
User Guide for deconvtv (MATLAB Version 1.0)

Stanley H. Chan∗, Philip E. Gill†, and Truong Q. Nguyen ‡

September 23, 2013

1 Introduction

deconvtv is a numerical algorithm for solving total variation constrained least-squares problems. The
concept of the algorithm is based on an augmented Lagrangian method proposed in [1], and is a variation
of the popularly known Alternating Direction Methods of Multipliers (ADMM) [2, 3]. In particular,
deconvtv solves the following minimization problems

minimize
f

µ

2
‖Hf − g‖2

2
+ ‖f‖TV , (1)

minimize
f

µ‖Hf − g‖1 + ‖f‖TV , (2)

where H is a circulant matrix denoting a spatially invariant linear operator, µ is a regularization param-
eter, and and ‖f‖TV is the total variation norm of the data f , defined as

‖f‖TV =
∑

k

√

βx[Dxf ]2k + βy[Dyf ]2k + βt[Dtf ]2k.

Here, [f ]k is the k-th entry of the vector f . The operators Dx, Dy and Dt are the gradient operators
along the horizontal, vertical and temporal directions. The relative emphasis of Dx, Dy and Dt can be
controlled by βx, βy and βt, respectively.

2 User Interface

The user interface of deconvtv is as follows:

out = deconvtv(g, h, mu, opts);

2.1 Input Variables

• g: Input image. It can be a gray-scaled image, color image, or gray-scaled video.

• h: Point spread function, could be a two-dimensional matrix, or a three-dimensional tensor.

• mu: Regularization parameter µ.

• opts: A structure of options (See below).

∗School of Engineering and Applied Sciences, Harvard University.
†Department of Mathematics, University of California, San Diego.
‡Department of Electrical and Computer Engineering, University of California, San Diego.

1



2.2 Option Fields

All default settings are marked in {·}.

• opts.method: Defines the method to be used, either ‘l1’ or {‘l2’}. If ‘l2’ is chosen, then
deconvtv solves Problem (1). If ‘l1’ is chosen, then deconvtv solves Problem (2).

• opts.beta: An 1× 3 vector specifying (βx, βy, βt). Default is {[1, 1, 0]}. For video deblurring and
denoising, opts.beta can be chosen as [1, 1, 2.5].

• opts.rho_r: Regularization parameter to the constraint violation ‖u−Df‖2 (See [1]). Default is
{2}.

• opts.rho_o: Regularization parameter to the constraint violation ‖Hf − g− r‖2 (See [1]). Default
is {50}.

• opts.alpha: Criteria for rho_r update (See [1]). Default is {0.7}.

• opts.gamma: Update constant for rho_r (See [1]). Default is {2}.

• opts.max_itr: Maximum number of iteration {20}.

• opts.tol: Tolerance level of relative change. Default is {1e-3}.

• opts.print: Print intermediate report, either ‘true’ or ‘false’. Default is {false}.

• opts.f: Initial guess. Default is {g}.

• opts.y1, opts.y2, opts.y3: Initial guess of Lagrange multipliers for the constraint u = Df .
Default is {0}.

• opts.z: Initial guess of Lagrange multiplier for the constraint r = Hf − g. Default is {0}.

2.3 Output Variables

• out.f: Output image, or video.

• out.itr: total number of iterations elapsed

• out.relchg: final relative change

• out.Df1, out.Df2, out.Df3: Output image gradients

• out.y1, out.y2, out.y3: Output Lagrange multipliers

• out.rho_r: final regularization parameter

2



3 Examples

3.1 Image Denoising
Image Denoising Example

% Prepare images

f_orig = im2double(imread(’./data/wind.jpg’));

[rows cols frames] = size(f_orig);

H = fspecial(’gaussian’, [9 9], 2);

g = imfilter(f_orig, H, ’circular’);

g = imnoise(g, ’salt & pepper’, 0.05);

% Setup parameters (for example)

opts.rho_r = 5; opts.rho_o = 100; opts.beta = [1 1 0];

opts.print = true; opts.alpha = 0.7; opts.method = ’l1’;

% Setup mu

mu = 20;

% Main routine

tic

out = deconvtv(g, H, mu, opts);

toc

% Display results

figure(1); imshow(g); title(’input’);

figure(2); imshow(out.f); title(’recovered’);

(a) Input Image (b) Recovered Image

Figure 1: Example: Image denoising. Time elapsed: 2.2 seconds.

3



3.2 Image Deblurring
Image Deblurring Example

% Prepare images

f_orig = im2double(imread(’./data/building.jpg’));

[rows cols frames] = size(f_orig);

H = fspecial(’gaussian’, [9 9], 2);

g = imfilter(f_orig, H, ’circular’);

g = imnoise(g, ’gaussian’, 0, 0.00001);

% Setup parameters (for example)

opts.rho_r = 2; opts.beta = [1 1 0]; opts.print = true;

opts.alpha = 0.7; opts.method = ’l2’;

% Setup mu

mu = 10000;

% Main routine

tic

out = deconvtv(g, H, mu, opts);

toc

% Display results

figure(1); imshow(g); title(’input’);

figure(2); imshow(out.f); title(’recovered’);

(a) Input Image (b) Recovered Image

Figure 2: Example: Image deblurring. Time elapsed: 8.24 seconds.

4



3.3 Video Disparity Refinement
Video Disparity Refinement Example

folder_name = ’./data/’;

fname = sprintf(’%sdata%04d.jpg’, folder_name, 1);

f = im2double(imread(fname));

[rows cols frames] = size(f);

g = zeros(rows,cols,frames);

for fidx = 1:10

fname = sprintf(’%sdata%04d.jpg’, folder_name, fidx);

f = im2double(imread(fname));

if size(f,3)>1

g(:,:,fidx) = rgb2gray(f);

else

g(:,:,fidx) = f;

end

end

% Setup parameters (for example)

opts.beta = [1 1 10]; opts.print = true; opts.method = ’l1’;

% Setup mu

mu = 1;

% Main routine

tic

out = deconvtv(g, 1, mu, opts);

toc

% Display results

figure(1); imshow(g(:,:,5)); title(’input’);

figure(2); imshow(out.f(:,:,5)); title(’recovered’);

Figure 3: Example: Video disparity refinement. Top: Input. Bottom: Recovered. Time elapsed: 12.1
seconds for 10 frames.

5



4 Copyright

This software is Copyright c©2011 The Regents of the University of California. All Rights Reserved.

Permission to use, copy, modify, and distribute this software and its documentation for educational, re-
search and non-profit purposes, without fee, and without a written agreement is hereby granted, provided
that the above copyright notice, this paragraph and the following three paragraphs appear in all copies.

Permission to make commercial use of this software may be obtained by contacting: Technology Transfer
Office 9500 Gilman Drive, Mail Code 0910 University of California La Jolla, CA 92093-0910 (858) 534-
5815 invent@ucsd.edu

This software program and documentation are copyrighted by The Regents of the University of California.
The software program and documentation are supplied “as is”, without any accompanying services from
The Regents. The Regents does not warrant that the operation of the program will be uninterrupted
or error-free. The end-user understands that the program was developed for research purposes and is
advised not to rely exclusively on the program for any reason.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTA-
TION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGE. THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS
ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PRO-
VIDED HEREUNDER IS ON AN ”AS IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS
NO OBLIGATIONS TO PROVIDEMAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR
MODIFICATIONS.

References

[1] S.H. Chan, R. Khoshabeh, K.B. Gibson, P.E. Gill, and T.Q. Nguyen, “An augmented Lagrangian
method for total variation image restoration,” IEEE Trans. Image Process., vol. 20, no. 11, pp.
3097–3111, Nov. 2011.

[2] Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating minimization algorithm for total
variation image reconstruction,” SIAM Journal on Imaging Sciences, vol. 1, pp. 248–272, 2008.

[3] B. Wahlberg, S. Boyd, M. Annergren, and Y. Wang, “An ADMM algorithm for a class of total varia-
tion regularized estimation problems,” in Proceedings 16th IFAC Symposium on System Identification,
Jul. 2012, vol. 16.

6


