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Highlights 
 

• Differential identifiability framework improves individual fingerprint in functional connectomes from 
individuals spanning the Alzheimer’s disease spectrum  

• Improved fingerprint leads to more stable and more precise identification of functional networks 
associated to cognitive deficits associated with Alzheimer’s disease  

• Improved fingerprint leads to improved accuracy and generalizability of individual level prediction 
of cognitive deficits from functional connectomes 

• Default network and Frontoparietal networks are associated to a variety of cognitive deficits in 
Alzheimer’s disease 

• Dorsal Attention Network interactions with the Frontoparietal network are associated to cognitive 
tests with large attention components 

• Visual network interacts with several networks in the brain in cognitive tests requiring imagery and 
semantic organization 

 
Abstract 
 
Functional connectivity, as estimated using resting state fMRI, has shown potential in bridging the gap 
between pathophysiology and cognition. However, clinical use of functional connectivity biomarkers is 
impeded by unreliable estimates of individual functional connectomes and lack of generalizability of models 
predicting cognitive outcomes from connectivity. To address these issues, we combine the frameworks of 
connectome predictive modeling and differential identifiability. Using the combined framework, we show 
that enhancing the individual fingerprint of resting state functional connectomes leads to robust identification 
of functional networks associated to cognitive outcomes and also improves prediction of cognitive outcomes 
from functional connectomes. Using a comprehensive spectrum of cognitive outcomes associated to 
Alzheimer’s disease, we identify and characterize functional networks associated to specific cognitive 
deficits exhibited in Alzheimer’s disease. This combined framework is an important step in making individual 
level predictions of cognition from resting state functional connectomes and in understanding the 
relationship between cognition and connectivity.   
 
Keywords: Alzheimer’s Disease, cognition, resting state fMRI, functional connectivity, functional 
fingerprinting, predictive modeling	



1 Introduction 

The biological underpinnings of disorders characterized by cognitive or behavioral symptomatology remain 
poorly understood, contributing significantly to the bottleneck in treating these disorders [1]. In recent years, 
the application of complex systems analysis approaches for understanding how neural activity facilitates 
cognition has led to significant strides in characterizing these disorders. One such approach, functional 
brain connectomics, models functional brain networks as statistical dependencies in regional neural activity, 
providing a framework to assess brain integration, segregation, and communication [2]. At the same time, 
the advent of resting state fMRI has allowed for in-vivo characterization of whole brain functional 
connectomes (FC) in humans [2], leading to the discovery of several critical brain networks implicated in 
schizophrenia, ADHD, autism, and Alzheimer’s disease (AD) [3].  
 
Despite their utility in understanding neurologic disorders, FC approaches have not yet been used 
translationally in the treatment of cognitive and behavioral disorders [4, 5]. To advance the treatment of 
such disorders, there is a critical need [5] to develop clinical biomarkers that are (1) robustly modulated by 
disease mechanisms and (2) specifically associated with disease related outcomes. Though FC has shown 
potential in bridging the gap between pathophysiology and cognition, its clinical use is impeded by 
unreliable estimation of individual level FC [6] and lack of generalizability of models predicting individual 
cognitive outcomes from FC [5]. Here we show that improving the subject level fingerprint of resting-state 
FC also improves prediction of cognitive deficits in AD. We also identify functional networks associated to 
specific cognitive deficits exhibited in AD.	

1.1 Towards Improving Clinical Utility of FC 

While FC shows differential group level associations across cognitive outcomes [7, 8] and across disease 
conditions [3, 9-13], it falls short of predicting clinically meaningful outcomes at the individual level. To 
address this, recent efforts in measuring FC fingerprinting at the individual level have shown that individuals 
can be reasonably distinguished from each other using FC as measured by identification rate [8, 14, 15]  or 
differential identifiability	[8]. Furthermore, recent studies have shown that individual level fingerprinting can 
be improved by brain state manipulation [14] or using data driven denoising methods [8].  Additionally, to 
improve the clinical utility of FC, efforts to improve individual prediction of cognition and behavior have been 
developed [4, 5, 16-18]. Among frameworks that use FC to predict individual differences in behavior or 
cognition, connectome predictive modeling (CPM) is the most used [16].	The CPM pipeline involves: (1) 
feature reduction to find FC features based on functional edges that are associated with specific cognitive 
outcomes, (2) training of a predictive model using these features to predict cognitive outcomes, and (3) 
evaluation of the accuracy and generalizability of resulting models. Recent methodologies have been 
suggested for designing, interpreting, and assessing the performance of these models in an unbiased 
manner [17]. However, methodologies to assess how heterogeneity and reliability of FC training data affects 
predictive models and further methodologies to improve the quality of both FC fingerprinting and predictive 
models synergistically are still needed.  
 
So far, work to improve the individual fingerprint of FC and predictive modeling of cognition from FC has 
run on parallel tracks, focusing on either the former or the latter aspect. Here, we unify the frameworks of 
differential identifiability [8] and connectome predictive modeling (CPM) [16]	in order to assess the effect of 
increasing FC fingerprinting, using differential identifiability, on key properties of predictive models. 
Because differential identifiability requires at least two FC data sets per subject (i.e. test/retest), we show 
the utility of using test and retest FC sessions for validation of CPM, in addition to standard cross validation 
approaches (e.g., leave one out). 	
 
When choosing key properties to assess the quality of CPM for the purposes of predicting and 
understanding cognitive associations to the brain, it is important to keep in mind that interpretation of 
anatomical locations of the cognitive correlates of FC are as relevant as the accuracy of prediction [17]. 
Hence, confirming robustness in the identification of functional edges should precede model fitting and 
assessments of model accuracy. Further, it is important to note that the robustness of both edge selection 
and coefficient estimation can significantly influence model accuracy and generalizability. Therefore, we 



propose to evaluate three critical properties for well-behaved FC-based predictive models: (1) stability of 
edge selection and subsequent coefficient estimation, (2) specificity of edge selection, and (3) 
generalizability of the prediction. To evaluate how volatile CPM is to the heterogeneity and reliability of FC 
training data used, we evaluate these properties in a leave one out paradigm and in test versus retest 
sessions from the same subjects. 	

1.2 Opportunities in Alzheimer’s Disease  

The gradual progression of neurocognitive deficits in AD is particularly amenable to study the specificity of 
models that use individual level FC to predict cognition. Briefly, mild cognitive impairment (MCI) typically 
begins with episodic memory decline, is later accompanied by subtle deficits in other domains, and 
ultimately results in progressive functional impairment as the subject transitions through the mild, moderate 
and severe stages of dementia [19-22]. Within the AD spectrum there is much individual heterogeneity in 
terms of disease presentation and progression over time	[22], making predictive modeling at the individual 
level important. 	
 
The association between FC changes and cognitive deficits in AD has been subject of intense study to date 
[13, 23, 24]. Changes in functional networks, primarily the default mode and frontoparietal networks, have 
been consistently replicated between diagnostic groups [25-27]. Recent studies indicate that FC data can 
predict individual level diagnostic status	[28]	and global cognitive decline	[29]	with reasonable accuracy. 
Several studies also show relationships between FC data and deficits in specific cognitive domains 
associated with AD [13, 23, 30]. In this work, beyond assessing group level associations to specific cognitive 
domains, we present a framework that improves the ability of FC to predict individual level deficits across 
cognitive domains and identify functional networks predictive of specific cognitive deficits in AD. 	

2 Methods 

2.1 Subject Demographics and Cognitive Performance  

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private 
partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to 
test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other 
biological markers, and clinical and neuropsychological assessment can be combined to measure the 
progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date 
information, see www.adni-info.org.  

Resting state fMRI and neurocognitive testing data from the second phase of the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI2/GO) were used. Our analyses included 82 participants from the original 
200 ADNI2/GO individuals with resting state fMRI scans. Subjects were excluded if (1) their amyloid 
status was not available, (2) were cognitively impaired, but showed no evidence of amyloid-beta (Aß) 
deposition, and/or had (3) over 30% of fMRI time points censored due to artifacts or head motion, see 
Section 2.2 for details. Aß status was determined using either mean PET Florbetapir standard uptake 
value ratio cutoff (Florbetapir > 1.1; UC Berkeley) or CSF Aß level ≤192 pg/mls [5]. The rationale for 
excluding Aß- cognitively impaired participants was to avoid confounding by non-AD neurodegenerative 
pathologies. Subjects were stratified into five categories based on their diagnosis and Aß status: (1) Aß- 
cognitively normal individuals (CNAß-, n = 15), (2) Aß+ CN or pre-clinical AD (CNAß+, n = 12), (3) early mild 
cognitive impairment due to AD (EMCIAß+, n = 22), (4) late mild cognitive impairment due to AD (LMCIAß+, 
n = 12), and (5) AD dementia (ADAß+, n = 21).  

We selected a total of six measures from the ADNI2/GO neurocognitive battery, (www.adni-info.org for 
protocols) that exhibited a significant diagnostic group effect (Table1, ANOVA p<0.05): AVLT immediate 
and delayed recall, clock drawing, Trails B, and Animal Fluency. The Montreal cognitive assessment 
(MOCA) was chosen as a representative clinical measure of global cognition. See Table 1 for details. 



Table 1. Demographics and Neurocognitive Comparisons of Diagnostic Groups.  

2.2 fMRI Data Processing 

We used T1-weighted MPRAGE scans and EPI fMRI scans from the initial visit in ADNI2/GO (Philips 
Platforms, TR/TE = 3000/30ms, 140 volumes, 3.3 mm thickness, see www.adni-info.org for detailed 
protocols) for estimation of FC matrices. fMRI scans were processed with an in-house MATLAB and FSL 
based pipeline as described in detail in Amico et al. [31]. This pipeline mainly follows guidelines by Power 
et al. [32, 33]. For purposes of evaluating reproducibility, we split the processed fMRI time series into halves 
(mimicking test and retest) and assigned each half for each subject as “RestA” or “RestB” randomly to avoid 
biases related to first versus second half of the scan. It is noteworthy that splitting an fMRI session mimics 
the most ideal test-retest scenario where all conditions are maintained.	
 
We obtained two FC matrices from the RestA and RestB halves of the fMRI time-series for each subject. 
FC nodes were defined using a 278 region cortical parcellation	[34], as detailed in Amico et al. [31], with 
modified subcortical parcellation [35], for a total of 286 gray matter regions. We estimated single session 
functional connectivity matrices by calculating the Pearson correlation coefficient (𝑟"#) between the fMRI 
time-series of each pair of brain regions. Each region’s time-series was obtained by averaging time-series 
of all voxels assigned to that brain region. Regions were assigned to one of the seven cortical resting state 
subnetworks (RSN/RSNs): visual (VIS), somato-motor (SM), dorsal attention (DA), ventral attention (VA), 
limbic (L), fronto-parietal (FP), and default mode network (DMN) [36], with the remaining regions assigned 
to a subcortical (SUB) or cerebellar (CER) networks. 
 

2.3 Differential Identifiability 

Using group level PCA, we found the optimal FC reconstruction point to maximize RestA and RestB FC 
test-retest reproducibility, measured using differential identifiability (Idiff, Fig.1) [8]. The “identifiability matrix” 

	
Variable 

Mean (SD)	
CNAß-	

(n = 15)	
CNAß+	

(n = 12)	
EMCIAß+	
(n = 22)	

LMCIAß+	
(n = 12)	

ADAß+	
(n = 21)	

Age (Years)	 74.2 (8.8)	 75.9 (7.0)	 72.6 (5.2)	 73.3 (6.1)	 73.5 (7.6)	

Sex (% F)	 64.2	 41.7	 50	 61.6	 42.9	

Years of Education	 16.7 (2.3)	 15.8 (2.6)	 15.2 (2.6)	 16 (1.8)	  
15.4 (2.6)	

 MOCA * 26.2 (2.6) 25.3 (2.9) 22.3 (4.5) 20.6 (7.1) 13.4 (5.2) 

Auditory Verbal Learning	
Immediate Recall *	 11.1 (3.0)	 11.33 (2.9)	 9.9 (3.0)	 7.6 (2.4)	 4.3 (1.6)	

Auditory Verbal Learning	
Delayed Recall *	 6.2 (4.3)	 7.8 (3.8)	 4.3 (4.0)	 2.8 (2.8)	 0.4 (0.9)	

Boston Naming* 28.2 (2.0) 28.7 (1.1) 27.1 (3.1) 25.9 (5.0) 22.4 (6.4) 

Animal Fluency *	 21.1 (3.64)	 20.1 (3.6)	 18.8 (4.2)	 17.4 (4.8)	 12.3 (5.0)	

Clock Drawing *	 4.8 (0.4)	 4.5 (1.0)	 4.6 (0.5)	 3.8 (1.3)	 3.1 (1.3)	

Trail Making B * 69.0 (22.6) 81.4 (19.6) 99.9 (43.1) 131 (89.0) 216.9 (75.6) 

* Significant group effect (Chi-squared or ANOVA as appropriate, a = 0.05). Values in parenthesis denote 
standard deviation 
	
	



I was defined as the matrix of pairwise correlations (square, non-symmetric) between the subjects’ FCRestA 
and FCRestB. The dimension of I is N2 where N is the number of subjects in the cohort. Self-identifiability, 
(Iself, Eq. 1), was defined as the average of the main diagonal elements of I, consisting of correlations 
between FCRestA and FCRestB from the same subjects. Iothers (Eq. 2), was defined as average of the off-
diagonal elements of matrix I, consisting of correlations between FCRestA and FCRestB of different subjects. 
Differential identifiability (Idiff, Eq. 3) was defined as the difference between Iself and Iothers. 
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We applied group level PCA [10] in the FC domain, on a data matrix (Fig.1A-B) containing vectorized FCRestA 
and FCRestB (upper triangular of FC matrices excluding main diagonal) from all subjects. Following 
decomposition (Fig.1C), we iteratively reconstructed (Fig.1D) all FCs and quantified Idiff for a range of 
number of PCs (Fig.1E). FC matrices were reconstructed using the number of PCs optimizing Idiff. The 
reproducibility at the functional edgewise level for each subject was evaluated for the original FC matrices 
using the intraclass correlation coefficient (ICC 2,1). In order to minimize effects of outliers, we repeated 
the sampling 30 times selecting 50 of 82 subjects each time. The average edgewise ICC is reported.  
	

	
Figure 1. PCA decomposition and Differential Identifiability (Idiff) scheme. (A) For each subject, two FC matrices (RestA 
and RestB) were estimated for each half of the fMRI time-series.  (B) FC matrices were vectorized (upper triangular) 
and placed into a group FC matrix.  (C) PCA decomposition was performed on the group FC matrix. Each PC can be 
arranged as a matrix in the FC domain. (D) Individual FCs were reconstructed using different number of PCs. (E) Idiff 
was estimated for different number of PCs (in order of explained variance) and the number of PCs maximizing Idiff 
found.	

2.4 Connectome Predictive Modeling 

We used the CPM [16] framework (Fig. 2) to model the prediction of outcome measures (section 2.1) from 
FC (Fig. 2A). Outcome measures were z-scored prior to CPM to allow for direct comparison between 
models across outcome measures. CPM consisted of three steps.  First, we performed an edge selection 
process to identify significantly associated edges for a given outcome measure (Fig. 2B). This step resulted 
in a square, symmetric binary mask (286 x 286 regions) where edges significantly associated with a given 
outcome measure have a value of 1.  We then fit a linear model to predict the outcome measure from FC 
within selected edges by adding their connectivity values per subject (Fig. 2C).  Finally, we validated the 
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model using k-fold cross validation, where k depends on the data sample size (Fig. 2D).  Here, we used a 
leave one out cross validation producing 82 instances of each predictive model.  

 
Figure 2. Connectome Predictive modeling scheme. Black text delineates procedures for each step while blue text 
delineates properties that are important at each step to achieve an overall robust model. (A) Edgewise correlation of 
FC data with the outcome measure was performed. (B) A subset of significant edges (see 2.5.1) was used to create 
masks of positive and negative associations for each outcome measure. Stability of edge selection (regardless of FC 
training data) is important in this step. (C) A linear model was fit to assess associations between FC strength within the 
FC mask and the outcome measure. Coefficient stability for a given set of masks (regardless of FC training data) is 
important in this step. (D) Model generalizability to external data was assessed using a leave one out cross validation. 
It is important that the final model is generalizable to external data.   	

2.5 Unified Differential Identifiability – Connectome Predictive Modeling Pipeline 

Our goal was to assess the effect of improving FC identifiability [8, 15] on CPM [16] of cognitive deficits in 
AD. We first used differential identifiability [5] to quantify how reconstructing individual FC data using group 
level principal component analysis (PCA) improved test-retest identifiability (Fig. 3A). We then evaluated 
how reconstructing FC at different numbers of PCs affected the performance of CPM (Fig. 3B-D). To assess 
the volatility of CPM across training datasets, we compared performance across leave one out iterations 
generated from the same FC session (“within session”, blue arrows). Additionally, we assessed how test-
retest reliability in FC affected CPM by comparing performance between corresponding leave one out 
instances from different FC sessions of the same subjects (“between session”, green arrows).  We 
evaluated stability of edge selection and coefficient estimation across leave one out instances “within 
session” (Fig.3 B-C green arrows) and “between session” (Fig. 3B-C blue arrows. We also evaluated 
specificity in edge selection across outcome measures. Finally, we evaluated the accuracy of models fit on 
RestA FC data in predicting cognitive outcomes from RestA FC data (Figs 1D green arrow) and how well 
those models generalized to predict cognitive outcomes from RestB FCs (Fig. 3D, blue arrow) using a leave 
one out paradigm. 	
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Figure 3. Unified Differential Identifiability – Connectome Predictive modeling pipeline. (A) Processed fMRI time series 
were split in half, generating two functional connectomes per subject per session (FC RestA, FC RestB). These FCs 
were decomposed and reconstructed using incremental PC ranges, in descending order of explained variance. 
Differential Identifiability was assessed for each FC reconstruction. Connectomes for each subject were paired with an 
outcome measure y. Subsequent modeling steps were performed iteratively with FCs reconstructed at all PC ranges. 
Assessments of performance at each step were done both “within session” (green arrows) and “between session” (blue 
arrows) (B) Edgewise correlation of FC data with the outcome measure was performed. Edges meeting defined 
significance criterion were selected, creating a mask for each outcome measure. Stability in edge selection between 
was evaluated. (C) A linear model was fit, modeling the association between FC strength within the RestA mask and 
the outcome measure. Coefficient stability between was assessed. (D) Model accuracy was assessed for RestA 
models, using a leave one out paradigm. Mask and coefficients from RestA were applied to RestB data, also in a leave 
one out paradigm, to evaluate the generalizability of the model. 	

2.5.1 Edge Selection and Mask Stability 

Using measures of similarity, we evaluated (1) stability of edge selection for each outcome measure when 
the FC training data was varied both “within session” (Fig. 3B green arrows) and “between session” (Fig. 
3B blue arrows) (session similarity) and (2) specificity in edge selection across measures for fixed FC 
training data (outcome similarity). As originally proposed in CPM [16], we estimated edgewise correlations 
and created masks for each leave one out instance of a given predictive model by selecting the edges in 
the top and bottom percentile for correlation with each outcome measure (404 edges per mask). We choose 
a percentile based edge selection such that masks for all outcomes measure contained the same number 
of edges, removing the effect of mask density when comparing session similarity and outcome similarity. 	
 
Similarity measures were assessed both on correlation matrices and masks associated with each outcome 
measure. We evaluated similarity in correlation matrices associated with each outcome using the Frobenius 
norm, where values close to zero denote high similarity between correlation matrices. We evaluated the 
similarity of the masks resulting from these correlation matrices using edgewise mask overlap jointly for 
positive and negative masks, where overlap values close to 1 denote high similarity between masks. 
Overlapping functional edges were required to exhibit a significant correlation of the same sign in both 
masks for outcome measures positively correlated to each other. To achieve high stability and specificity, 
the edge selection must show higher session similarity than outcome similarity implying that the outcome 
measure has a greater impact on edge selection than the session of FC data being used. 
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We first performed the assessment of stability described above on original FCs (reconstruction with all PCs) 
to evaluate variable edge selection in the original implementation of CPM on our data, which is 
representative of clinical quality resting-state fMRI data in neurodegeneration. We evaluated within session 
similarity by quantifying pairwise mask overlap of leave one out instances within RestA and within RestB. 
Note that in the “within session” leave one out scenario, every pair of masks were generated using the 
same 80 of the 81 FCs. We evaluated between session similarity by quantifying pairwise mask overlap 
between RestA versus RestB FCs. Note these data are from the same subjects but different “sessions” (as 
data were split into halves). Mean and full range were reported to evaluate overlap across all possible 
comparisons between masks.  
 
Because of the variability observed in session similarity across leave one out masks (Table 2), we 
proceeded to create a consensus mask for all instances of the predictive model (i.e., one mask for each 
outcome measure). We applied bootstrapped random sampling [37] of the whole cohort (1,000 samples) 
to generate distributions of edge-wise Pearson correlations between each outcome and RestA FCs from 
each subject, using the bootstrap mean at each edge as the representative estimate. Masks were created 
using the percentile based approach mentioned above. This process was repeated using the remaining FC 
data (RestB). We then assessed within session similarity (RestA vs. RestB) and average pairwise outcome 
similarity across all PC ranges. 

2.5.2 Model Fitting and Coefficient Stability 

 
Using the edge selection from RestA FCs, we calculated FC strength within each mask for all FCs (i.e. the 
sum of the connectivity values for all the functional edges in the mask) and estimated two sets of coefficients 
for RestA and RestB FCs separately, using a leave one out paradigm. We applied a linear model (Fig. 3C) 
to fit the relationship between FC strength and each outcome measure separately for positive (positive 
model) and negative masks (negative model).  
 
Analogous to the assessment of stability in edge selection, we evaluated stability of model fitting by 
assessing the effect of varying FC training data on coefficient similarity, using both “within session” and 
“between session” approaches. To evaluate “within session” similarity (Fig. 3C green arrows), we 
determined the standard deviation (SD) for each coefficient (b0 intercept, b1 slope) across leave one out 
iterations separately for RestA and RestB, thereby assessing similarity in coefficient estimation across FCs 
included in edge selection (RestA) versus across FCs not included in edge selection (RestB). To assess 
“between session” similarity (Fig. 3C blue arrows), we calculated the sum of squared errors (SSE) between 
RestA and RestB coefficients to assess the deviation between RestA and RestB coefficients derived from 
the “different sessions” of the FCs in the same subjects, where one of the sessions was used for edge 
selection and the other was not.  

2.5.3 Model Accuracy and Generalizability  

To assess model accuracy and generalizability, we designed a validation scheme (Table 2) that allowed us 
to separately assess the contribution to accuracy and generalizability when including an FC in edge 
selection versus coefficient estimation. We used RestA FCs (edge selection and coefficients) for model 
development, and RestB FCs as validation data. We first calculated mean squared error (MSE) on the 
RestA FCs used to fit each leave one out instance of the model (Training) and on RestA FCs left out 
(Testing). Note that all RestA FCs were used in edge selection. Model generalizability was then tested by 
imposing each leave one out model derived from RestA on RestB data. MSE was assessed for RestB FCs 
from subjects used to fit each model instance (Validation1) and on the left out subject (Validation2). Note 
that no RestB FCs were used in edge selection or model fitting.  



Table 2. Scheme for evaluating model accuracy and generalizability.  

2.5.4 Alzheimer’s Disease Related Assessments  

We used binomial tests (a = 0.01) for each outcome measure to assess whether specific RSNs (e.g. DMN-
DMN), or their interactions (e.g. DMN-FP), were over represented in edge selection beyond what could be 
expected from 404 edges chosen at random. Only edges from overrepresented networks (or interactions) 
were visualized using BrainNet viewer [38] and the BioImage Suite [16].  

3 Results  

3.1 Differential Identifiability 

Test-retest reliability (Fig. 4), as measured using Idiff peaked at 82 PCs (Fig. 4A, Idiff = 65.9, Iself = 91.28, 
Iothers = 25.4) which is equal to the number of subjects and explains 78.6% of the variance in the group FC 
data (Fig. 4A). We observed an almost two-fold increase in differential identifiability from 32.7 in raw data 
(with full 164 PCs) to 65 in the optimally reconstructed data (Fig. 2A). Such increase in whole level test-
retest reliability was also observed when looking at individual functional edges where mean edge ICC 
(Fig.4B) increased from 0.40 (#PCs = 164) to 0.87 (#PCs = 82) (Fig. 4B).  

 
 

 Model Development Model Validation 
 Training Testing Validation1  Validation2 

FC Session RestA RestA RestB RestB 
FC included in edge 

selection Yes Yes No No 

Subject included in 
edge selection Yes Yes Yes Yes 

FC included in 
coefficient estimation Yes No No No 

Subject Included in 
coefficient estimation Yes No Yes No 

	



 

Figure 4. Identifiability assessment at the connectome level and edgewise. (A) Connectome level identifiability 
assessment. Iself and Iothers represent similarity between test and retest FCs of the same vs different subjects, 
respectively, across number of PCs used for reconstruction. Differential identifiability (Idiff) is the difference between Iself 
and Iothers. The cumulative explained variance (R2) across number of PCs used for reconstruction is also included. (B) 
Edgewise level identifiability assessment showing edgewise ICC for original data and optimally reconstructed data.  
Identifiability and ICC matrices for optimally reconstructed and all (e.g., raw) data are also presented in (A) and (B), 
respectively.   

3.2 Connectome Predictive Modeling 

3.2.1  Edge Selection – Evaluation of Original CPM  

Average mask similarity measured as mask overlap between leave one out instances of the same session 
(RestA or RestB) ranged from 73% (AVLT Delayed Recall) to 90% (MOCA) across outcome measures. 
Minimum mask overlap between leave out instances from the same session ranged from 20% (Boston 
Naming) to 75% (MOCA), while maximum overlap ranged from 96% (AVLT Immediate Recall) to almost 
100% (MOCA, TrailsB). Mask overlap between leave one out instances of different sessions (RestA vs. 
RestB) was significantly lower than leave one out instances from the same sessions. Remarkably, there 
was no significant difference in overlap when corresponding leave one out instances were compared versus 
when non-corresponding leave one out instances were compared (around 3% Clock Score to around 47% 
MOCA in both cases).  



Table 3. Leave One Out Mask Overlap in original CPM.  

3.2.2 Edge Selection – Stability and Specificity  

 
Stability in edge selection, quantified by session similarity between RestA and RestB edge selection, 
exhibited an optimal and stable range between 35-82 PCs both in terms of correlation matrices and resulting 
masks associated to each outcome. Session similarity in correlation matrices associated to each outcome 
measure (Fig.5A) exhibited stable range of minimal divergence between RestA and RestB (35 to 82 PCs) 
after which divergence began to monotonically increase for all outcome measures. Session similarity in 
masks, as measured by overlap (Fig.5B) between RestA and RestB, exhibited an optimal range of overlap 
(29% AVLT Immediate Recall – 43% Boston Naming) in the range of 35-82 PCs, then monotonically 
decreased after 82 PCs for all outcome measures.  
 
Outcome similarity, quantified by average, pairwise outcome similarity in edge selection for RestA FCs, 
remained relatively stable across the entire PC range, both in terms of correlation matrices (Fig.5A black 
line) and resulting masks (Fig.5B black line). After 82 PCs, session similarity, both in terms of Frobenius 
norm and mask overlap, began to approach outcome similarity, indicating that past 82 PCs edge selection 
begins to lose stability with regard to the training data used to perform edge selection.  
 

 
 

Session Similarity – Original CPM 
Mean [Min Max] Percent Overlap 

 

	

Outcome Measure Within Session Between session 
Same Subjects 

Between Session 
Different Subjects 

	

MOCA* 89.7 [74.6 99.8] 47.3 [46.6 47.9] 47.1 [46.1 47.6] 	
Auditory Learning 
Immediate Recall * 72.0 [49.1 95.5] 3.6 [2.7 4.3] 3.6 [2.3 4.6] 	
Auditory Learning 
Delayed Recall * 72.8 [36.2 95.6] 3.2 [2.4 4.1] 3.2 [1.9 4.2] 	

Boston Naming * 76.5 [19.6 96.9] 4.3 [3.16 5.66] 4.17 [2.1 5.6] 	

Animal Fluency * 74.4 [40.9 97.5] 5.5 [4.3 6.4] 5.4 [3.6 6.4] 	

Clock Drawing* 73.7 [34.8 95.9] 2.45 [2.0 3.1] 2.4 [1.8 3.5] 	

Trail Making B * 89.4 [71.5 99.8] 44.0 [43.5 44.8] 43.9 [41.1 44.6] 	
*Indicates significant difference in leave one out mask overlap “within session” versus “between session” (95% CI) 
	



 

Figure 5. (A) (Black line) Average pairwise Frobenius Norm of correlation matrices between outcome measures and 
RestA FCs. (Colored Lines) Frobenius norm of correlation matrices associated to each outcome measure for RestA 
FCs versus RestB FCs. (B) (Black Line) Average pairwise overlap between masks derived from RestA FCs for different 
outcome measures. (Colored Lines) Mask overlap between RestA FCs versus RestB FCs, for the same outcome 
measure. 

3.2.3 Model Fitting - Coefficient Stability 

The observed variability in coefficients estimated from leave one out iterations using RestA FCs was 
minimal and stable for a wide range of PC numbers, from 82-164 PCs (Fig. 6A-B, Fig.5A-B). In contrast, 
variability in coefficients estimated from leave one out iterations using RestB FCs was minimized at 82 PCs 
(Fig.6 C-D, Fig.7 C-D). Thus, for FCs not included in edge selection, coefficient variability was minimized 
at the exact point where Idiff was maximized. Additionally, divergence in coefficient estimation between 
RestA and RestB was stable for both coefficients until 82 PCs, then began to monotonically increase (Fig. 
8).  Thus, at the point of maximal Idiff, divergence in coefficient estimation between FCs included in edge 
selection (RestA) and FCs not included in edge selection (RestB) was still within the optimal range. 	
 



Figure 6. Standard deviation (SD) in negative model coefficients (b0 intercept, b1 slope) across leave one out instances. 
Note that RestA FCs were used in edge selection while RestB FCs were not. (A) Standard deviation in coefficients from 
RestA negative model. (B) Standard deviation in coefficients from RestB negative model.  



 

Figure 7. Standard deviation (SD) in positive model coefficients (b0 intercept, b1 slope) across leave one out instances. 
Note that RestA FCs were used in edge selection while RestB FCs were not. (A) Standard deviation in coefficients from 
RestA positive model. (B) Standard deviation in coefficients from RestB positive model. 	



 

Figure 8. Divergence, measured as sum of squared errors (SSE), between leave one out coefficients (b0 
intercept, b1 slope) estimated from RestA versus RestB. Note that RestA FCs were used in edge selection while 
RestB FCs were not included. (A) SSE between b0 coefficients for negative and positive models. (B) SSE 
between b0 coefficients for negative and positive models. 

3.2.4 Model Accuracy and Generalizability 
 
At the model development step, where MSE was evaluated on FCs used in edge selection (RestA), MSE 
was lowest for the full range of PCs (raw data, Fig.9A,C) in both Training and Testing subjects. In contrast, 
at the validation step when model accuracy was evaluated on FCs not participating in edge selection 
(RestB), MSE was minimized at the optimal FC reconstruction for Idiff (82 PCs) (Fig.8B&D), for both 
Validation1 subjects (RestA FCs included in model fitting) and Validation2 subjects (RestA FCs not included 
in model fitting), see Table2 for details. These relationships held true across outcome measures and for 
both positive (Fig.9A-B) and negative models (Fig.9C-D). 	



 

 
Figure 9. For all plots, RestA FCs were used for edge selection and model fitting. Using a leave one out approach for 
testing, 82 iterations of each model were fit. In-sample validation was performed by assessing the performance of the 
models on training (solid lines) versus testing subjects (dashed lines). (A) Model performance on RestA FCs. Here 
solid lines are FCs included in edge selection and in training of the model (Training FCs), while dashed lines are FCs 
only included in edge selection (Testing FCs). (B) Model performance on RestB FCs. RestB FCs were not included in 
edge selection or model development. However, solid lines (Validation1 FCs) delineate performance of the model on 
RestB FCs from subjects whose RestA FCs were included in edge selection and model development, while dashed 
lines delineate performance on RestB FCs from subjects whose RestA FCs were only included in edge selection 
(Validation2 FCs).  
 

3.2.5 Alzheimer’s Disease Related Assessments  

As we assessed RSNs that were overrepresented in associations with various AD related cognitive deficits, 
several motifs emerged (Table 4, Fig.10, Fig.S1-S6). Within and between DMN and FP network 
connections were associated with all outcome measures (Fig.10, Fig.S1-S6).  Decreased connectivity 
between ventral attention and frontoparietal networks was associated with poorer performance on 
outcomes with significant attention components (AVLT Immediate recall Fig. S2, Boston Naming Fig. S4, 
and TrailsB Fig. S6).  Connectivity between dorsal attention (DA) and visual networks, stemming from a DA 
node in the parietal cortex, was negatively associated with performance on language measures (Animal 



Fluency Fig. 10 and Boston naming Fig. S4). In contrast, limbic-default mode network connections were 
positively associated with performance on these cognitive outcomes. Additionally, within and between 
network connectivity of the visual network to somatomotor and both attentional networks was associated, 
positively and negatively, with performance on Animal Fluency (Fig. 10), a task known to evoke visual 
imagery. Increased intra-cerebellar connectivity was associated with poorer performance on TrailsB (Fig. 
S6), the only task with a heavy subconscious motor component. 
 
Table 4. Significantly Overrepresented Resting State Networks for each outcome measure. RSNs (e.g. DMN-DMN) or 
their interactions (e.g. DMN-FP) represented above chance in edge selection (binomial test, a = 0.01). RSN 
abbreviations: visual (VIS), somato-motor (SM), dorsal attention (DA), ventral attention (VA), limbic (L), fronto-parietal 
(FP), and default mode network (DMN), subcortical (SUB), and cerebellar (CER) network. 

 

Significant Resting State Networks  

Outcome Measure Positive Mask Negative Mask  

MOCA 
VIS-VA 
DA-VA 
L-FP 

L-CER 

VIS-DMN 
DA-CER 
VA-FP 
FP-FP 

 

Auditory Learning Immediate 
Recall 

VIS-SM 
VIS-VA 

SUB-CER 

SM-SUB 
VA-FP 

VA-DMN 
FP-FP 

 

Auditory Learning Delayed 
Recall 

VIS-SM 
L-CER 

FP-CER 

VA-FP 
FP-DMN 

DMN-DMN 
 

Boston Naming 

VIS-VIS 
SM-FP 
L-DMN 
FP-SUB 

DMN-SUB 

VIS-DA 
VIS-DMN 
SM-SUB 
SM-CER 
VA-FP 
FP-FP 

 

Animal Fluency 

VIS-VIS 
VIS-SM 
VIS-DA 
VIS-VA 

L-FP 
L-DMN 

DMN-DMN 

VIS-DA 
VIS-DMN 
SM-SUB 
DA-DMN 
VA-FP 

 

Clock Drawing 

VIS-SM 
SM-FP 

FP-DMN 
FP-SUB 

SUB-SUB 

VIS-DMN 
VIS-SUB 
SM-SUB 
DA-SUB 

 

Trail Making B VA-FP 
DMN-CER 

SM-VA 
DA-DA 
DA-FP 
L-CER 

CER-CER 

 

 



	
Figure 10: Over represented edges (binomial test, a = 0.01) for the Animal Fluency Test. (Top Left) Cluster gram 
delineating anatomical locations and sign of over represented edges (blue – positively associated edges, red – 
negatively associated edges). (Top Right) RSNs that are over represented beyond change. (Bottom) Glass brain plot 
of over represented edges where nodes are weighted by degree and colored according to RSN.  Positively associated 
edges (left) and negatively associated edges (right) are visualized separately.  
	
 
4 Discussion 
 
Our work provides a comprehensive whole brain and whole cognitive spectrum view on the relationship 
between connectivity and cognition in AD and makes progress towards making individual level predictions 
of cognition from FC biomarkers. We accomplished that by improving the robustness of connectome 
predictive models of AD using differential identifiability, which allowed us to more confidently predict 
cognition from external FC data and identify FC motifs associated with cognitive deficits in AD. 	
 
4.1 Differential Identifiability 

 
The implementation of FC as a biomarker in clinical use requires major advancements in individual level 
identifiability of FC. In this work, we improve individual level FC identifiability, as measured using differential 
identifiability, using group level PCA. As demonstrated by other datasets [5], the number of PCs necessary 
to optimize differential identifiability corresponded to the number of subjects in the cohort (Fig. 4A). This 
indicates that, while the dimensionality of the input data is twice the number of subjects (due to inclusion of 
test and retest data), the subject dimensionality of the data is the cutoff for a more accurate representation 
of individual functional connectomes.  Also, as shown previously [8], optimizing Idiff, a coarse whole brain 
measure, also robustly increased edge wise test-retest reliability for most of functional edges (Fig. 4B). 
Optimal reconstruction retained 42% of the variance in the data, indicating that over half of the variance 
present in individual FC estimates is not representative of robust individual characteristics, despite the 



extensive BOLD time series level cleaning (see Methods). Additionally, we note that Idiff for this dataset is 
much higher than what we saw in previous data where Idiff was optimized by splitting the resting state time 
series in half	[8], highlighting that datasets with coarse temporal acquisition or datasets including clinical 
populations may benefit greatly from this group level PCA cleaning technique in order to improve individual 
level estimates of FC. 	
 
4.2 Edge Selection - Stability and Specificity  
 
We first tackled the challenges in defining a set of FC connections that are associated with cognitive deficits 
in AD by using similarity measures to robustly assess edge selection using permutation of FC training data 
“within session” and “between session”. We found pairwise mask overlap for “within session” FCs to be 
high (average range: 72% - 90%) in spite of the observed high variability across pairs of leave one out 
instances (full range: 20% - 99%). It is noteworthy to remark that these masks were estimated through a 
leave one out procedure, hence all of them sharing 80 of 81 FCs. In contrast, overlap was poor for “between 
session” FCs, regardless of whether pairs of FCs from the same subjects versus FCs from different subjects 
were being compared. A poor overlap between masks reflects a very divergent edge selection, prohibiting 
generalizability in the identification of critical functional connections associated with the outcome measures. 
 
Because one of the ultimate clinical goals of CPM is to identify critical neural networks associated with 
specific cognitive deficits, we proposed to create a consensus mask for each outcome measure based on 
bootstrapped random sampling.  This additionally allowed for comparison of models estimated across leave 
one out instances, aiding in the ultimate goal of defining a single model for prediction of cognition from FC. 
A possible criticism of this procedure is that edge identification using the entire subject cohort precludes 
clear separation of training and testing data. To overcome this issue, we took advantage of previous splitting 
of fMRI data into RestA and RestB. Therefore, edge identification was done separately for RestA vs. RestB 
FCs, allowing for validation of RestA masks and models on RestB data.  
 
Using differential identifiability as a criterion for FC reconstruction, we were able to improve the robustness 
of CPM in identifying neural networks associated to specific cognitive deficits. Overall, stability (session 
similarity) of edge selection displays an optimal regime (35-82 PCs), after which it exponentially decayed 
for all outcome measures (Fig. 6 colored lines). Overlap between RestA and RestB edge selection (Fig.  
6B) for optimally reconstructed data (average overlap 35% across outcome measures) increased by an 
average of 25% from raw data (average overlap < 10% across measures). Reconstructing FC at different 
PC ranges did not affect the relative specificity in edge selection across outcome measures (outcome 
similarity, Fig. 6 black lines). However, past the optimal reconstruction point for differential identifiability, 
session similarity began to approach outcome similarity. Thus, past the optimal range, the FC session being 
used began to exhibit the same level of effect on edge selection as the outcome measure being used. This 
critically hampers the goal of finding underlying, robust brain networks associated with specific cognitive 
outcomes. In contrast, when FC was reconstructed at the optimal point for Idiff, the outcome measure 
matters more in edge selection than the applied FC session 

4.2.1 Model Fitting - Coefficient Stability 

Using differential identifiability as a criterion for FC reconstruction also improved stability of coefficient 
estimation in CPM. By using the edge selection from RestA to fit models on both RestA and RestB FCs, 
we assessed the effect of including versus excluding an FC in edge selection on coefficient estimation.  For 
FCs included in edge selection (RestA FCs, Fig. 7-8A), reconstructing FC at the optimal point for differential 
identifiability did not have an effect on “within session” coefficient variability. The SD in coefficient estimation 
across leave one out instances decreased linearly until 82 PCs, then continued to decrease slightly until 
164 PCs for both the positive and negative models.  In contrast, when FCs were not included in edge 
selection (RestB FCs, Fig. 7-8B), coefficient variability was minimized at 82 PCs for both positive and 
negative models.  Additionally, between session coefficient variability (SSE) was minimal and stable until 
82 PCs, then began to increase monotonically until 164 PCs.   
 
 
 



4.3 Model Accuracy and Generalizability  
 

In addition to improving robustness of edge selection and parameter estimation in CPM, we also improved 
prediction of cognition from external FC data by using differential identifiability as the criterion for FC 
reconstruction. We assessed the influence of coefficient estimation versus edge selection on model 
accuracy and generalizability across PC ranges by comparing MSE in the model development versus model 
validation steps. We first assessed the influence of coefficient estimation in the model development step 
where all RestA FCs were included in edge selection, but one FC was left out of coefficient estimation for 
each instance of the model. We found that if an FC was included in edge selection, then whether that same 
FC was included in coefficient estimation or not (Fig. 9A, solid and  dashed lines, respectively) the observed 
pattern of MSE changes over the range of numbers of PCs in any outcome measure remained the same. 
A steep drop in MSE was observed as 82 PCs were reached, then MSE modestly decreased over the rest 
of the PC range for both Training and Testing subjects.  We then assessed the influence of edge selection 
in the Validation step by using the masks and models estimated from RestA FCs in estimation of outcome 
measures from RestB data, in a leave one out fashion. Here, none of the FC data was used in the edge 
selection or coefficient estimation steps. However, all of the RestA data of the same subjects was included 
in edge selection, while the RestA data from one subject was left out of coefficient estimation at each 
instance of the model. In contrast to coefficient estimation, whether an FC was included in edge selection 
(Fig. 9A, RestA FCs) or left out of edge selection (Fig. 9B RestB FCs) had a large influence on MSE changes 
over the range of PCs across all outcome measures. RestB FCs exhibited a clear minimization of MSE at 
82PCs. This was equivalent for subjects whose RestA FC was included in coefficient estimation 
(Validation1) and for subjects whose RestA FC was left out of coefficient estimation (Validation2). Thus, 
masks and models fit on FC data reconstructed past the 82 PCs, appear to be over fitting to the 
idiosyncrasies in the RestA training data.  
 
4.4 Alzheimer’s Disease Related Assessments 
 
We assessed whole brain connectivity in association to a representative spectrum of cognitive deficits in 
AD. We identified RSN components playing significant roles in prediction of each cognitive outcome and 
then assessed patterns in RSNs involved across cognitive outcomes. We identified RSN components or 
their interactions, that played significant roles in predicting cognitive outcomes as well as RSNs that played 
global roles in prediction of cognitive outcomes (Table 3). For instance, the dorsal attention and  
frontoparietal network connectivity was consistently associated with cognitive tasks that included a large 
attention component, consistent with a study showing that interaction between these networks plays a 
critical role in perceptual attention	[39]. Impaired connectivity between these networks is also associated 
with cognitive decline in AD measured by increasing clinical dementia rating score [40]. We also identified 
that interactions between the visual network and other RSNs were consistently associated with tasks that 
required item generation in the context of verbal memory retrieval (i.e., AVLT, MOCA) or spontaneous 
generation of items belonging to a given category (i.e., Animal Fluency). This finding suggests an interactive 
role of the visual system with other parts of the brain when executing tasks requiring semantic organization 
and imagery. This role of the visual system is supported by other studies identifying activation of the visual 
cortex and cognitive networks in imagery and semantic association tasks [41, 42]. Additionally, the visual 
cortex has also been implicated in visual short term memory and working memory	[41]. Furthermore, in AD, 
visual network connectivity has been previously associated to neurofibrillary tangle deposition [43] and with 
cognitive complaints in cognitively normal or MCI subjects [13]. Finally, we identified that frontoparietal and 
default mode network were associated with all cognitive outcomes. The central role of these networks in 
AD [26, 40, 44, 45] and their strong associations with amyloid [26, 46-48] and tau deposition [43, 47, 49] 
has been consistently documented. 	
 
4.5 Limitations and Future work 
 
The unified identifiability-CPM framework proposed here provides many opportunities for improving the 
clinical utility of FC. An important and necessary step to improve the clinical utility of FC is to evaluate 
results obtained using this unified framework on an external dataset such as ADNI3, which includes similar 
acquisition and available cognitive outcomes. This will require the estimation of final hyper parameters from 
the ensemble of those estimated here, for instance by averaging coefficients obtained across leave one out 



instances. In addition to external validation of the framework proposed here, our results indicate that there 
are other opportunities to improve both edge selection and predictive capability of FC. Despite showing 
significant improvement in robustness of edge selection using our framework, we were still under 40% 
“between session” overlap in edge selection for all outcome measures. This may indicate that further 
investigation into the impact of the scan length on edge selection should be assessed. Edge selection may 
also be improved by taking into account the network relationship between edges, as opposed to using 
edgewise correlation with thresholding which treats edges as independent entities. Additionally, 
assessments of within and between RSN edges and their associations with individual cognitive outcome 
measures indicate that these edges have distinct relationships with cognitive outcomes. CPM models may 
be improved by estimating separate coefficients for within and between RSN strength. Finally, CPM 
traditionally uses strength as the summary measure for the edges associated with each outcome. However, 
the edge selection step of CPM can be thought of the identification of a subgraph/network associated with 
that outcome. Therefore, summarizing edges using other graph theory metrics of both network integration 
and segregation may provide additional predictive power. Finally, CPM may also prove useful in predicting 
change in cognitive outcomes over time. Finally, assessing the utility of CPM to predict longitudinal 
outcomes in AD would be a worthy contribution towards improving FC utility as a clinical biomarker.	
 
5 Conclusions 
 
Our framework improved the robustness of individual level prediction of cognition from FC, which is the first 
step towards clinical use of FC and better understanding of how functional connectivity supports cognition 
in AD. We showed that the joint framework of differential identifiability with connectome predictive modeling 
improves the quality of models obtained from CPM. Additionally, we showed that the use of two FC sessions 
from each subject provides a unique perspective when assessing and validating connectome predictive 
models. Collectively, our results indicate that robustness in the edge selection step is the most crucial 
aspect towards generalizability. Finally, in improving the robustness of CPM using differential identifiability, 
we performed a comprehensive assessment of the associations between functional connectivity and 
cognitive deficits in AD, across the whole brain and across the spectrum of deficits observed in AD. Our 
findings indicate both specific and global associations of resting state functional connectivity with cognitive 
deficits in AD.  
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Supplementary Figures 
 

	
Figure S1: Over represented edges (binomial test, a = 0.01) for the Montreal Cognitive Association Test (MOCA). (Top 
Left) Cluster gram delineating anatomical locations and sign of over represented edges (blue – positively associated 
edges, red – negatively associated edges). (Top Right) RSNs that are over represented beyond change. (Bottom) 
Glass brain plot of over represented edges where nodes are weighted by degree and colored according to RSN.  
Positively associated edges (left) and negatively associated edges (right) are visualized separately.  



	
Figure S2: Over represented edges (binomial test, a = 0.01) for the AVLT Immediate Recall test. (Top Left) Cluster 
gram delineating anatomical locations and sign of over represented edges (blue – positively associated edges, red – 
negatively associated edges). (Top Right) RSNs that are over represented beyond change. (Bottom) Glass brain plot 
of over represented edges where nodes are weighted by degree and colored according to RSN.  Positively associated 
edges (left) and negatively associated edges (right) are visualized separately.  
	



	
	
Figure S3: Over represented edges (binomial test, a = 0.01) for the AVLT Delayed Recall test. (Top Left) Cluster gram 
delineating anatomical locations and sign of over represented edges (blue – positively associated edges, red – 
negatively associated edges). (Top Right) RSNs that are over represented beyond change. (Bottom) Glass brain plot 
of over represented edges where nodes are weighted by degree and colored according to RSN.  Positively associated 
edges (left) and negatively associated edges (right) are visualized separately.		
	



	
Figure S4. Over represented edges (binomial test, a = 0.01) for the Boston Naming Test. (Top Left) Cluster gram 
delineating anatomical locations and sign of over represented edges (blue – positively associated edges, red – 
negatively associated edges). (Top Right) RSNs that are over represented beyond change. (Bottom) Glass brain plot 
of over represented edges where nodes are weighted by degree and colored according to RSN.  Positively associated 
edges (left) and negatively associated edges (right) are visualized separately.  
	
	
	



	
Figure S5. Over represented edges (binomial test, a = 0.01) for the Clock Drawing Test. (Top Left) Cluster gram 
delineating anatomical locations and sign of over represented edges (blue – positively associated edges, red – 
negatively associated edges). (Top Right) RSNs that are over represented beyond change. (Bottom) Glass brain plot 
of over represented edges where nodes are weighted by degree and colored according to RSN.  Positively associated 
edges (left) and negatively associated edges (right) are visualized separately.  
	



	
Figure S6: Over represented edges (binomial test, a = 0.01) for the Trail Making B test. (Top Left) Cluster gram 
delineating anatomical locations and sign of over represented edges (blue – positively associated edges, red – 
negatively associated edges). (Top Right) RSNs that are over represented beyond change. (Bottom) Glass brain plot 
of over represented edges where nodes are weighted by degree and colored according to RSN.  Positively associated 
edges (left) and negatively associated edges (right) are visualized separately.  
	


