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Adaptive Image Denoising by Mixture Adaptation
Enming Luo,Student Member, IEEE, Stanley H. Chan,Member, IEEE, and Truong Q. Nguyen,Fellow, IEEE

Abstract—We propose an adaptive learning procedure to
learn effective image priors. The new algorithm, called the
Expectation-Maximization (EM) adaptation, takes a generic
prior learned from a generic external database and adapts it
to the image of interest to generate a specific prior. Different
from existing methods which combine internal and external
statistics in an ad-hoc way, the proposed algorithm learns a
single unified prior through an adaptive process. There are
two major contributions in this paper. First, we rigorously
derive the EM adaptation algorithm from the Bayesian hyper-
prior perspective and show that it can be further simplified to
improve the computational complexity. Second, in the absence
of the latent clean image, we show how EM adaptation can be
modified and applied on pre-filtered images. We discuss how to
estimate internal parameters and demonstrate how to improve
the denoising performance by running EM adaptation iteratively.
Experimental results show that the adapted prior is consistently
better than the originally un-adapted prior, and is superior than
some state-of-the-art algorithms.

Index Terms—Image Denoising, Hyper Prior, Conjugate Prior,
Gaussian Mixture Models, Expectation-Maximization (EM), Ex-
pected Patch Log-Likelihood (EPLL), EM Adapation, BM3D

I. I NTRODUCTION

A. Overview

We consider the classical image denoising problem: Given
an additive iid Gaussian noise model,

y = x+ ε, (1)

our goal is to find an estimate ofx from y, wherex ∈ R
n

denotes the (unknown) clean image,ε ∼ N (0, σ2I) ∈ R
n

denotes the additive i.i.d. Gaussian noise withσ2 noise
variance, andy ∈ R

n denotes the observed noisy image.
Image denoising is a long-lasting problem. Numerous

denoising algorithms have been proposed in the past few
decades, ranging from spatial domain methods [1–3] to trans-
form domain methods [4–6], and from local filtering [7–9] to
global optimization [10, 11]. In this paper, we will focus on
the maximum-a-posteriori (MAP) approach [11, 12]. MAP is
a Bayesian approach which formulates the image denoising
problem by maximizing the posterior probability

argmax
x

f(y|x)f(x) = argmin
x

{
1

2σ2
‖y − x‖2 − log f(x)

}
,
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where the first term is a quadratic due to the Gaussian noise
model, and the second term is the negative log of the prior
of the latent clean image.

We choose to use MAP because of its ability to explicitly
formulate the prior knowledge about the image via the prior
distribution f(x). Thus, finding a good priorf(x) is of
vital importance for successful MAP optimization [13–15].
However, modeling the whole imagex is extremely difficult
if not impossible because of the high dimensionality ofx.
To alleviate the problem, we adopt the common wisdom by
approximatingf(x) using a collection of small patches [2, 4,
11]. Such prior is known as thepatch prior. Mathematically,
letting P i ∈ R

d×n be a patch-extract operator which extracts
the i-th d-dimensional patch from the imagex, a patch prior
expresses the negative log of the image prior as a sum of the
log patch priors. Therefore, the MAP framework becomes

argmin
x

{
1

2σ2
‖y − x‖2 −

1

n

n∑

i=1

log f(P ix)

}
, (2)

where the second term in (2) is called the expected patch log
likelihood (EPLL) [11].

The focus of this paper is a robust and efficient way of
learning the model parameters off(P ix). Generally speak-
ing, estimating the model parameter requires a good training
set of data, which can be either obtained internally (i.e., from
the single noisy image) or externally (i.e., from a database of
images). Our approach combines the power of internal [16]
and external priors [9, 17–20]. It is different from the existing
fusion approaches which merely combine the results of the
internal and the external methods. For example, Mosseriet
al. [17] used a patch signal-to-noise ratio as a quantitative
metric to decide whether a patch should be denoised internally
or externally; Burgeret al. [18] applied a neural network
approach to learn the weights to combine internal and external
denoising results; Yueet al. [21] fused the internal and
external denoising results in the frequency domain. In all these
approaches, there is no theoretically optimal way to calculate
the weights.

B. Contribution and Organization

Our proposed algorithm is anadaptationapproach. Like
many external methods, we assume that we have an external
database of images for training. However, we do not simply
compute the statistics of the external database. Instead, we
use the external statistics as a “guide” for learning the internal
statistics. As will be illustrated in the subsequent sections, this
can be formally done using a Bayesian framework.

This paper is an extension of our previous work reported
in [22]. The three new contributions of this paper are:

http://arxiv.org/abs/1601.04770v1
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1) Derivation of the EM adaptation algorithm. We rig-
orously derive the proposed EM adaptation algorithm
from a full Bayesian hyper-prior perspective. Our
derivation complements the work of Gauvain and Lee
[23] by providing additional simplifications and justifi-
cations to reduce computational complexity. We further
provide discussion of the convergence.

2) Handling of noisy data. We provide detailed discussion
of how to perform EM adaptation for noisy images. In
particular, we demonstrate how to automatically adjust
the internal parameters of the algorithm using pre-
filtered images.

3) Extended denoising applications. We demonstrate how
the proposed EM adaptation algorithm can be used to
adapt noisy images, external databases, and targeted
databases.

When this manuscript is being written, we became aware
of a very recent work of Luet al. [24]. In comparison with
[24], we provide significantly more technical insights, in par-
ticular, the full Bayesian derivation, computational simplifica-
tion, convergence analysis, noise handling, and significantly
broader range of applications.

The rest of the paper is organized as follows. Section
II gives a brief review of Gaussian mixture model. Section
III presents the proposed EM adaptation algorithm. Section
IV discusses how the EM adaptation algorithm should be
modified when the image is noisy. Experimental results are
presented in Section V.

II. M ATHEMATICAL PRELIMINARIES

In this section we provide a brief review of the Gaussian
mixture model (GMM) and the corresponding image denois-
ing algorithm under the MAP framework, which will serve
as foundation for our subsequent discussions of the proposed
adaptation algorithm.

A. GMM and MAP Denoising

For notational simplicity, we shall denotepi
def
= P ix ∈ R

d

as thei-th patch fromx. We say thatpi is generated from a
GMM if the distributionf(pi |Θ) is

f(pi |Θ) =
K∑

k=1

πkN (pi|µk,Σk), (3)

where
∑K

k=1 πk = 1 with πk being the weight of thek-th
Gaussian component, and

N (pi|µk,Σk)

def
=

1

(2π)d/2|Σk|1/2
exp
(
−

1

2
(pi − µk)

T
Σ

−1
k (pi − µk)

)

(4)

is thek-th Gaussian distribution with meanµk and covariance

Σk. We denoteΘ
def
= {(πk,µk,Σk)}Kk=1 as the GMM

parameter.
With the GMM defined in (3), we can specify the denoising

procedure by solving the optimization problem in (2). Here,

we follow [25, 26] by using theHalf Quadratic Splittingstrat-
egy. The idea is to replace (2) with the following equivalent
minimization

argmin
x,{vi}n

i=1

{
1

2σ2
‖y − x‖2

+
1

n

n∑

i=1

(
− log f(vi) +

β

2
‖P ix− vi‖

2
)}

, (5)

where{vi}ni=1 are some auxiliary variables andβ is a penalty
parameter. By assuming thatf(vi) is dominated by the mode
of the Gaussian mixture, the solution to (5) is given in the
following proposition.

Proposition 1: Assumingf(vi) is dominated by thek∗i -th
components, wherek∗i

def
=argmax

k
πkN (vi|µk,Σk), the solu-

tion of (5) is

x =
(
nσ−2I + β

n∑

i=1

P T
i P i

)−1(
nσ−2y + β

n∑

i=1

P T
i vi

)
,

vi =
(
βΣk∗

i
+ I

)−1
(
µk∗

i

+ βΣk∗

i
P ix

)
.

Proof: See [11].
Proposition 1 is a general procedure for denoising images

using a GMM under the MAP framework. There are, of
course, other possible denoising procedures which also use
GMM under the MAP framework,e.g., using surrogate meth-
ods [27]. However, we shall not elaborate on these options.
Our focus is on how to obtain the GMM.

B. EM Algorithm

The GMM parameterΘ = {(πk,µk,Σk)}Kk=1 is typically
learned using the Expectation-Maximization (EM) algorithm
from a large collection of training samples. EM is a known
method and so we shall skip the introduction. Interested
readers can refer to [28] for a comprehensive tutorial. What
is more important are the limitations of EM when applied to
image denoising:

1) Adaptivity : For a fixed image database, the GMM
parameters are specifically trained for this particular
database. We call it thegenericparameter. If, for exam-
ple, we are given an image which does not necessarily
belong to the database, then it becomes unclear how
one can adapt the generic parameter to the image.

2) Computational cost: Learning a good GMM requires
a large number of training samples. For example, the
GMM in [11] is learned from 2,000,000 randomly sam-
pled patches. If our goal is to adapt a generic parameter
to a particular image, then it would be more desirable
to bypass the computational intensive procedure.

3) Finite samples: When training samples are few, the
learned GMM will be over-fitted; some components
will even become singular. This problem needs to be
resolved because a noisy image contains much fewer
patches than a database of patches.
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4) Noise: In image denoising, the observed image always
contains noise. It is not clear how to mitigate the noise
while running the EM algorithm.

III. EM A DAPTATION

The proposed EM adaptation takes a generic prior and
adapts it to create a specific prior using very few samples.
Before giving the details of the EM adaptation, we first
provide a toy example to illustrate the idea.

A. Toy Example

Suppose we are given two 2-dimensional GMMs with 2
clusters in each GMM. From each GMM, we synthetically
generate 400 data points with each point representing a 2D
coordinate shown in Figure 1 (a) and (b). Imagine that the
data points in (a) come from an external database whereas
the data points in (b) come from a clean image of interest.

With the two sets of data, we apply EM to learn the two
individual GMMs. Since we have enough samples, the GMMs
are estimated reasonably well shown in (a) and (b). However,
imagine that we only have 20 data points from (b), as shown
in (c). If we learn a GMM from these 20 data points, then
the learned GMM becomes over-fitted to these 20 data points.
This is reflected in the very different behavior of (c) compared
to (b). So we ask a question: Can we start with GMM 1 and
adapt it to create a specific GMM for the finite 20 data points?
EM adaptation provides a solution. We observe in (d) that the
adapted GMM is significantly better than (c), despite the fact
that it only uses 20 data points.

B. Bayesian Hyper-prior

As illustrated in the toy example, what EM adaptation does
is to use the generic model parameters as a “guide” when
learning the new model parameters. Mathematically, suppose
that{p̃1, . . . , p̃n} are patches from a single image parameter-

ized by a GMM with a parameter̃Θ
def
= {(π̃k, µ̃k, Σ̃k)}

K
k=1.

Our goal is to estimatẽΘ with the aid of some generic GMM
parameterΘ. Before we discuss how this is done, we present
a brief overview of a Bayesian inference framework.

From a Bayesian inference perspective, estimation of the
parameter̃Θ can be formulated as

Θ̃ = argmax
Θ̃

log f(Θ̃ | p̃1, . . . , p̃n)

= argmax
Θ̃

(
log f(p̃1, . . . , p̃n | Θ̃) + log f(Θ̃)

)
, (6)

where

f(p̃1, . . . , p̃n | Θ̃) =

n∏

i=1

{
K∑

k=1

π̃kN (p̃i|µ̃k, Σ̃k)

}

is the joint distribution of the samples, andf(Θ̃) is some prior
of Θ̃. We note that (6) is also a MAP problem. However,
the MAP for (6) is the estimation of the model parameter
Θ̃, which is different from the MAP for denoising used in
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(c) GMM 2 / 20 points (d) Adapted / 20 points

Fig. 1: (a) and (b): Two GMMs, each learned using the EM
algorithm from 400 data points of 2D coordinates. (c): A
GMM learned from a subset of 20 data points drawn from
(b). (d): An adapted GMM using the same 20 data points in
(c). Note the significant improvement from (c) to (d) by using
the proposed adaptation.

(2). Although the difference seems subtle, there is a drastic
different implication which we should be aware of.

In (6), f(p̃1, . . . , p̃n | Θ̃) denotes the distribution of a
collection of patches conditioned on the parameterΘ̃. It is
the likelihood of observing{p̃1, . . . , p̃n} given the model
parameter̃Θ. f(Θ̃) is a distribution of the parameter, which
is called hyper-prior in machine learning [29]. SinceΘ̃ is the
model parameter, the hyper-priorf(Θ̃) defines the probability
density ofΘ̃.

Same as the usual Bayesian modeling, hyper-priors are
chosen according to a subjective belief. However, for efficient
computation, hyper-priors are usually chosen as theconjugate
priors of the likelihood functionf(p̃1, . . . , p̃n | Θ̃) so that
the posterior distributionf(Θ̃ | p̃1, . . . , p̃n) has the same
functional form as the prior distribution. For example, Beta
distribution is a conjugate prior for a Bernoulli likelihood
function, Gaussian distribution is a conjugate prior for a likeli-
hood function that is also Gaussian, etc. For more discussions
on conjugate priors we refer the readers to [29].

C. f(Θ̃) for GMM

For GMM, no joint conjugate prior can be found through
the sufficient statistic approach [23]. However, we can sep-
arately model the mixture weight vector and the parameters
for each individual Gaussian and then combine.

First, the mixture gains can be modeled as a multinomial
distribution so that the corresponding conjugate prior forthe
mixture weight vector(π̃1, · · · , π̃K) is a Dirichlet density

π̃1, · · · , π̃K ∼ Dir(v1, · · · , vk), (7)
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wherevi > 0 is a pseudo-count for the Dirichlet distribution.
For mean and covariance(µ̃k, Σ̃k), a practical solution is

the normal-inverse-Wishart density so that

(µ̃k, Σ̃k) ∼ NIW(ϑk, τk,Ψk, ϕk), for k = 1, · · · ,K, (8)

where (ϑk, τk,Ψk, ϕk) are the parameters for the normal-
inverse-Wishart density such thatϑk is a vector of dimension
d, τk > 0, Ψk is a d × d positive definite matrix, andϕk >
d− 1.

Remark 1:The choice of the normal-inverse-Wishart is
important here, for it is the conjugate prior of a multivariate
normal distribution with unknown mean and unknown covari-
ance matrix. This choice is slightly different from [23] where
the authors choose a normal-Wishart, which, in our opinion,
is less efficient.

Assuming all the parameters are independent, we can model
f(Θ̃) as a product of (7) and (8). By ignoring the scaling
constants, it is not difficult to show that

f(Θ̃) ∝
∏K

k=1

{
π̃vk−1
k |Σ̃k|−(ϕk+d+2)/2

exp
(
− τk

2 (µ̃k − ϑk)
T
Σ̃

−1

k (µ̃k − ϑk)−
1
2 tr(ΨkΣ̃

−1

k )
)}

.

(9)
The importance of (9) is that it is a conjugate prior

of the complete data. As a result, the posterior density
f(Θ̃|p̃1, . . . , p̃n) belongs to the same distribution family
as f(Θ̃). This can be formally described in the following
Proposition.

Proposition 2: Given the prior in (9), the posterior
f(Θ̃|p̃1, . . . , p̃n) is given by

f(Θ̃ | p̃1, . . . , p̃n) ∝
∏K

k=1

{
π̃
v′

k
−1

k |Σ̃k|−(ϕ′

k
+d+2)/2

exp
(
− τ ′

k

2

(
µ̃k − ϑ′

k

)T
Σ̃

−1

k

(
µ̃k − ϑ′

k

)
− 1

2 tr(Ψ′
kΣ̃

−1

k )
)}

(10)
where

v′k = vk + nk, ϕ′
k = ϕk + nk, τ ′k = τk + nk,

ϑ′
k =

τkϑk + nkµ̄k

τk + nk
,

Ψ
′
k = Ψk + Sk +

τknk

τk + nk
(ϑk − µ̄k)(ϑk − µ̄k)

T ,

µ̄k =
1

nk

n∑

i=1

γkip̃i, Sk =

n∑

i=1

γki(p̃i − µ̄k)(p̃i − µ̄k)
T

are the parameters for the posterior density.
Proof: See Appendix A.

D. Solve forΘ̃

Solving for the optimalΘ̃ is equivalent to solving the
following optimization problem

maximize
Θ̃

L(Θ̃)
def
= log f(Θ̃|p̃1, . . . , p̃n)

subject to
∑K

k=1 π̃k = 1.
(11)

The constrained problem (11) can be solved by considering
the Lagrange function and taking derivatives with respect

to each individual parameter. We summarize the optimal
solutions in the following Proposition.

Proposition 3: The optimal(π̃k, µ̃k, Σ̃k) for (11) are

π̃k =
n

(
∑K

k=1 vk −K) + n
·
nk

n

+

∑K
k=1 vk −K

(
∑K

k=1 vk −K) + n
·

vk − 1
∑K

k=1 vk −K
, (12)

µ̃k =
1

τk + nk

n∑

i=1

γkip̃i +
τk

τk + nk
ϑk, (13)

Σ̃k =
nk

ϕk + d+ 2 + nk

1

nk

n∑

i=1

γki(p̃i − µ̃k)(p̃i − µ̃k)
T

+
1

ϕk + d+ 2 + nk

(
Ψk + τk(ϑk − µ̃k)(ϑk − µ̃k)

T
)
.

(14)

Proof: See Appendix B.

Remark 2:The results we showed in Proposition 3 are
different from [23]. In particular, the denominator for̃Σk in
[23] is ϕk−d+nk whereas ours isϕk+d+2+nk. However,
by using the following simplification, we can obtain the same
result for both cases.

E. Simplification ofΘ̃

The results in Proposition 3 are general expressions for any
hyper-parameters. We now discuss how to simplify the result
with the help of the generic prior. First, since vk−1∑

K

k=1
vk−K

is
the mode of the Dirichlet distribution, a good surrogate for
it is πk. Second,ϑk denotes the prior mean in the normal-
inverse-Wishart distribution and thus can be appropriately ap-
proximated byµk. Moreover, sinceΨk is the scale matrix on
Σ̃k andτk denotes the number of prior measurements in the
normal-inverse-Wishart distribution, they can be reasonably
chosen asΨk = (ϕk + d + 2)Σk and τk = ϕk + d + 2.
Plugging these approximations in the results of Proposition
3, we summarize the simplification results as follows.

Proposition 4: Define ρ
def
= nk

n (
∑K

k=1 vk − K) = τk =
ϕk + d+ 2. Let

ϑk = µk, Ψk = (ϕk + d+ 2)Σk,
vk − 1

∑K
k=1 vk −K

= πk,

andαk = nk

ρ+nk

, then (12)-(14) become

π̃k =αk
nk

n
+ (1− αk)πk, (15)

µ̃k =αk
1

nk

n∑

i=1

γkip̃i + (1 − αk)µk, (16)

Σ̃k = αk
1

nk

n∑

i=1

γki(p̃i − µ̃k)(p̃i − µ̃k)
T

+ (1 − αk)
(
Σk + (µk − µ̃k)(µk − µ̃k)

T
)
. (17)

Remark 3:We note that Reynoldet al. [30] presented
similar simplification results (without derivations) as ours.
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However, their results are only for the scalar case or when
the covariance matrices are diagonal. In contrast, our results
support full covariance matrices and thus are more general.
As will be seen, for our denoising application, since the image
pixels (especially adjacent pixels) are correlated, full matrix
GMMs are required.

Comparing (17) with the work of Luet al. [24], we note
that in [24] the covariance is

Σ̃k = αk
1

nk

n∑

i=1

γkip̃ip̃
T
i + (1− αk)Σk. (18)

This result, although looks reasonable, is generally not valid
if we follow the Bayesian hyper-prior approach, unlessµk

and µ̃k are equal to 0.

F. EM Adaptation Algorithm

The proposed EM adaptation algorithm is summarized in
Algorithm 1. EM adaptation shares many similarities with the
standard EM algorithm. To better understand the differences,
we take a closer look at each step.

E-Step: E-step in the EM adaptation is the same as in EM
algorithm: We compute the likelihood of̃pi conditioned on
the generic parameter(πk,µk,Σk) as

γki =
πkN (p̃i |µk,Σk)∑K
l=1 πlN (p̃i |µl,Σl)

. (19)

M-Step: The more interesting step of the adaptation is the
M-step. From (22) to (24),(π̃k, µ̃k, Σ̃k) are updated through
a linear combination of the contributions from the new data
and the generic parameters. On one extreme whenαk = 1,
the M-step turns exactly back to the M-step in EM algorithm.
On the other extreme whenαk = 0, all emphasis is put
on the generic parameters. Forαk that lies in between, the
updates are a weighted averaging of the new data and the
generic parameters. Taking the mean as an example, the EM
adaptation updates the mean according to

µ̃k = αk

(
1

nk

n∑

i=1

γkip̃i

)

︸ ︷︷ ︸
new data

+(1− αk)µk

︸ ︷︷ ︸
generic prior

. (20)

The updated mean in (20) is a linear combination of two
terms, where the first term is an empirical data average
with the fractional weightγki from each data point̃pi and
the second term is the generic meanµk. Similarly for the
covariance update in (24), the first term computes an empirical
covariance with each data point weighted byγki which is the
same as in the M-step of EM algorithm, and the second term
includes the generic covariance along with an adjustment term
(µk − µ̃k)(µk − µ̃k)

T . These two terms are then linearly
combined to yield the updated covariance.

Algorithm 1 EM adaptation Algorithm

Input: Θ = {(πk,µk,Σk)}Kk=1, {p̃1, . . . , p̃n}.
Output: Adapted parameters̃Θ = {(π̃k, µ̃k, Σ̃k)}

K
k=1.

E-step : Compute, fork = 1, . . . ,K and i = 1, . . . , n

γki =
πkN (p̃i|µk,Σk)
K∑
l=1

πlN (p̃i|µl,Σl)

, nk =

n∑

i=1

γki. (21)

M-step : Compute, fork = 1, . . . ,K

π̃k = αk
nk

n
+ (1− αk)πk, (22)

µ̃k = αk
1

nk

n∑

i=1

γkip̃i + (1− αk)µk, (23)

Σ̃k = αk
1

nk

n∑

i=1

γki(p̃i − µ̃k)(p̃i − µ̃k)
T

+ (1− αk)
(
Σk + (µk − µ̃k)(µk − µ̃k)

T
)
. (24)

Postprocessing: Normalize{π̃k}Kk=1 so that they sum to 1,
and ensure{Σ̃k}Kk=1 is positive semi-definite.

G. Convergence

The EM adaptation shown in Algorithm 1 is an EM
algorithm. Therefore, its convergence is guaranteed by the
classical theory, which we state without proof as follows.

Proposition 5: Let L(Θ̃) = log f(p̃1, . . . , p̃n)|Θ̃) be the
log-likelihood function,f(Θ̃) be the prior distribution, and

Q
(
Θ̃|Θ̃

(m))
be the Q function in them-th iteration of the

EM iteration. If

Q
(
Θ̃|Θ̃

(m))
+ log f(Θ̃) ≥ Q

(
Θ̃

(m)
|Θ̃

(m))
+ log f

(
Θ̃

(m))
,

then

L(Θ̃) + log f(Θ̃) ≥ L
(
Θ̃

(m))
+ log f

(
Θ̃

(m))
.

Proof: See [28].
While classical EM algorithm requires many iterations

to converge, we observe that the proposed EM adaptation
usually settles down in very few iterations. To demonstrate
this observation, we conduct experiments on different testing
images. Figure 2 shows the result of one testing image. For
all noise levels (σ = 20 to 100), PSNR increases as more
iterations are applied and converges after about 4 iterations.
We also observe that for most testing images, the improvement
becomes marginal after one single iteration.

IV. EM A DAPTATION FOR DENOISING

The proposed Algorithm 1 works only when the training
patches{p̃1, . . . , p̃n} are from thecleanground-truth image
x. In this section, we discuss how to modify the EM adapta-
tion algorithm for noisy images.
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Fig. 2: Image denoising using EM adaptation: The PSNR only
improves marginally after the first iteration, confirming that
the EM adaptation can typically be performed in a single
iteration. The testing image is House of size 256× 256.σ =
20, . . . , 100 indicates the noise level.

A. Adaptation to a Pre-filtered Image

To deal with the presence of noise, we adopt a two-stage
approach similar to BM3D [4]. In the first stage, we apply an
existing denoising algorithm to obtain a pre-filtered image.
The adaptation is then applied to the pre-filtered image to
generate an adapted prior. In the second stage, we apply the
MAP denoising as described in Section II-A to obtain the
final denoised image. However, since a pre-filtered image is
not the same as the latent clean image, we must quantify the
residual noise remaining in the pre-filtered image and revise
the adaptation equations accordingly.

To this end, we letx be the pre-filtered image. The
distribution of the residuex − x is typically unknown but
empirically we observe that it can be reasonably approximated
by a single Gaussian. Thus, we model(x−x) ∼ N (0, σ̃2I),

whereσ̃2 def
= E‖x−x‖2 is the variance ofx. By incorporating

the residual noise, we modify (21) as

γki =
πkN (p̃i |µk,Σk + σ̃2I)

∑K
l=1 πlN (p̃l |µl,Σl + σ̃2I)

, (25)

and (24) as

Σ̃k = αk
1

nk

n∑

i=1

γki
(
(p̃i − µ̃k)(p̃i − µ̃k)

T − σ̃2I
)

+ (1 − αk)
(
Σk + (µk − µ̃k)(µk − µ̃k)

T
)
. (26)

It now remains to determine the parameterσ̃2.

B. Estimatingσ̃2

By definition, σ̃2 is the variance of the pre-filtered image
with the meanx. In another point of view,̃σ2 is also the mean
squared error ofx compared tox. Therefore, if we would

like to estimatẽσ2, we only need to estimate the amount of
“noise” remaining inx. This is a challenging task because
we do not have the ground truthx.

In the absence of the clean image, one strategy is to use the
Stein’s Unbiased Risk Estimator (SURE) [31]. SURE provides
a way for unbiased estimation of the true MSE. The analytical
expression of SURE is

σ̃2 ≈ SURE
def
=

1

n
‖y − x‖2 − σ2 +

2σ2

n
div, (27)

where div denotes the divergence of the denoising algorithm
with respect to the noisy measurements. However, not all
denoising algorithms have a closed form for the divergence
term. To alleviate this issue, we adopt the Monte-Carlo SURE
[32] to approximate the divergence. We shall not repeat
Monte-Carlo SURE here but we summarize the steps in
Algorithm 2.

Algorithm 2 Monte-Carlo SURE for Estimating̃σ2

Input: noisy imagey ∈ R
n, noise varianceσ2, a small

δ = 0.01.
Output: σ̃2.
Generateb ∼ N (0, I) ∈ R

n.
Constructy′ = y + δb.
Apply a denoising algorithm ony andy′ to get two pre-
filtered imagesx andx′, respectively.
Compute div= 1

δb
T (x′ − x).

Computeσ̃2 = SURE
def
= 1

n‖y − x‖2 − σ2 + 2σ2

n div.

20 30 40 50 60 70 80 90 100
0.15

0.2

0.25

0.3

0.35

0.4

noise standard deviation

σ̃
/
σ

 

 
Lena256 (True)

Lena256 (MCSURE)

Boat256 (True)

Boat256 (MCSURE)

Fig. 3: Comparison between the true MSE and Monte-Carlo
SURE when estimating̃σ/σ over a large range of noise levels.
The pre-filtering method is EPLL.

To demonstrate the effectiveness of Monte-Carlo SURE, we
compare the estimates for̃σ/σ when we use the true MSE
and Monte-Carlo SURE. As is observed in Figure 3, over a
large range of noise levels, the Monte-Carlo SURE curves are
quite similar to the true MSE curves. The pre-filtering method
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in Figure 3 is EPLL. For other methods such as BM3D, we
have similar observations for different noise levels.

C. Estimatingαk

Besides the pre-filtering for noisy images, we should also
determine the combination weightαk for the EM adaptation.
From the derivation of the algorithm, the combination weight
αk = nk

nk+ρ is determined by both the probabilistic countnk

and the relevance factorρ. The factorρ is adjusted to allow
different adaptation rates. For example, in the application of
speaker verification [30, 33],ρ is set to 16 and experiments
show that the performance is insensitive toρ being in the
range of 8 and 20.

For our denoising task, we empirically determine the influ-
ence ofρ on the denoising performance. Given a pre-filtered
image, we adjustρ for the EM adaptation algorithm and check
the corresponding denoising result. In Figure 4, we show how
PSNR changes in terms ofρ. The PSNR curves indicate that
for a testing image of64× 64, a largeρ for EM adaptation is
better. As the testing images become large, we observe that
the optimalρ becomes small. Empirically, we find thatρ in
the range of 1 and 10 works well for a variety of images (over
200× 200) for different noise levels.

0 0.5 1 1.5 2 2.5 3 3.5 4
27.4

27.6

27.8

28

28.2

28.4

28.6

28.8

ρ in log space

P
S

N
R

 

 
Boat64
Hill64
Lena64
Peppers64

Fig. 4: The effect ofρ on denoising performance. The pre-
filtered image is used for EM adaptation algorithm. The
testing images are of size64× 64 with noiseσ = 20.

D. Computational Improvement

Finally, we comment on a simple but very effective way
of improving the computational speed. If we take a closer
look at the M-step in Algorithm 1, we observe thatπ̃k and
µ̃k are easy to compute. However,̃Σk is time-consuming
to compute, because updating each of theK covariance
matrices requiresn time-consuming outer product operations∑n

i=1 γki(p̃i− µ̃k)(p̃i− µ̃k)
T . Most previous works mitigate

the problem by assuming that the covariance is diagonal
[30, 33, 34]. However, this assumption is not valid in our

case because image pixels (especially neighboring pixels)are
correlated.

Our solution to this problem is shown in the following
Proposition. The new result is anexactcomputation of (24)
but with significantly less operations. The idea is to exploit
the algebraic structure of the covariance matrix.

Proposition 6: The full covariance adaptation in (24) can
be simplified as

Σ̃k = αk
1

nk

n∑

i=1

γkip̃ip̃
T
i − µ̃kµ̃

T
k

+ (1 − αk)(Σk + µkµ
T
k ). (28)

Proof: See Appendix C.
The simplification is very rewarding because computing

αk
1
nk

∑n
i=1 γkip̃ip̃

T
i does not involvẽµk and thus can be pre-

computed for each component, which makes the computation
of Σ̃k much more efficient. In Table 1, we list the averaging
runtime when computing (24) and (28) for two image sizes.

image size Eq. (24) Eqn. (28) Speedup
(original) (ours) factor

runtime (sec) (64× 64) 31.34 0.30 104.5
runtime (sec) (128× 128) 136.58 1.32 103.2

Table 1: Runtime comparison between (24) and (28) for
different image sizes.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results forsingle
and example-based image denoising.Single refers to using
the single noisy image for training, whereasexamplerefers
to using an external reference image for training.

A. Experiment Settings

For comparison, we consider two state-of-the-art methods:
BM3D [4] and EPLL [11]. For both methods, we run the origi-
nal codes provided by the authors with the default parameters.
The GMM prior in EPLL is learned from 2,000,000 randomly
chosen8×8 patches. For a fair comparison, we use the same
GMM as the generic GMM for the proposed EM adaptation.
We consider three versions of EM adaptation: (1) An oracle
adaptation by adapting the generic prior to the ground-truth
image, denoted asaGMM-clean; (2) A pre-filtered adaptation
by adapting the generic prior to the EPLL result, denoted
as aGMM-EPLL; (3) A pre-filtered adaptation by adapting
the generic prior to the BM3D result, denoted asaGMM-
BM3D. In the example-based image denoising, we adapt the
generic prior to an example image and denote it asaGMM-
example. We set the parameterρ = 1 and experimental
results show that the performance is insensitive toρ being
in the range of 1 and 10. We run denoising experiments on
a variety of images and for a large range of noise standard
deviations (σ = 20, 40, 60, 80, 100). To reduce the bias due
to a particular noise realization, each reported PSNR result is
averaged over 8 independent trials.
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B. Single Image Denoising

We use 6 standard images of size256× 256, and 6 natural
images of size481× 321 randomly chosen from [35] for the
single image denoising experiments.

Figure 5 shows the denoising results for three standard
testing images and three natural testing images. In comparison
to the competing methods, our proposed method yields the
highest PSNR values. The magnified areas indicate that the
proposed method removes the noise while preserves image
details better.

In Table 2, we report the detailed PSNR results for different
noise variances for the standard images. Two key observa-
tions could be noted here. First, comparing aGMM-EPLL
with EPLL, the denoising results from aGMM-EPLL are
consistently better than EPLL with an average gain of about
0.3 dB. This validates the usefulness of the adapted GMM
through the proposed EM adaptation. Second, the quality of
the image used for EM adaptation affects the final denoising
performance. For example, it is obvious that using the ground-
truth clean image for EM adaptation is much better than using
the denoised images such as the EPLL or BM3D denoised
image. In some cases, aGMM-BM3D yields larger PSNR
values than aGMM-EPLL due to the fact that the denoised
image from BM3D is better than that from EPLL.

Due to limited space, the detailed PSNR results for the
natural images are not shown in this paper. The additional
results can be found at http://videoprocessing.ucsd.edu/~eluo.

C. External Image Denoising

In this subsection, we evaluate the denoising performance
when anexampleimage is available for EM adaptation. An
example image refers to a clean image and is relevant to the
noisy image of interest. In [9, 20], it is shown that obtaining
reference images is feasible in some scenarios such as text
images and face images. We consider the following three
scenarios for our experiments.

1) Flower image denoising: We use the 102 flowers dataset
from [36] which consists of 102 different categories
of flowers. We randomly pick one category and then
sample two flower images: one as the testing image
with additive i.i.d. Gaussian noise and the other as the
example image for the EM adaptation.

2) Face image denoising: We use the FEI face dataset
from [37] which consists of 100 aligned and frontal
face images of size260× 360. We randomly pick one
face image as the image of interest. We then randomly
sample another image from the dataset and treat it as
the example image for our EM adaptation.

3) Text image denoising: To prepare for this scenario, we
randomly crop a200 × 200 region from a document
and add noise to it. We then crop another200 × 200
region from a very different document and use it as the
example image.

In Figure 6, we show the denoising results for the three
different scenarios. As shown, the example images in the sec-
ond column are similar but differ from the testing images. We

BM3D aGMM EPLL aGMM aGMM
-BM3D -EPLL -clean

Airplane

σ = 20 30.44 30.77 30.57 30.87 31.28

σ = 40 26.45 27.09 27.00 27.16 27.48

σ = 60 25.15 25.09 25.14 25.24 25.50

σ = 80 23.85 23.72 23.74 23.83 24.00

σ = 100 22.82 22.60 22.61 22.66 22.80

Boat

σ = 20 29.69 29.90 29.83 30.00 30.39

σ = 40 26.09 26.57 26.46 26.60 26.86

σ = 60 24.58 24.65 24.69 24.77 25.01

σ = 80 23.40 23.36 23.41 23.46 23.69

σ = 100 22.64 22.56 22.58 22.61 22.76

Cameraman

σ = 20 30.28 30.33 30.21 30.38 31.09

σ = 40 26.78 27.29 26.96 27.25 27.76

σ = 60 25.35 25.42 25.24 25.52 26.07

σ = 80 24.05 24.04 23.90 24.14 24.66

σ = 100 23.05 22.88 22.79 22.94 23.41

House

σ = 20 33.67 33.81 33.03 33.63 34.33

σ = 40 30.49 30.85 29.94 30.64 31.31

σ = 60 28.88 28.73 27.97 28.57 29.19

σ = 80 27.12 26.95 26.34 26.87 27.28

σ = 100 25.92 25.70 25.33 25.67 26.01

Lena

σ = 20 31.60 31.76 31.41 31.82 32.37

σ = 40 27.83 28.18 27.98 28.25 28.62

σ = 60 26.36 26.16 26.03 26.23 26.51

σ = 80 25.05 24.85 24.70 24.91 25.12

σ = 100 23.88 23.76 23.58 23.79 23.96

Peppers

σ = 20 31.14 31.40 31.12 31.44 32.04

σ = 40 27.42 28.00 27.70 28.03 28.43

σ = 60 25.87 25.98 25.70 26.06 26.39

σ = 80 24.43 24.56 24.25 24.64 24.92

σ = 100 23.28 23.30 23.05 23.39 23.61

Average 26.59 26.68 26.44 26.71 27.09

Table 2: PSNR results for standard images of size256× 256.
The PSNR value for each noise level is averaged over 8
independent trials to reduce the bias due to a particular noise
realization.

compare the three denoising methods. The major difference
lies in how the default GMM is adapted: In EPLL there is
no EM adaptation,i.e., the default generic GMM is used for
denoising. In aGMM-example the default GMM is adapted
to the example image while in aGMM-clean the default
GMM is adapted to the ground truth image. As observed, the
oracle aGMM-clean yields the best denoising performance.
aGMM-example outperforms the benchmark EPLL (generic
GMM) denoising algorithm both visually and objectively.
For example, on average, it is 0.28 dB better in the Flower
scenario, 0.78 dB better in the Face scenario, and 1.57 dB
better in the Text scenario.

D. Complexity Analysis

Our current implementation is in MATLAB (single thread)
and we use an Intel Core i7-3770 CPU with 8 GB RAM. The
runtime is about 66 seconds to denoise an image of size256×
256, where the EM adaptation part takes about 14 seconds
while the MAP denoising part takes about 52 seconds. It is
worth pointing out that the simplication in (28) in Section
IV-D has significantly improved the computational efficiency
for EM adaptation.
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noisy image BM3D EPLL aGMM-EPLL

σ = 20 33.67 dB (0.8709) 33.03 dB (0.8618) 33.63 dB (0.8671)

σ = 20 31.60 dB (0.8960) 31.41 dB (0.8917) 31.82 dB (0.8998)

σ = 20 31.14 dB (0.8843) 31.12 dB (0.8859) 31.44 dB (0.8926)

σ = 40 28.78 dB (0.8196) 28.69 dB (0.8103) 28.90 dB (0.8270)

σ = 40 29.43 dB (0.7597) 29.45 dB (0.7555) 29.70 dB (0.7652)

σ = 40 29.80 dB (0.7687) 29.93 dB (0.7655) 30.21 dB (0.7751)

Fig. 5: Single image denoising by using the denoised image for EM adaptation: Visual comparison and objective comparison
(PSNR and SSIM in the parenthesis). The top three are standard images of size256 × 256 while the the bottom three are
natural images of size481× 321.
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noisy image example image EPLL aGMM-example aGMM-clean

σ = 50 26.90 dB (0.7918) 27.28 dB (0.8051) 27.84 dB (0.8181)

σ = 50 27.49 dB (0.7428) 27.68 dB (0.7507) 28.06 dB (0.7613)

σ = 50 29.79 dB (0.8414) 30.53 dB (0.8611) 30.68 dB (0.8630)

σ = 50 29.44 dB (0.8233) 30.26 dB (0.8513) 30.52 dB (0.8528)

σ = 50 20.29 dB (0.8524) 21.98 dB (0.9311) 22.49 dB (0.9373)

σ = 50 21.56 dB (0.8703) 23.02 dB (0.9302) 23.50 dB (0.9369)

Fig. 6: External image denoising by using an example image for EM adaptation: Visual comparison and objective comparison
(PSNR and SSIM in the parenthesis). The flower images are fromthe 102flowers dataset [36], fhe face images are from the
FEI face dataset [37], and the text images are cropped from randomly chosen documents.
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VI. CONCLUSION

We proposed an EM adaptation method to learn effective
image priors. The proposed algorithm is rigorously derived
from the Bayesian hyper-prior perspective and is further
simplified to reduce the computational complexity. In the
absence of the latent clean image, we proposed modifications
of the algorithm and analyzed how some internal parameters
can be automatically estimated. The adapted prior from the
EM adaptation better captures the prior distribution of the
image of interest and is consistently better than the un-
adapted generic one. In the context of image denoising,
experimental results demonstrate its superiority over some
existing denoising algorithms such as EPLL and BM3D.
Future work includes its extended work on video denoising
and other restoration tasks such as deblurring and inpainting.

APPENDIX

A. Proof of Proposition 2

Proof: Similarly as in the standard EM algorithm for
GMM fitting, we first compute the probability that thei-th
sample belongs to thek-th Gaussian component as

γki =
π
(m)
k N (p̃i |µ

(m)
k ,Σ

(m)
k )

∑K
l=1 π

(m)
l N (p̃i |µ

(m)
l ,Σ

(m)
l )

, (29)

where{(π(m)
k ,µ

(m)
k ,Σ

(m)
k )}Kk=1 are the GMM parameters in

the m-th iteration and letnk
def
=
∑n

i=1 γki. We can then
approximatelog f(p̃1, . . . , p̃n)|Θ̃) in (6) by the Q function
as follows

Q(Θ̃|Θ̃
(m)

) =

n∑

i=1

K∑

k=1

γki log
(
π̃kN (p̃i|µ̃k, Σ̃k)

)

.
=

n∑

i=1

K∑

k=1

γki

(
log π̃k −

1

2
log |Σ̃k|

−
1

2
(p̃i − µ̃k)

T
Σ̃

−1

k (p̃i − µ̃k)
)

=

K∑

k=1

nk(log π̃k −
1

2
log |Σ̃k|)

−
1

2

K∑

k=1

n∑

i=1

γki(p̃i − µ̃k)
T
Σ̃

−1

k (p̃i − µ̃k),

(30)

where
.
= indicates that some constant terms that are irrelevant

to the parameters̃Θ are dropped. We further define two
notations

µ̄k
def
=

1

nk

n∑

i=1

γkip̃i, Sk
def
=

n∑

i=1

γki(p̃i − µ̄k)(p̃i − µ̄k)
T .

(31)
Using the equality

∑n
i=1 γki(p̃i − µ̃k)

T
Σ̃

−1

k (p̃i − µ̃k) =

nk(µ̃k − µ̄k)
T
Σ̃

−1

k (µ̃k − µ̄k) + tr(SkΣ̃
−1

k ), we can rewrite

the Q function as follows

Q(Θ̃|Θ̃
(m)

) =

K∑

k=1

{
nk(log π̃k −

1

2
log |Σ̃k|)

−
nk

2
(µ̃k − µ̄k)

T
Σ̃

−1

k (µ̃k − µ̄k)−
1

2
tr(SkΣ̃

−1

k )
}
.

Therefore, we have

f(Θ̃|p̃1, . . . , p̃n) ∝ exp
(
Q(Θ̃|Θ̃

(m)
) + log f(Θ̃)

)

= f(Θ̃)

K∏

k=1

{
π̃nk

k |Σ̃k|
−nk/2

exp
(
−

nk

2
(µ̃k − µ̄k)

T
Σ̃

−1

k (µ̃k − µ̄k)−
1

2
tr(SkΣ̃

−1

k )
)}

=

K∏

k=1

{
π̃vk+nk−1
k |Σ̃k|

−(ϕk+nk+d+2)/2exp
(
−

τk + nk

2

(µ̃k −
τkϑk + nkµ̄k

τk + nk
)T Σ̃

−1

k (µ̃k −
τkϑk + nkµ̄k

τk + nk
)
)

exp
(
−

1

2
tr((Ψk + Sk

+
τknk

τk + nk
(ϑk − µ̄k)(ϑk − µ̄k)

T )Σ̃
−1

k )
)}

. (32)

Defining v′k
def
= vk + nk, ϕ

′
k

def
= ϕk + nk, τ

′
k

def
= τk + nk,ϑ

′
k

def
=

τkϑk+nkµ̄k

τk+nk

, andΨ
′
k

def
= Ψk + Sk + τknk

τk+nk

(ϑk − µ̄k)(ϑk −

µ̄k)
T , we will get

f(Θ̃|p̃1, . . . , p̃n) ∝
∏K

k=1

{
π̃
v′

k
−1

k |Σ̃k|−(ϕ′

k
+d+2)/2

exp
(
−

τ ′

k

2

(
µ̃k − ϑ′

k

)T
Σ̃

−1

k

(
µ̃k − ϑ′

k

)
− 1

2 tr(Ψ′
kΣ̃

−1

k )
)}

,

which completes the proof.

B. Proof of Proposition 3

Proof: We ignore some irrelevant terms and get
log f(Θ̃|p̃1, . . . , p̃n)

.
=

∑K
k=1{(v

′
k − 1) log π̃k −

(ϕ′

k
+d+2)
2 log |Σ̃k| − τ ′

k

2 (µ̃k − ϑ′
k)

T
Σ̃

−1

k (µ̃k − ϑ′
k) −

1
2 tr(Ψ′

kΣ̃
−1

k )}. Taking derivatives with respect tõπk, µ̃k and
Σ̃k will yield the following solutions.

• Solution toπ̃k.
We form the Lagrangian

J(π̃k, λ) =

K∑

k=1

(v′k − 1) log π̃k + λ

(
K∑

k=1

π̃k − 1

)
,

and the optimal solution satisfies

∂J

∂π̃k
=

v′k − 1

π̃k
+ λ = 0.

It is easy to see thatλ = −
∑K

k=1(v
′
k − 1), and thus the
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solution toπ̃k is

π̃k =
v′k − 1

∑K
k=1(v

′
k − 1)

=
(vk − 1) + nk

(
∑K

k=1 vk −K) + n

=
n

(
∑K

k=1 vk −K) + n
·
nk

n

+

∑K
k=1 vk −K

(
∑K

k=1 vk −K) + n
·

vk − 1
∑K

k=1 vk −K
. (33)

• Solution toµ̃k.
We let

∂L

∂µ̃k

= −
τ ′k
2
Σ̃

−1

k (µ̃k − ϑ′
k) = 0, (34)

the solution of which is

µ̃k =
τkϑk + nkµ̄k

τk + nk

=
1

τk + nk

n∑

i=1

γkip̃i +
τk

τk + nk
ϑk. (35)

• Solution toΣ̃k.
We let

∂L

∂Σ̃k

=−
ϕ′
k + d+ 2

2
Σ̃

−1

k +
1

2
Σ̃

−1

k Ψ
′
kΣ̃

−1

k

+
τ ′k
2
Σ̃

−1

k (µ̃k − ϑ′
k)(µ̃k − ϑ′

k)
T
Σ̃

−1

k

= 0,

which yields

(ϕ′
k+d+2)Σ̃k = Ψ

′
k+ τ ′k(µ̃k−ϑ′

k)(µ̃k−ϑ′
k)

T , (36)

the solution of which is

Σ̃k =
Ψ

′
k + τ ′k(µ̃k − ϑ

′
k)(µ̃k − ϑ

′
k)

T

ϕ′
k + d+ 2

=
Ψk + τk(µ̃k − ϑk)(µ̃k − ϑk)

T

ϕk + d+ 2 + nk

+
nk(µ̃k − µ̄k)(µ̃k − µ̄k)

T + Sk

ϕk + d+ 2 + nk

=
nk

ϕk + d+ 2 + nk

1

nk

n∑

i=1

γki(p̃i − µ̃k)(p̃i − µ̃k)
T

+
1

ϕk + d+ 2 + nk

(
Ψk + τk(ϑk − µ̃k)(ϑk − µ̃k)

T
)
.

(37)

C. Proof of Proposition 6

Proof: Our first attempt is to expand the first term in
(24).

αk
1

nk

n∑

i=1

γki(p̃i − µ̃k)(p̃i − µ̃k)
T

= αk
1

nk

n∑

i=1

γki(p̃ip̃
T
i − p̃iµ̃

T
k − µ̃kp̃

T
i + µ̃kµ̃

T
k )

, αk
1

nk

n∑

i=1

γkip̃ip̃
T
i − (µ̃k − (1− αk)µk)µ̃

T
k

− µ̃k(µ̃k − (1− αk)µk)
T + αkµ̃kµ̃

T
k

= αk
1

nk

n∑

i=1

γkip̃ip̃
T
i − 2µ̃kµ̃

T
k

+ (1− αk)(µkµ̃
T
k + µ̃kµ

T
k ) + αkµ̃kµ̃

T
k , (38)

where, holds becauseαk
1
nk

∑n
i=1 γkip̃i = µ̃k−(1−αk)µk

from (23).
We then expand the second term in (24)

(1 − αk)
(
Σk + (µk − µ̃k)(µk − µ̃k)

T
)

= (1 − αk)(Σk + µkµ
T
k + µ̃kµ̃

T
k )

− (1− αk)(µkµ̃
T
k + µ̃kµ

T
k ). (39)

Combining (38) and (39), we get a simplified (24) as

Σ̃k = αk
1

nk

n∑

i=1

γkip̃ip̃
T
i − µ̃kµ̃

T
k

+ (1 − αk)(Σk + µkµ
T
k ). (40)
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