Adversarial Attack and Defense

Stanley Chan and Guanzhe Hong
What is Defense?

Many attacks of security concern
• Digital attacks on image classifiers
• Misclassifying road signs [Evtimov et al. 2017]
• Incorrectly identifying ad as natural content [Biggio et al. 2017]
• Incorrectly recognizing voice commands [Carlini et al. 2018]
• Etc.

Current focus of defense research in CV
• Image classifier robustness
• Small l_p distortion

But what does defense mean?
• What are the adversary’s goals?
• How much does the adversary know about the system?
• How much attack capability is allowed?
A defense system must be falsifiable!

Adversary goals
• To cause erroneous output
• E.g. targeted/untargeted image misclassification

Adversarial capabilities
• Need adversarial sample x' to satisfy $d(x, x') < \epsilon$
• d is commonly some l_p norm
• Is this constraint reasonable?
 • Allows for rigorous definition of adversarial risk
 • Hard to compute it perfectly
 • Not suitable for many realistic scenarios [Gilmer et al. 2018]
Adversary knowledge

• Kerckhoff’s principle: unreasonable to assume defense system can be held secret, even in the black-box setting

• White-box
 • Full access to model

• Black-box
 • No knowledge about the model
 • Usually, attacker is allowed to probe the classifier a few times
Input transformations I

Existing attempts

1. Image cropping and rescaling + bit-depth reduction + JPEG compression + randomly drop pixels, restore with total variance minimization [Guo et al. 2018]
2. Image blurring [Li et al. 2016]
3. Color depth reduction + median filter [Xu et al. 2017]
4. Dimensionality reduction [Bhagoji et al. 2017]
5. Denoise before classification [Liao et al. 2018]
6. Upscale image with random zero paddings [Xie et al. 2018]
7. Project image to data manifold [Song et al. 2018, Samangouei et al. 2018]

Etc...
All found to be ineffective in their threat models [Athalye et al. 2018, Carlini et al. 2017]

1. Too “hard-coded”
 • E.g. Blurring filter
 • Vulnerable to slightly modified attacker
 • E.g. solve with gradient descent
 \[\text{argmin}_{\delta} \|\delta\| \text{ s.t. } f(\text{blur}(x + \delta)) \neq f(\text{blur}(x)) \]

2. Obfuscated gradient
 • E.g. Image compression, bit-depth reduction, denoising, random zero padding, projection onto data manifold, etc.
 • Gradient information becomes nearly useless, obscuring iterative gradient-based attack
 • To attack
 • Compute expected gradient for network with randomization
 • Differentiable approximation to nondifferentiable layer

3. Ensemble of weak defenses is not strong
 • E.g. Color depth reduction + spatial smoothing, ensemble of detectors
 • For some defense, attacks transfer
 • For some, combine gradient info from each component
Adversarial Training I

Basic properties
• Aims to solve

$$\min_{\theta} \mathbb{E}_{(x,y) \in D} \left[\max_{\delta \in S} L(\theta; x + \delta, y) \right]$$
• Inner maximum approximated by an attack algorithm
• Use natural and adversarial samples for training
 • The natural and the adversarial sample share the same label
• About 50% accuracy under strongest attack (white box) [Athalye et al. 2018]
Adversarial Training II

Adversarial training
• Current state-of-the-art
• Requires
 • A strong attack on the specific network
 • Network is sufficiently expressive [Madry et al. 2018]
• Why?
 • Seems to land on “flat” parts of the loss landscape
 • Decision boundary generally has low curvature near natural images [Dezfooli et al. 2019]
• Seems to lead to decrease in natural accuracy [Su et al. 2018]
Modified Network I

1. Network distillation [Papernot et al. 2016]
 • Train *teacher* network with temperature T
 • Evaluate teacher network on training instances, produce softmax vectors
 • Feed softmax vectors to *student* network as *soft labels*
1. Network distillation
 • Softmax output $q_i = \frac{\exp(z_i/T)}{\sum_j \exp(z_j/T)}$
 - As $T \to \infty$, $q_i \to \frac{1}{m}$
 - In usual NN, $T = 1$
1. Network distillation

- Softmax output \(q_i = \frac{\exp(z_i/T)}{\sum_j \exp(z_j/T)} \)
 - As \(T \to \infty \), \(q_i \to \frac{1}{m} \)
 - In usual NN, \(T = 1 \)

- Claims
 - The student network should overfit less than the teacher
 - Robust against \(l_0 \) attacks
- Later found ineffective in white box setting [Carlini et al. 2016]
1. Network distillation
2. Detector network [Metzen et al. 2017]
 - Augment classifier with a detection network
 - Detection network takes input from intermediate layers
 - Procedure
 - Train classifier on natural examples
 - Freeze classifier, use natural and adversarial examples to train the detectors
 - Found ineffective against strong attacks [Carlini et al. 2017]
Defense Against Physical Attacks

Sentinet: detecting physical attacks [Chou et al. 2018]
• Assumes physical attacks are localized in space
• Rough procedure
 • Use Grad-CAM to generate saliency map of the NN
 • High-heat regions ≈ high focus from the NN
 • Extract these regions
 • Overlay each of them on test images
 • If many misclassified, this region is likely adversarial
Sentinet: detecting physical attacks [Chou et al. 2018]

- Assumes physical attacks are localized in space
- Rough procedure
 - Use Grad-CAM to generate saliency map of the NN
 - High-heat regions \approx high focus from the NN
 - Extract these regions
 - Overlay each of them on test images
 - If many misclassified, this region is likely adversarial
- Claims
 - Robust against white box, data poisoning, and trojaning attacks
 - Somewhat long to run (3x longer to run than base NN)
 - Weak against nonlocalized attacks
Theory

Problems
1. Existence of adversarial examples
 • What are the causes?
 • Can we say something about terms like
 \[\mathbb{P}(\exists \delta \in B_p(0, \epsilon) \text{ s.t. } f(x + \delta) \neq y) \]?
2. Adversarially robust classifiers
 • Can we construct provably robust classifiers?
 • Can we ever achieve high natural accuracy and adversarial robustness?
3. Is our current \(l_p \)-perturbation adversary model reasonable?
 • Realistic?
Existence of Adversarial Examples

Existing works

 - Isoperimetric inequalities
 - As dimension \uparrow, the volume of the band \uparrow
Existence of Adversarial Examples

Existing works
1. Limits on adversarial robustness
2. Linearity hypothesis [Goodfellow et al., 2014]
 • Local linearity of decision boundary
3. High nonlinearity
 • Result of overfitting
Existence of Adversarial Examples

Existing works
1. Limits on adversarial robustness [Fawzi, evasion, adv inevitable]
2. Linearity hypothesis [Goodfellow et al., 2014]
 • Local linearity of decision boundary
3. High nonlinearity
4. Explaining universal perturbations
 • Shared positively curved directions across images [Dezfooli et al. 2018]
 • Similar geometric observations for transfer attacks [Tramer et al. 2017]
Adversarially Robust Classifiers

Existing works
• A few provably robust classifiers, do not really scale to large datasets such as ImageNet [Wong et al. 2018]

Accuracy vs. robustness
• People observe empirically a tradeoff between the two on ImageNet [Su et al. 2018]
• Theoretical treatment suggests the same [Zhang et al. 2018]
This model is too restricted for many problems [Gilmer et al. 2018]

- Physical world computer vision
 - Object is imaged through an imaging system
 - Environmental factors affect the input image
- Content preservation constraint
 - E.g. adversarial video input
 - User can tolerate strong perturbation, cropping, etc.
- Spam detection
 - Attack sample can be outside of existing distribution
- Audio adversarial attack
 - E.g. weakly constrained attack on a voice assistant
 - E.g. no-constraint attack on stolen cell phone

......

References

References

Thank You