
MATLAB User Guide for

Depth Reconstruction from Sparse Samples
Lee-Kang Liu, Stanley H. Chan and Truong Q. Nguyen

This MATLAB user guide presents the instructions of how to use the MATLAB functions accompanied with the paper [1].

I. Reconstruction functions: Demonstration code:

1. xout=ADMM WT(S,b,param) Demo ADMM WT.m

2. xout=ADMM WT CT(S,b,param) Demo ADMM WT CT.m

3. xout=ADMM outer(S,b) Demo Multiscale ADMM WT CT.m.

II. Sampling functions: Demonstration code:

1. S = Oracle Random Sampling( x0, sp ) Demo Oracle Random Sampling.m

2. S = Oracle Random Sampling with PCA( x0, sp, Spilot ) Demo Oracle Random Sampling with PCA.m

TABLE I: Table of content.

I. RECONSTRUCTION FUNCTIONS

A. Notations and Problem Formulation

Referring to [1], we first discuss three reconstruction functions:

• xout=ADMM WT(S,b,param)

• xout=ADMM WT CT(S,b,param)

• xout=ADMM outer(S,b)

The usage of these three functions are demonstrated in the following three MATLAB scripts:

• Demo ADMM WT.m

• Demo ADMM WT CT.m

• Demo Multiscale ADMM WT CT.m.

The ADMM denotes the alternating direction method of multipliers, which is the proposed to solve the reconstruction problem

in [1]. WT and CT respectively stand for wavelet and contourlet dictionaries. For three reconstruction functions, the input

variables, including a sampling mask “S”, an observation image “b”, and a structure, param, are unified.

Mathematically, as presented in [1], the generalized model for depth reconstruction is defined as

minimize
x

1

2
‖Sx− b‖2

2
+

L∑

ℓ=1

λℓ‖W ℓΦ
T
ℓ x‖1 + β‖x‖TV . (1)

The notations of symbols are shown in Table II. We note that ADMM WT is for single wavelet dictionary case (L = 1).

We also note that ADMM WT CT and Multiscale ADMM WT CT are for combined dictionary case (L = 2). By default,

the regularization parameters are set to be λ1 = 4 × 10−5, λ2 = 2 × 10−4 and β = 2 × 10−3. The discussion on selecting

parameters is presented in [2].

We note that the representations of input variables “S” and “b” in MATLAB implementation are not the same as S and b

in Table II. Mathematically, for simplicity purpose, the image is set to be a 1D signal. However, practically, image is typically

represented in 2D and is directly processed. More specifically, the sampling matrix S is a N × N matrix with 0’s at off-

diagonal entries and 0’s/1’s at diagonal entries, whereas the sampling mask “S” is a
√
N×

√
N matrix with entries 0’s/1’s. The

measurement vector b has size N×1, whereas the observation image “b” has size
√
N×

√
N . As shown in Figure 1, sampling

mask “S” with size 512× 512 contains 1’s and 0’s; The measurement image “b” with size 512× 512 contains nonzero values

at sampled locations (i, j), where S(i, j) = 1.

L. Liu and T. Nguyen are with Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA 92093, USA.
Emails: l7liu@ucsd.edu and tqn001@eng.ucsd.edu

S. Chan is with School of Electrical and Computer Engineering and Department of Statistics, Purdue University, West Lafayette, IN 47907, USA. Email:
stanleychan@purdue.edu



2

Symbols Dimensions Descriptions

S R
N×N Sampling matrix

b R
N×1 Spatial measurements

Φ1 R
N×N Wavelet Dictionary

W 1 R
N×N Weighting matrix for wavelet coefficients

Φ2 R
N×N Contourlet Dictionary

W 2 R
N×N Weighting matrix for contourlet coefficients

λ1 R Regularization parameter for wavelet sparsity

λ2 R Regularization parameter for contourlet sparsity

β R Regularization parameter for total variation

TABLE II: Notations for symbols in (1).

Sampling Mask “S” Observation Image “b” Reconstructed Image “xout”

Fig. 1: Input and output data for all reconstruction functions.

B. Usage of Functions

After clarifying the differences between the mathematical models and practical implementations, we in this subsection discuss

the usage of three reconstruction functions. For simplicity, in these demonstration code we let “S” to be a sampling mask with

uniformly random samples. The argument “sp.” defines the sampling rate, and the code for generating “S” is

1 % Define Sampling Rate (0¬1)

2 sp = 0.1;

3

4 % uniformly random sampling mask function

5 S = (rand(rows, cols)≤sp);

6 b = S.*x0;

For simplicity, the sampling masks in all demonstration MATLAB scripts are generated by the sampling function mentioned

above, and the generation of measurement image “b” is shown in line 6, where “x0” is the ground truth depth image.

1) Using xout=ADMM WT(S,b,param): We now discuss the usage of the function xout=ADMM WT(S,b,param). As men-

tioned above, input arguments “S” and “b” are provided. The third argument “param” is a structure containing parameter

settings for ADMM algorithm and for wavelet dictionary, and its default settings are presented in “Demo ADMM WT.m.”

An example code of its typical settings are

1 % Initialize parameters

2 param.wname = 'db2'; % types of wavelet function

3 param.wlevel = 2; % number of levels for wavelet transform

4 param.lambda1 = 4e-5; % regulization parameter for L1_Wavelet term

5 param.beta = 2e-3; % regulization parameter for total variation term

6 param.max_itr = 400; % maximum iteration for reconstruction

7 param.tol = 1e-5; % tolerance for stop condition

8 param.disp_relchg = 1; % display the relative change during process

9 param.disp_img = 1; % display image during process

Changes on parameters in “param” are acceptable. Lines 2-3 are parameter settings for wavelet dictionary, and the options for

the settings can be found in MATLAB internal library. Lines 4-7 are settings of regularization parameters for ADMM algorithm,



3

and we set them as defaults according to our experiments [2]. Lines 8-9 are flags for displaying statistics and intermediate

depth image x. Setting flag to be 1 means that the target object will be displayed, and the target will not be displayed while

flag is set to be 0.

An example of using this function is shown as follows, and users can refer to “Demo ADMM WT.m” for detailed

information.

1 % ADMM using wavelet dictionary

2 xout = ADMM_WT(S,b,param);

2) Using xout=ADMM WT CT(S,b,param): The function xout=ADMM WT CT(S,b,param) performs ADMM algorithm

for combined dictionary, in which wavelet dictionary Φ1 and contourlet dictionary Φ2 are included. We note that the folder

ContourletSD is the contourlet toolbox [3], which is required for the MATLAB script “Demo ADMM WT CT.m.” To ensure

that “xout=ADMM WT CT(S,b,param)” operates properly, checking the existence of “ContourletSD” folder and adding the

code presented as follows are required.

1 % Set contourlet transform toolbox path

2 addpath(genpath('ContourletSD\'));

After obtaining both sampling mask “S” and measurements “b”, setting of parameters is the next. The default settings for

the input argument “param” are shown as below. For distinguishing difference from aforementioned ADMM WT function,

we utilize “WTCTparam” as a symbol in the code.

1 WTCTparam.wname = 'db2'; % types of wavelet function

2 WTCTparam.wlevel = 2; % number of levels for wavelet transform

3 WTCTparam.nlev_SD = [5 6]; % directional filter partition numbers

4 WTCTparam.smooth_func = @rcos; % smooth function for Laplacian Pyramid

5 WTCTparam.Pyr_mode = 2; % redundancy setting for the transformed coefficients

6 WTCTparam.dfilt = '9-7'; % 9-7 bior filter for directional filtering

7 WTCTparam.lambda1 = 4e-5; % regularization parameter for L1_Wavelet term

8 WTCTparam.lambda2 = 2e-4; % regularization parameter for L1_Contourlet term

9 WTCTparam.beta = 2e-3; % regularization parameter for total variation term

10 WTCTparam.max_itr = 400; % maximum iteration for reconstruction

11 WTCTparam.tol = 1e-5; % tolerance for stop condition

12 WTCTparam.disp_relchg = 1; % display the relative change during process

13 WTCTparam.disp_img = 1; % display image during process

Lines 1-2 are parameters for wavelet dictionary. Lines 3-6 are parameters for contourlet transform. Detailed parameter settings

of contourlet transform can be found in [3]. Lines 7-11 are parameters for the ADMM algorithm for combined dictionary

model. We note that the provided coefficients are default values. Lines 12-13 are flags for displaying statistics and intermediate

depth image x. Setting flags to be 1 means that the target object will be displayed, and the target will not be displayed while

flag is set to be 0.

An example of using this function is shown as follows, and users can refer to “Demo ADMM WT CT.m” for detailed

information.

1 % main algorithm for dense disparity reconstruction

2 xout = ADMM_WT_CT(S,b,WTCTparam);

3) Using xout=ADMM outer(S,b): The function xout=ADMM outer(S,b) is an implementation of multiscale ADMM algo-

rithm proposed in [1]. The multiscale ADMM consists mainly of ADMM outer(S,b) and ADMM inner(S,b). The latter is

typically called in the inner loop for dealing a designate image scale because of the multiscale scheme. More specifically,

“ADMM inner” is a ADMM algorithm for combined dictionary, and “ADMM outer” is a realization of multiscale scheme for

ADMM algorithm. As discussed in Section I-B, the sampling mask “S” and measurements “b” are obtained by an uniformly

random sampling function. Then, the usage of the function is as follows.

1 % multiscale ADMM reconstruction algorithm

2 xout = ADMM_outer(S,b);

We note that the parameter settings are by default coded in the “ADMM outer(S, b)” function. In the following paragraph, we

briefly describe the meaning of parameters that are available for tuning, and they are attached as follow.



4

1 param.wname = 'db2'; % types of wavelet function

2 param.wlevel = 2; % number of levels for wavelet transform

3 param.nlev_SD = [5 6]; % directional filter partition numbers

4 param.smooth_func = @rcos; % smooth function for Laplacian Pyramid

5 param.Pyr_mode = 2; % redundancy setting for the transformed coefficients

6 param.dfilt = '9-7'; % 9-7 bior filter for directional filtering

7 param.lambda1 = 4e-5; % regulization parameter for L1_Wavelet term

8 param.lambda2 = 2e-4; % regulization parameter for L1_Contourlet term

9 param.beta = 2e-3; % regulization parameter for total variation term

10 param.max_itr = 60; % maximum iteration for reconstruction

11 param.tol = 1e-5; % tolerance for stop condition

12 param.disp_relchg = 1; % display the relative change during process

13 param.disp_img = 1; % display image during process

14 Q = 2; % scale setting

Lines 1-2 are parameters for wavelet dictionary. Lines 3-6 are parameters for contourlet transform. Lines 7-11 are parameters

for the ADMM algorithm for combined dictionary model. Lines 12-13 are flags for displaying statistics and intermediate depth

image x. Setting flags to be 1 means that the target object will be displayed, and the target will not be displayed while flag is

set to be 0. We also note that these parameter settings are for each designate scale of ADMM algorithm, and are fed to the

function “ADMM inner.” Line 14 defines the number of scales utilized in the multiscale ADMM algorithm. For the usage of

this multiscale ADMM algorithm, users can refer to the MATLAB script, “Demo Multiscale ADMM WT CT.m.”

C. Examples

Three reconstruction functions are presented in this subsection. Figure 2 shows reconstructed “Aloe” disparity map while

fixing the sampling rate to be 10% and feeding same sampling map to three reconstruction functions.

ADMM WT / 28.3056 (dB) ADMM WT CT / 28.5114 (dB) ADMM outer / 28.5889 (dB)

Fig. 2: Results of reconstructed dense disparity maps using three reconstruction functions. Note that we feed the same sampling

map with 10% uniformly random samples to three functions.

II. SAMPLING FUNCTIONS

In this section, we present the usage of sampling functions discussed in [1]. We first show the oracle random sampling

(ORS) scheme, which is firstly proposed in [4]. We then show the extension of ORS scheme using principal component

analysis (PCA). Finally, we show the proposed 2-Stage sampling scheme which utilizes aforementioned ORS scheme with

PCA for practical sampling problem (i.e., ground truth depth data is unknown), and we demonstrate the application for the

real depth data reconstruction from sparse samples.

A. Notations

According to [1], we first discuss two sampling functions:

• S = Oracle Random Sampling( x0, sp )

• S = Oracle Random Sampling with PCA( x0, sp, Spilot )

We note that for former function, ground truth data is typically given, but is unknown for the latter. In the demonstration code,

the usage of these two functions are presented in the following two scripts:

• Demo Oracle Random Sampling.m

• Demo Oracle Random Sampling with PCA.m



5

Moreover, we further show the proposed two-stage sampling scheme in the script:

• Demo Two Stage sampling.m

Note that the two stage sampling scheme contains both sampling and reconstruction algorithms presented previously. We finally

apply the proposed framework to real application for dense disparity reconstruction from sparse samples, and we demonstrate

the work in the MATLAB script:

• Demo Application for Dense Disparity Estimation.m

Now, we would like to discuss the mathematical model for the sampling method - Oracle Random Sampling (ORS).

Mathematically, the ORS scheme is firstly proposed in [4], and the extension is discussed in [1]. The authors claim that the

sampling map is determined by utilizing the optimal probability values obtained from the optimization problem

(P ) : minimize
p

1

N

N∑

j=1

a2j

pj

subject to
1

N

N∑

j=1

pj = ξ, and 0 ≤ pj ≤ 1.

The variable pj denotes the Bernoulli coin flip probability at jth pixel location, and the variable ξ is the target sampling

ratio. The variable aj denotes the magnitude of the gradient or sum of absolute PCA coefficients at jth pixel location. More

specifically, the variable aj is defined as the gradient value of the jth pixel in the function

• S = Oracle Random Sampling( x0, sp ).

The variable aj is defined as the sum of absolute PCA coefficients of the jth pixel in the function

• S = Oracle Random Sampling with PCA( x0, sp, Spilot ).

Finally, we note that in all demonstration MATLAB scripts, we consistently utilize multiscale ADMM reconstruction function

(i.e., ADMM outer), as we discuss various sampling functions. We also note that users are free to apply different combinations

of sampling functions and reconstruction algorithms.

B. Oracle Sampling

1) Using “S = Oracle Random Sampling( x0, sp )”: Referring to the function inputs, the variable “sp” stands for the

sampling ratio, and “x0” denotes the reference image. The image could be either a gray scale view image, a depth image, or

a disparity map. First, the function estimates the gradients of the input image“x0” and defines them as the coefficient aj , ∀j.

Then, the sampling map “S” is determined as each pixel having the sampling probability pj . A code segment of the sampling

function is attached as follows.

1 % sampling ratio

2 sp = 0.1;

3 % Oracle Random Sampling with Magnitude of gradients

4 S = Oracle_Random_Sampling( x0, sp);

5 b = S.*x0;

2) Using “S = Oracle Random Sampling with PCA( x0, sp, Spilot )”: Similar to the previous function, the variable “sp”

stands for the sampling ratio, and “x0” denotes the reference image. The image could be either a gray scale view image, a depth

image, or a disparity map. First, the function estimates the PCA basis by constructing a collection of patches {yj ∈ R
d}Nj=1

centered at jth pixel and by estimating the eigenvectors of the covariance matrix C = 1

N

∑N

j=1
yjy

T
j . Since the covariance

matrix is symmetric and positive semi-definite, C can be defined as

C = UΛUT .

Then, the sum of absolute of PCA coefficients for each pixel is estimated by

aj =

d′∑

i=2

|〈ui,yj〉|,

where ui denotes the ith column vector of the matrix U , and d′ is a scalar value with d′ ≤ d. Then, the sampling map “S” is

determined as each pixel having the sampling probability pj . A code segment of the sampling function is attached as follows.

1 % Oracle Random Sampling with Magnitude of gradients

2 S_pilot = zeros(rows,cols);

3 S = Oracle_Random_Sampling_with_PCA( x0, sp, S_pilot);

4 b = S.*x0;



6

Figure 3 shows examples of different sampling patterns while sampling rate is set to be 10%. We note that in line 2, the

variable Spilot is set to be zero as there is no additional pilot information. The further usage of the pilot signal will be discuss

in the next subsection.

Uniformly random sampling Oracle Random Sampling Oracle Random Sampling with PCA

Fig. 3: Examples of sampling maps. We set the sampling rate to be 10% for each function.

C. Practical Sampling (2-Stage Sampling)

In this subsection, we demonstrate the 2-Stage sampling algorithm proposed in [1]. The MATLAB script describing the

propose algorithm is presented in

• DEMO Two Stage Sampling.m

In the 1st stage, the uniformly random sampling scheme is applied to obtain sampling map Spilot, then the pilot signal xout pilot

is estimated. The code of 1st stage is attached as follows.

1 % 1st Stage

2 S_pilot = (rand(rows,cols)≤sp*0.5);

3 b = S_pilot.*x0;

4 xout_pilot = ADMM_outer(S_pilot,b);

In ths 2nd stage, the pilot signals Spilot and xout pilot are utilized as input variables to the ORS with PCA function. Then, the

sampling map, S, at the 2nd stage is obtained. The code of 2nd stage is attached as follows.

1 % 2nd Stage

2 S = Oracle_Random_Sampling_with_PCA( xout_pilot, 0.5*sp, S_pilot);

3 b = S.*x0;

4 xout = ADMM_outer(S,b);

We note that in the 2-Stage sampling demonstration code, 50% of the sampling budgets is utilized in the 1st stage and the

rest 50% is utilized in the 2nd stage. Since we assume the ground truth signal x0 is unknown, we utilize uniformly random

sampling for obtaining the pilot sampling map. Once a pilot signal xout pilot is acquired, we then apply ORS with PCA function

for constructing the optimal sampling map. Figure 4 shows an example with intermediate results of 2-Stage algorithm.

1st Stage / ζ = 0.0494 xout pilot / 25.0999 (dB) 2nd Stage / ζ = 0.0997 xout / 31.5065 (dB)

Fig. 4: Example of 2-Stage algorithm .



7

In disparity estimation application, stereo images are used to estimate disparity values, and these view images can be used

to infer optimal sampling locations by the ORS with PCA function. Therefore, we show how to practically apply the proposed

algorithms to reconstruct dense disparity maps from sparse samples as stereo images are given. The demonstration for the real

application is presented in the MATLAB script:

• Demo Application for Dense Disparity Estimation.m

In this MATLAB script, as one view image, y0 bflt, is known, we set it as the initial pilot signal for the ORS with PCA

function, and we use only 50% of the sampling budgets in the first stage. Then, the reconstruction algorithm is applied to

obtain the pilot signal, xout pilot, and these pilot signals Spilot and xout pilot are further set as input variables of the ORS with

PCA function to estimate additional 50% of sampling budgets in the 2nd stage. Finally, the dense disparity map is estimated

using the proposed ADMM algorithm. The code for reconstructing dense depth data from 10% measurements using 2-Stage

algorithm is present as follows:

1 % 1st Stage

2 S_pilot = zeros(rows,cols);

3 S_pilot = Oracle_Random_Sampling_with_PCA( y0_bflt, 0.5*sp, S_pilot);

4 b = S_pilot.*x0;

5 xout_pilot = ADMM_outer(S_pilot,b);

6

7 % 2nd Stage

8 S = Oracle_Random_Sampling_with_PCA( xout_pilot, 0.5*sp, S_pilot);

9 b = S.*x0;

10 xout = ADMM_outer(S,b);

Figure 5 and Figure 6 show the intermediate and final results of the demonstration code for real dense disparity estimation

application. Figure 6 also shows a comparison between densely estimated disparity map using [5] and the proposed algorithm

using 10% of measurements of [5].

One view image Sampling map at stage 1 /Spilot Input sparse samples / bstage1

Pilot Signal / xout pilot Sampling map at stage 2 / S Input sparse samples / bstage2

Fig. 5: Intermediate results of the demonstration code for dense disparity reconstruction.



8

Reconstructed Densely estimated

dense disparity map disparity map using [5]

Fig. 6: Final results of the demonstration code for dense disparity reconstruction.

III. COMPATIBILITY

This toolbox has been tested under the following machine, and it works properly.

• MATLAB 2010a, 64-bit Windows 7 Professional

• MATLAB 2012b, 64-bit Windows 7 Professional

• MATLAB 2014a, 64-bit Windows 7 Professional

REFERENCES

[1] L.-K Liu, S.H. Chan, and T.Q. Nguyen, “Depth reconstruction from sparse samples: Representation, algorithm, and sampling,” IEEE Trans. on Image

Process., vol. 24, no. 6, pp. 1983–1996, Jun. 2015.
[2] L.-K Liu, S.H. Chan, and T.Q. Nguyen, “Depth reconstruction from sparse samples: Representation, algorithm, and sampling (supplementary material),”

Available online at http://arxiv.org/abs/1407.3840.
[3] M.N. Do and M. Vetterli, “The contourlet transform: An efficient directional multiresolution image representation,” IEEE Trans. Image Process., vol. 14,

no. 12, pp. 2091–2106, Dec. 2005.
[4] S.H. Chan, T. Zickler, and Y.M. Lu, “Monte Carlo non-local means: Random sampling for large-scale image filtering,” IEEE Trans. Image Process., vol.

23, no. 8, pp. 3711–3725, Aug. 2014.
[5] Z. Lee, J. Juang, and T.Q. Nguyen, “Local disparity estimation with three-moded cross census and advanced support weight,” IEEE Trans. Multimedia,

vol. 15, no. 8, pp. 1855–1864, Dec. 2013.


