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Abstract—This paper presents a fast algorithm for restoring
video sequences. The proposed algorithm, as opposed to existing
methods, does not consider video restoration as a sequence of
image restoration problems. Rather, it treats a video sequence
as a space–time volume and poses a space–time total variation
regularization to enhance the smoothness of the solution. The
optimization problem is solved by transforming the original un-
constrained minimization problem to an equivalent constrained
minimization problem. An augmented Lagrangian method is used
to handle the constraints, and an alternating direction method
is used to iteratively find solutions to the subproblems. The pro-
posed algorithm has a wide range of applications, including video
deblurring and denoising, video disparity refinement, and hot-air
turbulence effect reduction.

Index Terms—Alternating direction method (ADM), augmented
Lagrangian, hot-air turbulence, total variation (TV), video deblur-
ring, video disparity, video restoration.

I. INTRODUCTION

A. Video Restoration Problems

I MAGE RESTORATION is an inverse problem where the
objective is to recover a sharp image from a blurry and noisy

observation. Mathematically, a linear shift invariant imaging
system is modeled as [1]

(1)

where is a vector denoting the unknown (poten-
tially sharp) image of size , is a vector
denoting the observed image, is a vector denoting
the noise, and matrix is a linear transformation
representing convolution operation. The goal of image restora-
tion is to recover from .
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Standard single-image restoration has been studied for more
than half a century. Popular methods such as Wiener deconvo-
lution [1], Lucy Richardson deconvolution [2], [3], and regular-
ized least squares minimization [4], [5] have already been im-
plemented in MATLAB and FIJI [6]. Advanced methods such
as variational methods are also becoming mature [7]–[11].
While single-image restorations still have a room for im-

provement, we consider in this paper the video restoration
problem. The key difference between an image and a video is
the additional time dimension. Consequently, video restora-
tion has some unique features that do not exist in an image
restoration.
1) Motion information
Motion deblurring requires motion vector field, which can
be estimated from a video sequence using conventional
methods such as block matching [12] and optical flow [13].
While it is also possible to remove motion blur based on a
single image, for example, [14]–[18], the performance is
limited to a global motion or, at most, one to two objects
by using sophisticated object segmentation algorithms.

2) Spatial variance versus spatial invariance
For a class of spatially variant image restoration problems
(in particular motion blur), the convolution matrix is
not a block-circulant matrix. Therefore, Fourier transforms
cannot be utilized to efficiently find a solution. Videos,
in contrast, allow us to transform a sequence of spatially
variant problems to a spatially invariant problem (See the
next section for more discussions). As a result, a huge gain
in speed can be realized.

3) Temporal consistency
Temporal consistency is concerned about the smooth-
ness of the restored video along the time axis. Although
smoothing can be spatially performed (as in the case of
single image restoration), temporal consistency cannot be
guaranteed if these methods are applied to a video in a
frame-by-frame basis.

Because of these unique features of a video, we seek a video
restoration algorithm that utilizes motion information, exploits
the spatially invariant properties, and enforces spatial and tem-
poral consistency.

B. Related Work

There are many works on the problem of video restora-
tion, particularly in the domain of video superresolution. In
[19]–[21], video superresolution is formulated in a regularized
least square minimization framework, in which the bilateral
total variation (TV) is used as the regularization function.
Later, in [22] and [23], the concept of kernel regression to the
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video restoration problem is applied. Similar approaches can
be also found in [24], where Ng et al. considered isotropic TV
as the a regularization function and modified (1) to incorporate
the geometric warp caused by motion. In [25], Belekos et al.
proposed a novel prior that utilizes the motion vector field in
updating the regularization parameters so that the prior is both
spatially and temporally adaptive to the data. A recent work by
Chan and Nguyen [26] has considered a regularization function
of the residue between the current solution and the motion
compensated version of the previous solution.
It is worth noting that most of the aforementioned methods

recover a video in a frame-by-frame basis.1 Additionally, all of
these methods assume that the blur kernel is spatially invariant.
While this assumption is valid for many superresolution sce-
narios where multiple shots of the same object are used to fuse
a higher resolution image, it is invalid when the blur is caused
by object motions. As a result, they are unable to handle the spa-
tially variant motion blur kernel.
Our proposed algorithm is inspired by the concept of

“space–time volume,” which is first introduced in the early 90s
by Jähne [27], and rediscovered by Wexler, Shechtman, Caspi,
and Irani [28], [29]. The idea of space–time volume is to stack
the frames of a video to form a 3-D data structure known as the
space–time volume. This allows one to transform the spatially
variant motion blur problem to a spatially invariant problem.
By imposing regularization functions along the spatial and
temporal directions, respectively, both spatial and temporal
smoothness can be enforced.
The main drawback of space–time minimization is that the

size of a space–time volume is much larger than that of a single
image (or five frames in the case of [25]). Therefore, the authors
of [29] only considered a Tikhonov regularized least square
minimization ([29, eq. (3)]) in which a closed-form solution
exists. More sophisticated regularization functions such as TV
and bilateral TV do not seem possible under this framework
for these nondifferentiable functions are difficult to efficiently
solve.
This paper investigates the TV regularization functions

in space–time minimization. In particular, we consider the
following two problems:

minimize (2)

which is known as the TV/L2 minimization and

minimize (3)

which is known as the TV/L1 minimization. Unless specified,
norms and are the conventional vector 2-norm squares
and the vector 1-norm, respectively. TV-norm can either
be the anisotropic TV norm

(4)

1A version of [25] is able to simultaneously process multiple frames, but in
practice, it only supports five frames at once.

or the isotropic TV norm

(5)

where operators , , and are the forward finite-differ-
ence operators along the horizontal, vertical, and temporal di-
rections, respectively. Here, are constants, and
denotes the th component of the vector . More details on these
two equations will be discussed in Section II-C.
The proposed algorithm is based on the augmented La-

grangian method, which is an old method that has recently
drawn significant attention [10], [11], [30]. Most of the existing
augmented Lagrangian methods for image restoration follow
from Eckstein and Bertsekas’ operator splitting method [31],
which can be traced back to the work of Douglas and Rachford
[32], and the proximal point algorithm by Rockafellar [33],
[34]. Recently, the operator splitting method has been proven
to be equivalent to the splitting Bregman iteration for some
problems [35], [36]. However, there is no work on extending
the augmented Lagrangian method to space–time minimization.

C. Contributions

The contribution of this paper is summarized as follows.
1) We extend the existing augmented Lagrangian method to
solve space–time TV minimization problems (2) and (3).
Augmented Lagrangian method was previously used to
image restoration only [10], [11].

2) Half-quadratic penalty parameter is updated according to
constraint violation. This leads to faster rate of conver-
gence, compared with methods using a fixed parameter
[10].

3) Because of the space–time data structure, our proposed
algorithm is able to handle spatially variant motion blur
problems (object motion blur). Existing methods such as
[19]–[26] are unable to do so.

4) Compared with [29], which is also a space–time minimiza-
tion method, our method achieves TV/L1 and TV/L2 min-
imization quality, whereas [29] only achieves Tikhonov
least square minimization quality.

5) In terms of speed, we achieve significantly faster compu-
tational speed, compared with existing methods. Typical
run time to deblur and denoise a 300 400 gray-scaled
video is a few second per frame on a personal computer
(PC) (MATLAB). This implies the possibility of real-time
processing on a graphics-processing unit.

6) The proposed algorithm supports a wide range of
applications.
a) Video deblurring: With the assistance of frame rate
up-conversion algorithms, the proposed method can
remove spatially variant motion blur for real video
sequences;

b) Video disparity: Occlusion errors and temporal incon-
sistent estimates in the video disparity can be handled
by the proposed algorithm without any modification;

c) Hot-air turbulence: The algorithm can be directly
used to deblur and remove hot-air turbulence effects.
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D. Organization

This paper is an extension of two recently accepted confer-
ence papers [37], [38]. The organization of this paper is as fol-
lows: Section II consists of notations and background materials.
The algorithms are discussed in Section III. Section IV dis-
cusses three applications of the proposed algorithm, namely, 1)
video deblurring, 2) video disparity refinement, and 3) hot-air
turbulence effects reduction. A concluding remark is given in
Section V.

II. BACKGROUND AND NOTATION

A. Notation

A video signal is represented by a 3-D function ,
where denotes the coordinate in space and denotes the
coordinate in time. Suppose that each frame of the video has
rows, columns, and there are frames, then, the discrete

samples of for , ,
and form a 3-D tensor of size .
For the purpose of discussing numerical algorithms, we

use matrices and vectors. To this end, we stack the entries of
into a column vector of size , according

to the lexicographic order. We use the bold letter to represent
the vectorized version of the space–time volume , i.e.,

where represents the vectorization operator.

B. Three-Dimensional Convolution

The 3-D convolution is a natural extension of the conven-
tional 2-D convolution. Given space–time volume and
the blur kernel , the convolved signal is given

by
. Convolution is a linear operation; therefore, it

can be expressed using matrices. More precisely, we define the
convolution matrix associated with a blur kernel as
the linear operator that maps signal to fol-
lowing the rule, i.e.,

(6)

Assuming periodic boundaries [39], the convolution matrix
is a triple block-circulant matrix—it has a block-circulant struc-
ture, and within each block, there is a submatrix of block circu-
lant with circulant block. Circulant matrices are diagonalizable
using discrete Fourier transform (DFT) matrices [40], [41]:

Fact 1: If is a triple block-circulant matrix, then it can
be diagonalized by the 3-D DFT matrix as

where is the Hermitian operator and is a diagonal
matrix storing the eigenvalues of .

C. Forward-Difference Operators

We define operator as a collection of three suboperators
, where , , and are the first-

order forward finite-difference operators along the horizontal,
vertical, and temporal directions, respectively. The definitions
of each individual suboperators are

with periodic boundary conditions.
In order to have greater flexibility in controlling the forward

difference along each direction, we introduce three scaling
factors as follows. We define scalars , , and and
multiply them with , , and , respectively, so that

.
With , the anisotropic TV norm and the

isotropic TV are defined according to (4) and (5), re-
spectively. When and , is the 2-D
TV of (in space). When and ,
is the 1-D TV of (in time). By adjusting , , and , we
can control the relative emphasis put on individual terms ,

, and .
Note that is equivalent to the vector 1-norm on ,

i.e., . Therefore, for notation simplicity, we
use instead. For , although

using the vector 2-norm definition, we still define
to align with the definition of . However, this

will be made clear if confusion arises.

III. PROPOSED ALGORITHM

The proposed algorithm belongs to the family of operator
splitting methods [10], [11], [31]. Therefore, instead of re-
peating the details, we focus on the modifications made to the
3-D data structure. Additionally, our discussion is focused on
the anisotropic TV, i.e., . The isotropic TV, can
be similarly derived.

A. TV/L2 Problem

The core optimization problem that we solve is the following
TV/L2 minimization:

minimize (7)

where is a regularization parameter. To solve problem (7), we
first introduce intermediate variables and transform problem
(7) into an equivalent problem, i.e.,

minimize

subject to (8)
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The augmented Lagrangian of problem (8) is

(9)

where is a regularization parameter associated with the
quadratic penalty term and is the Lagrange
multiplier associated with the constraint . In (9),
intermediate variable and Lagrange multiplier can be
respectively partitioned as

and
(10)

The idea of the augmented Lagrangian method is to find a
saddle point of , which is also the solution of the orig-
inal problem (7). To this end, we use the alternating direction
method to iteratively solve the following subproblems:

(11)

(12)

(13)

We now investigate these subproblems one by one.
1) -Subproblem: By dropping indexes , the solution of

problem (11) is found by considering the normal equation as
follows:

(14)

The convolution matrix in (14) is a triple block-circulant
matrix, and therefore, by Fact 1, can be diagonalized using
the 3-D DFT matrix. Hence, (14) has the following solution:

(15)

where denotes the 3-D Fourier transform operator. The ma-
trices , , , and can be precalculated
outside the main loop. Therefore, the complexity of solving (14)
is in the order of operations, which is the complexity
of the 3-D Fourier transforms, and is the number of elements
of the space–time volume .
2) -Subproblem: Problem (12) is known as the -sub-

problem, which can be solved using a shrinkage formula [42].
Letting (analogous definitions for
and ), is given by

sign (16)

Analogous solutions for and can be also derived.

In case of isotropic TV, the solution is given by [42]

(17)

where , and is a small
constant . Here, the multiplication and divisions are
componentwise operations.
3) Algorithm: Algorithm 1 shows the pseudocode of the

TV/L2 algorithm.

Algorithm 1 Algorithm for TV/L2 minimization problem

Input data and .

Input parameters , , , and .

Set parameters default and default .

Initialize , , , .

Compute the matrices , , , and .

while not converge do

1. Solve the -subproblem (11) using (15).

2. Solve the -subproblem (12) using (16).

3. Update the Lagrange multiplier using (13).

4. Update according to (24).

5. Check convergence:

if then

break

end if

end while

B. TV/L1 Problem

TV/L1 problem can be solved by introducing two interme-
diate variables, i.e., and , and modifying problem (3) as

minimize

subject to

(18)

The augmented Lagrangian of (18) is given by

.
Here, variable is the Lagrange multiplier associated with
constraint , and variable is the Lagrange multiplier
associated with the constraint . Moreover, and
can be partitioned as in (10). Parameters and are two

regularization parameters. Subscripts “ ” and “ ” stand for
“objective” and “regularization,” respectively.
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Fig. 1. TV/L2 image recovery using different choices . The optimal (in terms of PSNR compared to the reference) is . The image is blurred by a
Gaussian blur kernel of size 9 9 and . Addition Gaussian noise is added to the image so that the BSNR is 40 dB.

1) -Subproblem: The -subproblem of TV/L1 is

minimize

(19)

which can be solved by considering the following normal
equation:

yielding

(20)

2) -Subproblem: The -subproblem of TV/L1 is the same
as that of TV/L2. Therefore, the solution is given by (16).
3) -Subproblem: The -subproblem is

minimize (21)

Thus, using the shrinkage formula, the solution is

sign

(22)

4) Multiplier Update: and are updated as

(23)

5) Algorithm: Algorithm 2 shows the pseudocode of the
TV/L1 algorithm.

Algorithm 2 Algorithm for TV/L1 minimization problem

Input , , and parameters , , , and . Let .
Set parameters default , default , and

default .
Initialize , , , , and

.
Compute matrices , , , and .
while not converge do

1. Solve the -subproblem (19) using (20).
2. Solve the -subproblem (12) using (16).
3. Solve the -subproblem (21) using (22).
4. Update and using (23).
5. Update and according to (24).
6. Check convergence:

if tol then

break

end if

end while

C. Parameters

In this subsection, we discuss the choice of parameters.
1) Choosing : The regularization parameter trades off the

least square error and the TV penalty. Large values of tend to
give sharper results, but noise will be amplified. Small values
of give less noisy results, but the image may be smoothed.
The choice of is not known prior to solving the minimization.
Recent advances in the operator-splitting methods have consid-
ered constrained minimization problems [11] so that can be
replaced by an estimate of the noise level (the noise estimation
is performed using a third party algorithm). However, from our
experience, it is often easier to choose than to estimate the
noise level for the noise characteristic of a video is never exactly
known. Empirically, a reasonable for a natural image (and
video sequence) typically lies in the range . Figs. 1
and 2 show the recovery results by using different values of .
In the case of TV/L1 minimization, is typically lying in the
range [0.1, 10].
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Fig. 2. TV/L1 image recovery using different choices . The optimal (in terms of PSNR compared to the reference) is . The image is blurred by a Gaussian
blur kernel of size 9 9 and of the pixels are corrupted by salt and pepper noise. Image source: [43].

2) Choosing : One of the major differences between the
proposed algorithm and FTVd 4.0 [35]2 is the update of . In
[35], is a fixed constant. However, as mentioned in [44], the
method of multipliers can exhibit a faster rate of convergence
by adapting the following parameter update scheme:

if
otherwise.

(24)

Here, condition spec-
ifies the constraint violation with respect to constant . The
intuition is that the quadratic penalty is a
convex surface added to the original objective function

so that the problem is guaranteed to be strongly
convex [33]. Ideally, residue should de-
crease as increases. However, if is not
decreasing for some reasons, one can increase the weight of
penalty , relative to the objective, so that

is forced to be reduced. Therefore, given
and , where and , (24) makes sure that the
constraint violation is asymptotically decreasing. In the steady
state, as , becomes a constant [46]. The update for
in TV/L1 follows a similar approach.
The initial value of is chosen to be within the range of [2,

10]. This value cannot be large (in the order of 100) because
the role of the quadratic surface is to perturb the
original objective function so that it becomes strongly convex.
If the initial value of is too large, the solution of the original
problem may not be found. However, cannot be too small
either; otherwise, the effect of the quadratic surface
becomes negligible. Empirically, we find that is robust
to most restoration problems.

D. Convergence

Fig. 3 illustrates the convergence profile of the TV/L2 algo-
rithm in a typical image recovery problem. In this test, the image
“cameraman.tif” (size 256 256; gray scaled) is blurred by a
Gaussian blur kernel of size 9 9 and . Gaussian noise is
added so that the blurred signal-to-noise ratio (BSNR) is 40 dB.
To visualize the effects of the parameter update scheme, we set
the initial value of to be , and let . Referring
to (24), is increased by a factor of if the condition is sat-

2The most significant difference is that FTVd 4.0 supports only images,
whereas the proposed algorithm supports videos.

Fig. 3. Convergence profile of the proposed algorithm for deblurring the image
“cameraman.tif”. (Four colored curves) The rate of convergence using different
values of , where is the multiplication factor for updating .

isfied. Note that [35] (FTVd 4.0) is a special case when ,
whereas the proposed algorithm allows the user to vary .
In Fig. 3, the -axis is the objective value

for the th iteration, and the -axis is iteration number
. As shown in the figure, an appropriate choice of signifi-
cantly improves the rate of convergence. However, if is too
large, the algorithm is not converging to the solution. Empiri-
cally, we find that is robust to most of the image and
video problems.

E. Sensitivity Analysis

Table I illustrates the sensitivity of the algorithm to parame-
ters , , and . In this test, 20 images are blurred by aGaussian
blur kernel of size 9 9, with variance . The BSNR
is 30 dB. For each image, two of the three parameters ( , ,
and ) are fixed at their default values, i.e., , ,
and , whereas one of them is varying within the range
specified in Table I. The stopping criteria of the algorithm is

, , and
for all images. The maximum peak signal-to-noise ratio

(PSNR), minimum PSNR, and the difference are reported in
Table I. Referring to the values, it can be calculated that the av-
erage maximum-to-minimum PSNR differences among all 20
images for , , and are 0.311, 0.208, and 0.357 dB, respec-
tively. For an average PSNR difference in the order of 0.3 dB,
the perceivable difference is small.3

3It should be noted that the optimization problem is identical for all parameter
settings. Therefore, the correlation between the PSNR and visual quality is high.
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TABLE I
SENSITIVITY ANALYSIS OF PARAMETERS. MAXIMUM AND MINIMUM PSNR (IN DECIBELS) FOR A RANGE OF , , AND .

IF A PARAMETER IS NOT THE VARIABLE, IT IS FIXED AT DEFAULT VALUES , , AND

F. Comparison With Existing Operator-Splitting Methods

The proposed algorithm belongs to the class of operator split-
ting methods. Table II summarizes the differences between the
proposed method and some existing methods.4

IV. APPLICATIONS

In this section, we demonstrate three applications of the
proposed algorithm, namely, 1) video deblurring, 2) video dis-
parity refinement, and 3) video restoration for videos distorted
by hot-air turbulence. Due to limited space, more results are
available at http://videoprocessing.ucsd.edu/stanleychan/de-
convtv.

A. Video Deblurring

1) Spatially Invariant Blur: We first consider the class of
spatially invariant blur. In this problem, the th observed image

is related to the true image as

Note that the spatially invariant blur kernel is assumed
to be identical for all time .
The typical method to solve a spatially invariant blur is to

consider the model as

4The speed comparison is based on deblurring “lena.bmp” (512 512; gray
scaled), which is blurred by a Gaussian blur kernel of size 9 9, , and
BSNR dB. The machine used is Intel Qual Core at 2.8 GHz, with 4-GB
random access memory (RAM), and Windows 7/MATLAB 2010. Comparisons
between FTVd 4.0 and the proposed method are based on . If
(default setting of FTVd 4.0), then the run time are 1.56 and 1.28 s for FTVd
4.0 and the proposed method, respectively.

and apply a frame-by-frame approach to individually recover
. In [26], the authors considered the following minimization:

minimize

where is the solution of the th frame and is the
motion compensation operator that maps the coordinates of
to the coordinates of . Operators are the spatial forward
finite-difference operators oriented at angles 0 , 45 , 90 , and
135 . Regularization parameters and control the relative
emphasis put on the spatial and temporal smoothness.
Another method to solve the spatially invariant blur problem

is to apply the multichannel approach by modeling the imaging
process as [24], [25]

for , where is the size of the
temporal window (typically ranged from 1 to 3). is the
motion compensation operator that maps the coordinates of
to the coordinates of . The th frame can be recovered by
solving the following minimization [24]:

minimize (25)

where is a constant and is the isotropic TV on the th
frame. Themethod presented in [25] replaces the objective func-
tion by a weighted least squares and the isotropic TV regular-
ization function by a weighted 2-norm on gradient. The weights
are adaptively updated (using residue and motion vector field)
in each iteration, and therefore, the regularization function is
nonstationary, both spatially and temporally.
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TABLE II
COMPARISONS BETWEEN THE OPERATOR-SPLITTING METHODS FOR TV/L2 MINIMIZATION

TABLE III
COMPARISONS BETWEEN THE VIDEO RESTORATION METHODS

A drawback of these methods is that the image recovery re-
sult heavily depends on the accuracy of motion estimation and
compensation. In particular, in occlusion areas, the assumption
that is a one-to-one mapping [47] fails to hold. Thus,
is not a full-rank matrix, and . As a result, mini-
mizing can lead to a serious error. There are
methods to reduce the error caused by rank deficiency of ,
for example, the concept of unobservable pixel introduced in
[24], but the restoration result depends on the effectiveness of
how the unobservable pixels are selected.
Another drawback of these methods is the computation time.

For spatially invariant blur, blur operator is a block-circulant
matrix. However, in the multichannel model, the operator

is not a block-circulant matrix. The block-circulant
property is a critical factor to speed as it allows the use of
Fourier transform methods. For methods in [24] and [25],
conjugate gradient (CG) is used to solve the minimization
task. While the total number of CG iterations may be few, the
per-iteration run time can be long.
Table III illustrates the differences between various video

restoration methods.
Our approach to solve spatially invariant blur problem shares

the same insight as [29], which does not consider motion com-
pensation. The temporal error is handled by spatio–temporal
TV . An in-
tuition to this approach is that the temporal difference
can be classified as temporal edge and temporal noise. The tem-
poral edge is the intensity change caused by object movements,
whereas the temporal noise is the artifact generated in the min-
imization process. Similar to the spatial TV, the temporal TV
preserves the temporal edges while reducing the temporal noise.
Moreover, the space–time volume preserves the block-circu-

TABLE IV
PSNR, , AND VALUES FOR FOUR VIDEO SEQUENCES BLURRED BY

GAUSSIAN BLUR KERNEL 9 9, , AND BSNR dB

lant structure of the operator, thus leading to significantly faster
computation.
Table IV, and Figs. 4 and 5 show the comparisons between

[24], [26], and [29] and the proposed method on spatially in-
variant blur. The four testing video sequences are blurred by
a Gaussian blur kernel of size 9 9 with . Additive
Gaussian noise are added so that the BSNR is 30 dB.
The specific settings of the methods are as follows. For [29],

we consider the following minimization:

minimize

and set the parameters empirically for the best recovery quality:
and . For [24], instead of
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Fig. 4. “News” sequence; frame 100. (a) Original image (cropped for better
visualization). (b) Blurred by a Gaussian blur kernel of size 9 9, , and
BSNR dB. (c)–(f) Results by various methods (see Table IV).

using the CG presented in this paper, we use a modification
of the proposed augmented Lagrangian method to speed up the
computation. Specifically, in solving the -subproblem, we used
CG (LSQR [48]) to accommodate the nonblock-circulant op-
erator . The motion estimation is performed using the
benchmark full search (exhaustive search) with 0.5-pixel accu-
racy. The block size is 8 8, and the search range is 16
16. Motion compensation is performed by coordinate transform
according to the motion vectors (bilinear interpolation for half
pixels). The threshold for unobservable pixels [24] is set as 6
(out of 255), and the regularization parameter is [see
(25)]. We use the previous and the next frame for the model, i.e.,

and let (Using (1, 1, 1)
tends to give worse results). For [26], the regularization param-
eters are also empirically chosen for the best recovery quality:

and .
To compare these methods, we apply TV/L2 (Algorithm 1)

with the following parameters (same for all four videos):
and . All other parameters take the

default setting: , , and . The algorithm
terminates if .

Fig. 5. “Salesman” sequence; frame 10. (a) Original image (cropped for better
visualization). (b) Blurred by a Gaussian blur kernel of size 9 9, , and
BSNR dB. (c)–(f) Results by various methods (see Table IV).

In Table IV, three quantities are used to evaluate the perfor-
mance of the algorithms. PSNR measures the image fidelity.
Spatial TV is defined as
for each frame, and temporal TV is defined as

for each frame [26]. The average (over
all frames) PSNR, , and are listed in Table IV.
Referring to the results, it is shown that the proposed al-

gorithm produces the highest PSNR values while keeping
and at a low level. It is worth noting that [29] is equiva-
lent to the 3-D Wiener deconvolution (regularized). Therefore,
there exists a closed-form solution, but the result looks blurrier
than the other methods. Among the four methods, both [24] and
[26] use motion estimation and compensation. However, [24]
is more sensitive to the motion estimation error—motion esti-
mation error in some fast-moving areas are amplified in the de-
blurring step. Reference [26] is more robust to motion estima-
tion error, but the computation time is significantly longer than
the proposed method. The run time of [24] and [26] are approx-
imately 100 s per frame (per color channel), whereas the pro-
posed algorithm only requires approximately 2 s per frame (per
color channel). These statistics are based on recovering videos
of size 288 352, using a PC with Intel Qual Core at 2.8 GHz,
with 4-GB RAM, and Windows 7/MATLAB 2010.
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Fig. 6. “Market Place” sequence; frame 146. (Top) The original observed video
sequences. (Middle) Result of [29]. (Bottom) Result of the proposed method.

2) Spatially Variant Motion Blur: The proposed algorithm
can be used to remove spatially variant motion blur. However,
sincemotion-blurred videos often have low temporal resolution,
frame rate up-conversion algorithms are needed to first increase
the temporal resolution before applying the proposed method
(see [29] for detailed explanations). To this end, we apply [49]
to upsample the video by a factor of 8. Consequently, the motion
blur kernel can be modeled as

if , and
otherwise

where in this case.
Fig. 6 shows frame no. 146 of the video sequence “Market

Place,” and Fig. 7 shows frame no. 28 of the video sequence
“Super Loop.” The videos are captured by a Panasonic TM-700
video recorder with resolution 1920 1080p at 60 fps. For com-
putational speed, we down sampled the spatial resolution by a
factor of 4 (so the resolution is 480 270). The parameters of
the proposed algorithm are empirically chosen as and

. There are not many relevant video mo-
tion deblurring algorithms for comparison (or unavailable to be
tested). Therefore, we are only able to show the results of [29],
using parameters and .
As shown in Figs. 6 and 7, the proposed algorithm produces a

significantly higher quality result than [29]. We also tested for a
range of parameters and for [29]. However, we observe that
the results are either oversharpened (serious ringing artifacts) or
undersharpened (not enough deblurring).
3) Limitation: The proposed algorithm requires considerably

less memory than other TV minimization algorithms such as
interior point methods. However, for high-definition videos, the
proposed algorithm still has a memory issue as the size of the
space–time volume is large. While one can use fewer frames

Fig. 7. “Super Loop” sequence; frame 28. (Top) The original observed video
sequences. (Middle) Result of [29]. (Bottom) Result of the proposed method.

Fig. 8. (Top) Before applying the proposed TV/L1 algorithm. (Middle) After
applying the proposed TV/L1 algorithm. (Bottom) Time evolution of the dis-
parity value (normalized) of a pixel.

to lower the memory demand, trade off in the recovery quality
should be expected.
Another bottleneck of the proposed algorithm is the sensi-

tivity to the frame-rate conversion algorithm. At object bound-
aries where the motion estimation algorithm fails to provide ac-
curate estimates, the estimation error in the deblurring step will
be amplified. This typically happens to areas with nonuniform
and rapid motion.
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Fig. 9. Video disparity estimation. (First row) Left view of the stereo video. (Second row) Initial disparity estimate. (Third row) Refinement using the proposed
method with parameters , , , , , and . (Last row) Zoom-in comparisons. (a) “Old Timers”
sequence. (b) “Horse” sequence.

B. Video Disparity Refinement

1) Problem Description: Our second example is disparity
map refinement. Disparity is proportional to the reciprocal of
the distance between the camera and the object (i.e., depth).
Disparity maps are useful for many stereo-video processing ap-
plications, including object detection in 3-D space, saliency for
stereo videos, stereo coding, and view synthesis
There are numerous papers on generating one disparity map

based on a pair of stereo images [50]. However, all of these
methods cannot be extended to videos because the energy
functions are considered in a frame-by-frame basis. Although
there are works in enforcing temporal consistency for adjacent
frames, such as [51] and [52], the computational complexity is
high.
We propose to estimate the video disparity in two steps. In the

first step, we combine the locally adaptive support weight [53]
and the cross-bilateralateral grid [54] to generate an initial dis-
parity estimate. Since this method is a frame-by-frame method,
spatial and temporal consistency is poor. In the second step, we
consider the initial video disparity as a space–time volume and
solve the TV/L1 minimization problem, i.e.,

minimize

There are two reasons for choosing TV/L1 instead of TV/L2
in refining video disparity. First, disparity is a piecewise con-
stant function with quantized levels, and across the flat regions,
there are sharp edges. As shown in Fig. 8 (bottom), the estima-
tion error behaves like outliers in a smooth function. Therefore,
to reduce the estimation error, one can consider a robust curve
fitting as it preserves the shape of the data while suppressing the
outliers.
The second reason for using TV/L1 is that the 1-norm
is related to the notion of percentage of bad pixels, which is

a quantity commonly used to evaluate disparity estimation al-
gorithms [50]. Given a ground truth disparity , the number
of bad pixels of an estimated disparity is the cardinality of
the set for some threshold . In the ab-
sence of ground truth, the same idea can be used with a refer-
ence disparity (e.g., ). In this case, the cardinality of the set

Fig. 10. Image disparity refinement on algorithms 8 and 78 (randomly chosen)
from Middlebury for “Tsukuba.” (Red box) Before applying the proposed
method. (Blue box) After applying the proposed method. is found
exhaustively with increment 0.1, , , ,

, and .

, denoted by , is the number of
bad pixels of with respect to (w.r.t) . Therefore, minimizing

is equivalent to minimizing the number of bad pixels of
w.r.t. . However, this problem is nonconvex and is NP-hard.
In order to alleviate the computational difficulty, we set
so that , and convexify by .
Therefore, can be regarded as the convexification of
the notion of percentage bad pixels.
2) Video Results: Two real videos (“Horse” and “Old

Timers”) are tested for the proposed algorithm. These
stereo videos are downloaded from http://sp.cs.tut.fi/mo-
bile3dtv/stereo-video/. Fig. 9 illustrates the results. The first
row in Fig. 9 shows the left view of the stereo video. The
second row shows the results of applying [53], [54] to the
stereo video. Note that we are implementing a spatio–temporal
version of [54], which uses adjacent frames to enhance the
temporal consistency. However, the estimated disparity is still
noisy, particularly around the object boundaries. The third row
shows the result of applying the proposed TV/L1 minimization
to the initial disparity estimated in the second row. It should
be noted that the proposed TV/L1 minimization improves not
only the flat interior region but also the object boundary (e.g.,
the arm of the man in “Old Timers” sequence), which is an area
that [53] and [54] are unable to handle.
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Fig. 11. Percentage error reduction (in terms of number of bad pixels) by applying the proposed algorithm to all the 99 methods on the Middlebury stereo database.

3) Image Results: The effectiveness of the proposed algo-
rithm can be further elaborated by comparing to the 99 bench-
mark methods on Middlebury stereo evaluation website [50].
For all the 99 methods onMiddlebury stereo evaluation website,
we download their results and apply the proposed algorithm to
improve the spatial smoothness. Note that the proposed algo-
rithm is ready for this test because an image is a single-frame
video. In this case, we set . Fig. 10 shows
the results for two of the 99 methods (randomly chosen) for the
data set “Tsukuba,” and Fig. 11 shows the percentage of error re-
duction (in terms of the number of bad pixels, with threshold 1)
by applying the proposed algorithm to all methods on the Mid-
dlebury database. The higher bars in the plots indicate that the
proposed algorithm reduces the error by a greater amount. It is
shown that the errors are typically reduced by a large margin of
over 10%. While there is less error reduction for some data sets,
it is important to note that error reduction is always nonnega-
tive. In other words, the proposed algorithm always improves
the initial disparity estimate. Furthermore, for every algorithm,
we provide improvement in at least one of the image sets.
Limitations: A limitation of the proposed algorithm is that it

is unable to handle large and consistent error results from poor
initial disparity estimation algorithm. This particularly happens
in large occlusion areas, repeating texture regions, or frames
consisting of rapid motions. We are currently seeking methods
to feedback the TV/L1 result to the initial disparity estimation
so that the algorithm is more robust to these errors.

C. Videos Distorted by Hot-Air Turbulence

1) Problem Description: Our third example is the stabiliza-
tion of videos distorted by hot-air turbulence effects. In the pres-

ence of hot-air turbulence, the refractive index along the trans-
mission path of the light ray is spatially and temporally varying
[55]. Consequently, the path differences and, hence, the phases
of the light rays are also spatially and temporally varying. As
a result, the observed image is distorted by geometric warping,
motion blur, and, sometimes, out-of-focus blur. This type of dis-
tortion is generally known as the hot-air turbulence effect.
There are various methods to overcome imaging through

hot-air turbulence. For example, the speckle imaging technique
[55] assumes that the refractive index is randomly changing
but is also statistically stationary [56], [57]. Consequently, by
averaging enough number of frames, the geometric distortion
will be smoothed out. Then, a deconvolution algorithm can be
used to remove the blur.
The drawback of the speckle imaging technique is that the

average operation makes the deblurring process challenging.
Therefore, Zhu and Milanfar [60] and Shimizu et al. [61] pro-
posed to first compensate the geometric distortion using non-
rigid registration [62] and then deblur the images using decon-
volution algorithms. The limitation is that nonrigid registration
works well only when the geometric distortion can be adjusted
by all the control points in the grid [62]. However, imaging
through hot-air turbulence contains both large-area distortion
(perceived as waving) and small disturbance (perceived as jit-
tering). If nonrigid registration has to be used to compensate
small disturbance, then the number of control points will be
huge, making the computation not practical. There are other
methods such as lucky frame/region fusion approach [63], [64].
However, these methods cannot effectively handle small distur-
bance either.
Using the samemethodology as we used for video deblurring,

we consider the video as a space–time volume and minimize the
TV/L2 problem. Our intuition is that the small hot-air
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Fig. 12. Hot-air turbulence removal for the sequence “Acoustic Explorer”
using the proposed method to reduce the effect of hot-air turbulence. (a) A
frame of the original video sequence. (b) Step 1: Apply GLG [58], [59] to the
input. (c) Step 2: Apply the proposed method to the results of Step 1.

Fig. 13. Zoom-in of “Acoustic Explorer” sequence; frames 25–28 (object is
2 mi from the camera). (Top) Input video sequence with contrast enhanced by
GLG. (Bottom) Processed video by applying the proposed method to the output
of GLG.

turbulence can be regarded as temporal noise, whereas the ob-
ject movement is regarded as temporal edge. Under this frame-
work, spatially invariant blur can be also incorporated. If the
input video originally has a low contrast, a preprocessing step
using gray level grouping (GLG) [58], [59] can be used (See
Fig. 12).
2) Experiments: Fig. 13 shows the snapshots (zoom in) of a

video sequence “Acoustic Explorer.” In this example, GLG is
applied to the input videos so that contrast is enhanced. Then,
the proposed algorithm is used to reduce the hot-air turbulence
effect. A Gaussian blur kernel is assumed in both examples,
where the variance is empirically determined. Comparing the
video quality before and after applying the proposed method,
fewer jittering such as artifacts are observed in the processed
videos. While this may not be apparent by viewing the still im-
ages, the improvement is significant in the 24 fps videos.5

Fig. 14 shows the comparisons without the contrast enhance-
ment by GLG. Referring to the figures, the proposed algorithm
does not only reduce the unstable hot-air turbulence effects, it
also improves the blur. The word “Empire State” could not be
clearly seen in the input sequence, but it becomes sharper in the
processed sequence.
3) Limitation: The aforementioned experiments indicate

that the proposed algorithm is effective for reducing small
hot-air turbulence effects. However, for large-area geometric
distortions, nonrigid registration is needed. In addition, the gen-
eral turbulence distortion is spatially and temporally varying,
meaning that the point spread function cannot be modeled as
one Gaussian function. This issue is an open problem.

5Videos are available at http://videoprocessing.ucsd.edu/~stanleychan/de-
convtv

Fig. 14. Snapshot of “Empire State” sequence. (Left) Input video sequence
without GLG. (Right) Processed video by applying GLG and the proposed
method.

V. CONCLUSION

In this paper, we have proposed a video deblurring/denoising
algorithm that minimizes a TV optimization problem for spa-
tial–temporal data. The algorithm transforms the original un-
constrained problem to an equivalent constrained problem and
uses an augmented Lagrangian method to solve the constrained
problem. With the introduction of spatial and temporal regular-
ization to the spatial–temporal data, the solution of the algorithm
is both spatially and temporally consistent.
Applications of the algorithm include video deblurring, dis-

parity refinement, and turbulence removal. For video deblur-
ring, the proposed algorithm restores motion-blurred video se-
quences. The average PSNR is improved, and the spatial and
temporal TVs are maintained at an appropriate level, meaning
that the restored videos are spatially and temporally consistent.
For disparity map refinement, the algorithm removes flickering
in the disparity map and preserves the sharp edges in the dis-
parity map. For turbulence removal, the proposed algorithm sta-
bilizes and deblurs videos taken under the influence of hot-air
turbulence.
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