AC-DC converters (Rectifiers)

The objective of an (AC-DC converter) / rectifier is to produce a voltage that is purely dc or has some specified dc components.

In many applications, a rectifier serves as the input voltage to be followed by a dc-dc converter or a dc-ac converter.

Ideally, the output voltage of a rectifier is expected to be purely dc. However, in practice, harmonics appear as voltage ripples.

We will study the diode-rectifiers which are the most popular rectifiers:

- Single-phase H-Bridge (Full Bridge) Rectifiers
- Three-phase Rectifiers
Single-phase Diode Bridge Rectifiers with pure resistive load

For the bridge rectifier, there are the following basic observations:

1) If \(V_{\text{in}} > 0 \) → \(D_1 \& D_4 : \text{on} \)
 \(D_2 \& D_3 : \text{off} \)
 \[V_0 = V_{\text{in}} \]
 \[I_0 = \frac{V_{\text{in}}}{R} \]

2) If \(V_{\text{in}} < 0 \) → \(D_1 \& D_4 : \text{off} \)
 \(D_2 \& D_3 : \text{on} \)
 \[V_0 = -V_{\text{in}} \]
 \[I_0 = -\frac{V_{\text{in}}}{R} \]
For a sinusoidal input voltage \(V_{\text{in}} = V_m \sin \theta \)

- \(V_o = V_{\text{in}} \)
- \(V_o = -V_{\text{in}} \)

\[i_o = \frac{V_{\text{in}}}{R} \]
\[i_o = -\frac{V_{\text{in}}}{R} \]

\[\frac{V_m}{R} \]

\[\frac{i_o}{R} \]

\[< V_{\text{out}} > = \frac{1}{\pi} \int_0^\pi V_m \sin \theta \, d\theta = \frac{2V_m}{\pi} \]

The desired dc voltage component

\[< i_{\text{out}} > = \frac{< V_{\text{out}} >}{R} = \frac{2V_m}{RR} \]

However, as it can be seen from \(V_o \), it contains a dc component (calculated as \(\frac{2V_m}{\pi} \)) and some harmonics.

Let's look at the Fourier series to analyze the harmonics.
\[V_o = V_{out} + \sum_{i=1}^{\infty} a_n \cos(n\theta) + \sum_{i=1}^{\infty} b_n \sin(n\theta) \]

\[b_n = \frac{2}{\pi} \int_{0}^{\pi} V_o \sin(n\theta) \, d\theta = \frac{2}{\pi} \int_{0}^{\pi} V_m \sin\theta \cdot \sin(n\theta) \, d\theta \]

\[= \frac{2V_m}{\pi} \cdot \frac{1}{2} \left[\int_{0}^{\pi} (\cos((n+1)\theta) - \cos((n-1)\theta)) \, d\theta \right] \]

\[= \frac{V_m}{\pi} \left[\sin((n+1)\pi) - \sin((n-1)\pi) \right] = 0 \]

\[a_n = \frac{2}{\pi} \int_{0}^{\pi} V_o \cos(n\theta) \, d\theta = \frac{2}{\pi} \int_{0}^{\pi} V_m \sin\theta \cdot \cos(n\theta) \, d\theta \]

\[= \frac{2V_m}{\pi} \cdot \frac{1}{2} \left[\int_{0}^{\pi} \sin((n+1)\theta) - \sin((n-1)\theta) \, d\theta \right] \]

\[= \frac{V_m}{\pi} \left[\left. -\frac{\cos((n+1)\theta)}{n+1} \right|_{0}^{\pi} + \frac{\cos((n-1)\theta)}{n-1} \right]^{\pi}_{0} \]

\[= \frac{V_m}{\pi} \left(\frac{1 - \cos((n+1)\pi)}{n+1} + \frac{1 - \cos((n-1)\pi)}{n-1} \right) \]
if n: even, $a_n = \frac{2V_m}{\pi} \left(\frac{1}{n+1} - \frac{1}{n-1} \right)$

if n: odd, $a_n = 0$

$$V_{out} = \frac{2V_m}{\pi} + \sum_{n=2,4,\ldots}^{\infty} \frac{2V_m}{\pi} \left(\frac{1}{n+1} - \frac{1}{n-1} \right) \cos(n\theta)$$

$$= \sum_{n=2,4,\ldots}^{\infty} \frac{2V_m}{\pi} \left(\frac{1}{n-1} - \frac{1}{n+1} \right) \cos(n\theta + \pi)$$

$$i_{out} = \frac{V_{out}}{R}, \quad I_{out} = \langle i_{out} \rangle = \langle \frac{V_{out}}{R} \rangle = \langle \frac{V_0}{R} \rangle = \frac{2V_m}{R}$$

$$i_n = \frac{V_n}{R} = \sum_{n=2,4,\ldots}^{\infty} \frac{2V_m}{RR} \left(\frac{1}{n-1} - \frac{1}{n+1} \right) \cos(n\theta + \pi)$$

Since the average voltage (dc component) at the output of a diode-bridge rectifier is equal to $\langle V_{out} \rangle = \frac{2V_m}{\pi}$, it is called an uncontrolled bridge rectifier. The voltage is a function of AC-source voltage amplitude (V_m) which is usually fixed. The output voltage of Rectifier is fixed and not controllable!
If the load is almost purely inductive, \(L \) is very large, then the output current is almost constant \(\Rightarrow i_\text{avg} = \text{dc Value} \).
Single-phase diode rectifier with series inductive-resistive load

\[\text{if } \text{Vin} > 0 \Rightarrow D_1 \text{ & } D_4 \text{ are on } \Rightarrow V_{out} = \text{Vin} \Rightarrow i_{D_1} \text{ & } i_{D_4} = i_o \\
\text{Vin} < 0 \Rightarrow D_2 \text{ & } D_3 \text{ are on } \Rightarrow V_{out} = -\text{Vin} \Rightarrow i_{D_3} \text{ & } i_{D_2} = -i_o \\\n\Rightarrow i_{in} = -i_0 \]

Vin \hspace{1cm} V_o

\[i_{in} \quad i_{in} \quad i_{in} \]
\[i_{D_1} \quad i_{D_4} \quad i_{D_2} \quad i_{D_3} \]