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ABSTRACT: Dysregulation of lipid metabolism is associated with many diseases
including cancer. Lipid droplet (LD), a ubiquitous organelle in mammalian cells,
serves as a hub for lipid metabolism. Conventional assays on the measurement of lipid
metabolism rely on the quantification of the lipid composition or amount. Such
methods cannot distinguish LDs having different biofunctionalities in living cells, and
thus could be inaccurate in measuring the instantaneous lipogenesis of the living cells.
We applied label-free stimulated Raman scattering microscopy to quantify the LDs’
spatial-temporal dynamics, which showed direct links to cellular lipid metabolisms and
can separate LDs involved in different metabolic events. In human cancer cells, we
found that changes in the maximum displacement of LDs reflected variations in
cellular lipogenic activity, and changes in the average speed of LDs revealed alterations
in LD size. The LD dynamics analysis allowed for more accurate measurement in the
lipogenesis and LD dimensions, and can break the optical diffraction limit to detect
small variation in lipid metabolism that was conventionally undetectable. By this method, we revealed changes in the lipogenic
activity and LD sizes during glucose starvation of HeLa cells and transforming growth factor beta-induced epithelial-to-
mesenchymal transition of SKOV-3 cells. This method opens a way to quantify lipid metabolism in living cells during cellular
development and transition.

Mammalian cells deposit excess lipid molecules obtained
from endogenous synthesis or extracellular uptake in

cytoplasmic lipid droplets (LDs), the hub for lipid metabolism.1

The biogenesis of fatty acids and the formation of LDs occur on
the endoplasmic reticulum (ER), where the fatty acids are
converted to triglycerides for storage.2 The mature LDs are
then transported into cytosol along the cytoskeleton, primarily
microtubules, and are degraded by lipases or autophagy to
release the fatty acids.3 For a long time, LDs were perceived as
simple inert lipid reservoirs without definitive biological
function.4 In the past decades, substantial evidence has broken
this conventional thinking and revealed LDs as dynamic
organelles involved in many vital functions such as energy
production, membrane synthesis, protein degradation, and
signaling.2 The dysregulation of lipid metabolism has been
linked to many human diseases such as obesity, cancers, and
other metabolic disorders. For example, increased number of
LDs has been widely reported to be associated with multiple
cancers;5 degradation of LDs by lipolysis has been shown to
promote cancer progression;6 accumulation of cholesteryl ester
in LDs has been linked to cancer aggressiveness.5,7 Therefore,
quantitative analysis of LD activities may provide crucial
information to study such disease-related lipid metabolism
changes.
Conventionally, lipid metabolism is mainly studied by

measurements of lipid contents or compositions. Methods

such as mass spectrometry, nuclear magnetic resonance
spectroscopy, and chromatography quantify the lipid amount
and distinguish different lipid species in a lipid pool extracted
from a large number of cells.8−10 Imaging techniques, such as
electron microscopy or immunofluorescence microscopy, can
visualize the morphology of individual LDs.11−14 However,
these methods either cannot provide the spatial information at
a single-cell level or are not applicable to living cells. LDs are
highly dynamic organelles.1,4,15 The dynamics of LDs contains
rich information to improve understanding of lipid metabo-
lism.1,4,15 Fluorescence microscopy, together with fluorephore-
conjugated lipids, lipid binding probes, or lipid soluble dyes has
been used to study the dynamics of LDs.16,17 The fluorephore
conjugation or binding probes may alter the biophysical
properties of the lipids, thus affecting the function of the
lipid for understanding of lipid metabolism.18 Lipid soluble
dyes such as BODIPY and Nile red have low specificity for
lipids and can cause perturbation to biological functionality.19,20

LDs can be imaged by label-free microscopies. Because of the
refractive index difference, LDs can be seen by phase contrast,
differential interference contrast, and quantitative phase-
imaging microscopes.21−23 Third harmonic generation micros-
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copy has also been used to image LDs in a label-free manner.24

However, these methods do not contain chemical information
and specificity. Raman microscopy can visualize detailed
chemical compositions of lipid droplets.25,26 Nevertheless,
Raman scattering has a very low signal level and requires
long image acquisition time; thus, is not able to image the
dynamics of LDs in living cells. Recently developed coherent
Raman scattering microscopies, including coherent anti-Stokes
Raman scattering (CARS) microscopy and stimulated Raman
scattering (SRS) microscopy, have been widely used in the
study of LDs.5,27−40 CARS and SRS can quantify the LD
amount,30,33,37 size distribution,36,37 and compositions.5,38

However, the spatial-temporal dynamics of LDs, which plays
an important role in understanding the lipid metabolism, has
been generally ignored despite a few research studies that have
been published. Using CARS, Nan et al. monitored LD
subdiffusion and active transportation in steroidogenic mouse
adrenal cortical (Y-1) cells.41 Dou et al. tracked LD motion in
early drosophila embryos using SRS microscopy.32 There has
not been any research investigating the relationship between
LD dynamics and cell metabolism.
In this work, we used SRS microscopy to study the

correlation between the dynamics of LDs and the cell
metabolism. By tracking the LD movements and statistically
analyzing the LD dynamics, we for the first time show that the
dynamics of LDs can be used to measure lipid metabolism in
living cells, including the changes in the lipogenic activity and
the statistical alternation in LD size. We found that the LD
dynamic analysis can not only distinguish LDs with different
biological functionalities but also detect changes in the lipid
metabolism that are undetectable using conventional methods.

■ EXPERIMENTAL SECTION
A schematic of a lipid abundant LD is shown in Figure 1a,
which includes a large amount of accumulated triglycerides and
cholesteryl esters, a single-layer phospholipid membrane, and
membrane proteins. To image the LDs, we tuned the laser
beams to excite the Raman transition at 2850 cm−1,
corresponding to the CH2 symmetric stretching from the acyl
chains in the triglycerides or sterol esters accumulated in the
LDs. Other organelles such as mitochondria or lysosomes,
having much less lipid composition than LDs, contribute little
signal at this Raman transition. Unlike use of the fluorescent
dyes, such as BODIPY, SRS imaging did not perturb living cell
functionalities. This label-free manner ensures the accuracy in
the quantification of LD dynamics using SRS microscopy.
To study the LD dynamics, we consecutively acquired 60

images in 2 min to build an image stack. The image stack was
imported to a particle-tracking software (Particle Tracker, a
ImageJ plugin software) for quantitative LD trajectory
tracking.42 All the LD trajectories were saved and processed
by a lab-written MATLAB-based program so that all the
necessary parameters can be calculated and analyzed. Our
experimental workflow is demonstrated in Figure 1b. As an
example, the trajectory of an LD in a MIA PaCa-2 cell (Movie
S1 in the Supporting Information) is displayed in Figure 1c,
from which we found that the LD moved to different locations
as a function of time. Figure 1d replots the trajectory of the LD
and defines several parameters we used for analysis. The
maximum displacement (maxd) is the largest value of the LD
displacement (d) from the initial position. The average speed
(sp) of an LD is defined as the total trajectory length divided by
the total time. The maxd value can be used to discriminate the

two types of LD movements in living cells:41 the random
Brownian-like diffusive movement (smaller maxd value) and
the active transportation along microtubules (larger maxd
value). By control of the LD active transportation using
nocodazole, an inhibitor of microtubule polymerization, we
have confirmed that the inhibition of LD active transportation
can significantly decrease the value of maxd (Figure S1). The sp
value was used to interrogate the sizes of LD since larger LDs
correspond to smaller sp value (more details see Supporting
Information III).

■ MAXIMUM DISPLACEMENT OF LIPID DROPLETS
MEASURES LIPOGENIC ACTIVITY OF LIVING CELLS

The lipogenic activity of living cells has been estimated by using
the total amount of lipid components obtained from
imaging.33,43 Such a method, however, does not consider the
differences among individual LDs in the cells. At a specific time,
an LD might be growing due to lipogenesis, or it might be
shrinking due to lipolysis. When cells change their lipogenic
activity, the ratio between these two pools of LDs would
change. Such a change can reflect the instantaneous alternation
in lipogenic activity. The measurement on the total amount of
lipids, which is incapable of separating the two types of LDs,
may not be able to accurately evaluate the instant lipogenic
activity. On the other hand, from the LD dynamics analysis, we
found that the maxd value can be used to distinguish LDs
related to different activities. From the analysis in LD
trajectories, we discovered two distinct groups of LDs in a
cell. One group of LDs tended to conduct a diffusive-like
motion, having very small value in maxd. The other group of
LDs, in contrast, tended to be actively transported to a different

Figure 1. (a) A schematic of a lipid droplet. TAG, triglyceride; CE,
cholesteryl ester. (b) Workflow of the quantitative LD dynamics
analysis. (c) The trajectory of a single LD in a MIA PaCa-2 cell. At the
four time points, the LD moved to different locations. The green lines
plot trajectories at the four time points starting from t = 0 s. The scale
bar is 5 μm. (d) The same LD trajectory (green line) in 124 s as
displayed in panel (c). The definitions of LD displacement (d),
maximum displacement (maxd), trajectory length (l), and average
speed (sp) are illustrated using this trajectory.
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location in the cytosol within the acquisition time, showing a
much larger value in maxd. It is known that LDs form from the
ER membrane by depositing newly synthesized fatty acids in
forms of triglycerides or cholesteryl esters in the LDs. After
formation, ER-associated LDs are released into the cytosol and
transported to other locations. We speculated that the group of
LDs associated more with the diffusive motion were associated
with ER, which limited their active transportation. To test this,
we used ER-tracker staining in MIA PaCa-2 (Figure 2a) and

HeLa (Figure 2c) cells, followed by LD tracking and
quantitative analysis. The results showed that more than 80%
of cytosol LDs (CS-LD) but less than 15% of ER-associated
LDs (ER-LD) have a maxd value greater than 1.1 μm (Figure
2b, 2d). Since the ER-LDs are more associated with lipognesis
and CS-LDs are more likely for lipolysis, the relative amount of
CS-LDs to ER-LDs, as indicated by the value of maxd, could be
used to detect the instantaneous lipogenic activity. A lower
value of maxd should correspond to a higher level of lipogenic
activity and a lower level of lipolysis of the cells.
To test whether the quantification of maxd can be used to

distinguish changes in the instantaneous lipogenic activity, we
analyzed cells during glucose starvation and refeeding. It is
known that glucose deprivation can reduce the lipogenic
activity while glucose refeeding can recover such an activity
based on enzyme activity measurements.44,45 Using our
method, we measured the instantaneous lipogenic activity
changes in living HeLa cells, induced by the glucose starvation
and refeeding. From Figure 3a, we found that the histogram
curve of maxd from the starvation group (red) shifted to larger
values compared to those obtained from the control (black)

and the refeeding (blue) groups, indicating an increase in the
overall value of maxd under starvation, which is consistent with
a decrease in lipogenesis induced by glucose starvation. Figure
3a also shows that curves from the control and the refeeding
groups almost overlap, indicating that the lipogenic state
recovered after 6 h glucose refeeding. Figure 3b compares the
percentage of LDs having maxd > 1.1 μm and clearly reveals the
glucose starvation-induced decrease and the glucose refeeding-
induced restoration of lipogenesis in HeLa cells. There is no
strict cutoff between the diffusive motion and the active
transportation movement of LDs. Here we select maxd = 1.1
μm as a cutoff because it can quantitatively distinguish the
change of maxd histogram. The value itself does not have a
physical meaning. Other values of maxd can also be used as
cutoff values for the quantitative analysis of changes of the
histogram. We can consider that 1.1 μm lies in the cutoff range
between the diffusive and the active transportation movements
of LDs.
To further verify the correlation between LD maxd and

lipogenesis, we used fatty-acid-synthase inhibitor C75 to
regulate the lipogenesis of HeLa cells and analyzed the LD
dynamics. As shown in Figure S2, 10 h fatty-acid-synthase
inhibition increased the maxd value, indicating a decrease in
lipogenesis.
In conventional imaging-based studies, to evaluate the

lipogenic activity of the cells, the total lipid amount in different
situations needs to be quantified. In such a way, intensity
thresholding is required to separate LD from other compart-
ments of the cell. The uncertainty in such threshold selection
could impact the accuracy of the results. We found that, in the
LD dynamics analysis, the impact of the intensity thresholding
on determining the lipogenic activity can be significantly
alleviated. For example, we selected three different intensity
thresholds (low, medium, and high) to analyze LDs in an SRS

Figure 2. Differentiating the ER-LD from the CS-LD. (a) Top left: An
image showing the LDs (red) in a MIA PaCa-2 cell, measured by SRS.
Top right: An image showing the ER (green) in a MIA PaCa-2 cell,
measured by two-photon excitation fluorescence (TPEF). Bottom left:
Merged SRS and TPEF images. Bottom right: The trajectories of LDs
in the cell are shown in color curves. The dashed lines mark the
boundary of the ER according to ER-tracker signal. (b) The
percentage of CS-LDs and ER-LDs having maxd > 1.1 μm in MIA
PaCa-2 cells. (c) and (d) are similar imaging and analysis as those in
(a) and (b), respectively, for HeLa cells. Colors in panel (a) and (c)
are false colors added for image interpretation.

Figure 3. Maximum displacement of LDs measures lipogenic activity
in living cells. (a) Normalized histograms of maxd for HeLa cells under
normal culture conditions (black line), 12 h glucose starvation (red
line), and 6 h glucose refeeding after 12 h glucose starvation (blue
line). (b) The percentage of LDs in HeLa cells having maxd > 1.1 μm
under the three conditions in panel (a). (c) The percentage of LD area
in total cell area by choosing three intensity thresholds. (d) The
histograms of maxd measured at the same sample location using the
same intensity thresholds as in panel (c). (e) The percentage of LDs in
panel (d) having maxd > 1.1 μm. *** p < 0.001, n.s. (no significance),
N = 9 for each group. Number of trajectories analyzed: 4749 for
control, 3288 for starvation, 1498 for refeeding.
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image of HeLa cells. The total amount of lipid content
determined by the intensity thresholding has a 25% standard
deviation (Figure 3c). From the LD dynamics analysis, using
the same intensity threshold values, we found highly overlapped
histogram curves (Figure 3d) with only 1.1% standard deviation
for LDs having maxd > 1.1 μm (Figure 3e). These results
indicate our LD dynamics analysis allows for more accurate
determination of cellular lipogenic activity compared to the
conventional method based on the measurement of LD
amount.

■ SPEED OF LIPID DROPLETS MEASURES LD SIZE
DISTRIBUTION IN LIVING CELLS

The size of LDs is another important parameter associated with
the lipid metabolism of a cell.12,46 Conventionally, the size of
LDs inside cells are measured by imaging and intensity
thresholding. Alternatively, we demonstrate a new way to
quantitatively analyze the LD size by measuring the value of LD
sp from the dynamics analysis. Although a cell is not an ideal
Brownian motion system for LDs, it is still reasonable to
assume that an increase in the LD size results in a decrease in
the LD average speed.47−49 To verify this speculation, we
studied the change in LD sizes before and after glucose
starvation in HeLa cells. During glucose starvation, LDs are
degraded by lipases or autophagy for energy production and
thus decrease in size.2 First, we used the conventional intensity-
thresholding method to confirm such a change. Left panels in
Figure S3a,b show SRS images of HeLa cells under control and
starvation conditions. We used intensity thresholding to select
particles that represent LDs in both images, as shown in the
right panels in Figure S3a,b. From both the histograms of the
particle size (Figure S3c) and the average particle size analysis
(Figure S3d), we confirmed that the size of LDs in HeLa cells
experienced a decrease after glucose starvation.
From the analysis of the LD dynamics, we first plotted the

histograms of LD sp in HeLa cells before and after glucose
starvation (Figure 4a). The histogram of LD sp from the
starvation group (red) shifted to larger values compared to that
from the control group (black), implying a statistical decrease
in the LD size. Figure 4b demonstrates an increase in the
percentage of LDs having sp > 0.12 μm/s in HeLa cells after
starvation. Similar to the maxd analysis, the value 0.12 μm/s
here is used as a cutoff value to better quantitate changes in sp
histograms. There is no specific physical meaning for the value
itself. Additionally, we found that after 6 h glucose refeeding of
the glucose-starved HeLa cells in the glucose-present medium,
the LDs restored their sizes to the levels of the control group
(Figure S4). These results agree with the results obtained from
the conventional method and show that analysis of LD
dynamics can be used to quantify alterations in LD size.
Compared to the conventional method, the LD dynamics

measurement can provide more accurate results. For example,
we compared the LD size on the same HeLa cell sample at
different locations, which were expected to be statistically
identical. From intensity thresholding of the SRS images, we
obtained significant difference in the distributions of the LD
size (Figure 4c). The variance of the size histograms from the
two locations was 0.130. In contrast, from the analysis of the
LD dynamics, the histograms of LD sp were highly overlapped
(Figure 4d), with a variance of 0.027. Dividing the variance by
the total area under the curve, the variance was reduced by a
factor of 9.3 using the LD dynamics analysis.

■ STUDY THE LIPID METABOLISM DURING
EPITHELIAL-TO-MESENCHYMAL TRANSITION OF
SKOV-3 CELLS

To highlight the capability and the advantage of our method in
detecting changes in lipid metabolism in living cells, we studied
epithelial-to-mesenchymal transition (EMT) of SKOV-3 cells
induced by transforming growth factor beta (TGF-β), a well-
established model for EMT study.50 EMT is an important
biological process involved in cancer metastasis.51,52 Many
studies have been conducted to explore the EMT-related
signaling pathways. However, little understanding has been
achieved regarding the role of lipid metabolism and dynamics in
EMT. Our method was used to study metabolic changes in
lipids during EMT. From Figure 5a, we found that the
histogram of maxd measured at the mesenchymal state shifted
to lower values compared to that measured at the epithelial
state. Such a change indicates an increase in the lipogenic
activity during EMT. The same conclusion can be obtained by
comparing the percentage of LDs having maxd > 1.1 μm
(Figure 5b). Measurements at several time points (96, 120, and
216 h) at the mesenchymal state confirmed the changes in
lipogenesis during EMT (Figure S5). Such a result is a direct
evidence of the lipogenic activity change during EMT observed
for the first time in living cells, which agrees with other
reported observations regarding the lipogenic reprogramming
during EMT.53

Such a change in the lipogenic activity cannot be detected
from measuring the total LD amount using the conventional
imaging method. As shown in Figure 5c, no difference was
found in LD amount between the two states by using SRS
imaging and intensity thresholding of LD signals. First of all,
the total LD amount may not be an accurate parameter to
quantify the instant lipogenic activity. Second, the uncertainty
in selecting the threshold value can hamper the quantification
of LD amount. Third, in SKOV-3 cells, a large portion of the
LDs are smaller in size than the optical resolution of our

Figure 4. Speed of LDs measures statistics in the LD size in living
cells. (a) Normalized histograms of LD sp in HeLa cells under normal
conditions (black) and after 12 h glucose starvation (red). (b) The
percentage of the fast-moving LDs (sp > 0.12 μm/s) in HeLa cells
under the two conditions in panel (a). (c) The histograms of LD sizes
derived from two measurements by intensity thresholding, which were
performed on the same HeLa cell sample at different locations. (d)
Histograms of sp obtained from the two measurements in panel (c)
using LD dynamics analysis. ***p < 0.001, N = 9 for each group.
Number of trajectories analyzed: 4749 for control, 3288 for starvation.
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microscope. In such a case, the method based on SRS imaging
and intensity thresholding cannot accurately measure the
difference in the overall LD amount.
With use of the LD dynamics analysis, we also found that the

LD size changed during TGF-β induced EMT of SKOV-3 cells.
Comparing the histograms of sp during EMT, we found that
the LDs first decreased in size and then grew in size at the
mesenchymal state (see Supporting Information and Figure
S6). Such changes in the LD size cannot be observed from
conventional methods by intensity thresholding. For example,
we compared LD size in SKOV-3 cells at the epithelial state and
the mesenchymal state (measured at 216 h) using conventional
intensity-thresholding method. The results gave very similar
size histograms in both states (Figure 5d). In contrast, the LD
dynamics analysis revealed a decrease in the overall value of the
sp, indicating a statistical difference in the LD sizes between the
two states (Figure 5e). For the extremely small LDs in the
SKOV-3 cells, due to limitation of optical resolution, the
conventional imaging method can no longer provide accurate
measurement of the LD size. However, in the LD dynamics
analysis, the LD sizes are determined by sp, a value that can be
precisely measured beyond optical diffraction limit by single-
particle tracking. The above results show that our method can
break the optical diffraction limit in LD size measurement and
can detect subtle LD-related metabolic changes that are
undetectable by conventional ways.

■ CONCLUSION
In summary, we demonstrated that time-course label-free SRS
imaging can be used to monitor the spatial-temporal dynamics
of LDs in living cells, and such dynamics information can be
used to differentiate changes in lipid metabolism in living cells.
Using glucose starvation, glucose refeeding, and EMT, we
showed that the quantification in the values of LD maxd and sp

respectively allowed for more accurate measurements in LD
lipogenic activity and size distribution, compared to the
conventional methods relying on intensity thresholding.
Furthermore, through single-particle tracking, our method can
exceed the optical diffraction limit and detect changes in the
LD activity and size that were conventionally undetectable. The
method reported here could be broadly applied to quantify
metabolic changes in living cells caused by drug treatment,
infection, or stress, providing noninvasive and nonperturbative
measurements that cannot be achieved using fluorescence
labeling. Extending our method to analyze other organelles
could lead to improved understanding in cellular dynamics.
Furthermore, combining this method with isotope labeling,
which is usually less toxic to a biological system than
fluorescent dyes, can help understand dynamics of many
newly synthesized metabolites in living cells. By introducing a
novel way to study organelle dynamics and metabolism in living
cells, our method has significant scientific value in analytical
chemistry and biological applications.
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