performance

- Market up (0.5)
 - Market Flat (0.3)
 - Market Down (0.2)

Economist's Forecast

- "Market up" (0.80)
 - "Market Flat" (0.10)
 - "Market Down" (0.10)
- "Market up" (0.15)
 - "Market Flat" (0.70)
 - "Market Down" (0.15)
- "Market up" (0.20)
 - "Market Flat" (0.20)
 - "Market Down" (0.60)

Economist's Forecast

- "Market up" (?)
 - Market Flat (?)
 - Market Down (?)
- "Market Flat" (?)
 - Market Flat (?)
 - Market Down (?)
- "Market Down" (?)
 - Market Flat (?)
 - Market Down (?)

Actual Market Performance

- Market up (?)
- Market Flat (?)
- Market Down (?)

Figure: 12.7 on Page 444 (Clemen)
Using Bayes’ Theorem to Flip Probabilities

\[P(\text{Market Up}|\text{Economist Says “Up”}) \]

\[= P(\text{Up}|“Up”) \]

\[= \frac{P(“Up”|\text{Up})P(\text{Up})}{P(“Up”|\text{Up})P(\text{Up}) + P(“Up”|\text{Flat})P(\text{Flat}) + P(“Up”|\text{Down})P(\text{Down})} \]

\[= \frac{0.8(0.5)}{0.8(0.5) + 0.15(0.3) + 0.2(0.2)} \]

\[= \frac{0.400}{0.485} \]

\[= 0.8247 \]
Posterior Probabilities For Market Trends

<table>
<thead>
<tr>
<th>Economist’s Prediction</th>
<th>Market Up</th>
<th>Market Flat</th>
<th>Market Down</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Up"</td>
<td>0.8247</td>
<td>0.0928</td>
<td>0.0825</td>
</tr>
<tr>
<td>"Flat"</td>
<td>0.1667</td>
<td>0.7000</td>
<td>0.1333</td>
</tr>
<tr>
<td>"Down"</td>
<td>0.2325</td>
<td>0.2093</td>
<td>0.5581</td>
</tr>
</tbody>
</table>
1. Rain Sensor Example
2. Stock Market Example

Completed Decision Tree

- High-Risk Stock (EMV = 580)
- Low-Risk Stock (EMV = 540)
- Savings account (EMV = 500)

Consult Economist (EMV=822)

- Economist’s forecast
 - Economist says "Market up" (0.485)
 - Economist says "Market flat" (0.300)
 - Economist says "Market Down" (0.215)

Dr. Jitesh H. Panchal

09: Value of Information

Figure: 12.8 on Page 446 (Clemen)
Summary

1. Introduction to Value of Information
 - Information Acquisition Decisions in Design
 - Illustrative Examples
 - Key Concepts

2. Expected Value of Perfect Information

3. Expected Value of Imperfect Information
 - 1. Rain Sensor Example
 - 2. Stock Market Example

References
