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1 Introduction

Quanta Image Sensor (QIS) is a class of solid-state image sensors designed to solve the miniaturization
problems of CMOS sensor and envisioned to be the next generation imaging device after it.

The main idea of QIS design is to allow the pixel size to decrease as much as possible (e.g. 100—200
nm pitch [2]) to form miniature pixels, called jots, with intentionally low full-well capacity (FWC) (1—200
photoelectrons [2]). Each jot has sub-electron readout noise (i.e., readout noise with standard deviation less
than 0.3 electron [3,4]) which enables it to have single-photon sensitivity and photon counting capability.
The jot counts every incoming photon and produces a binary response “1” if the photon count exceeds a
threshold ¢, and “0” otherwise. By making ¢ < FWC, the resulting signal has high SNR, because of its
binary nature.

Definitely, the binary quantization of photon counts leads to significant distortion in the output signal.
To compensate for this aggressive quantization of light, QIS oversamples the light signal in space and time
by having huge spatial resolution (e.g., 10 pixels per sensor with 200nm pitch per jot [4]) and huge temporal
resolution or frame rate (e.g., 100k fps as reported in [5]), respectively. As a result, each output gray-scale
pixel is formed by locally processing a 3d spatial-temporal kernel or a “cubicle” of K x K x T binary jots,
where K is the spatial kernel size and T is the number of temporal frames. This processing is usually referred
to as binning and it is frequently used in low-light image processing to mitigate noise. By efficient processing

of the cubicle of jots, the output pixel represents the incoming light intensity on these jots. Figure 1 shows
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Figure 1: Image reconstruction of QIS data. Given T binary bit planes having high resolution M x M, the
reconstruction algorithm processes each K x K x T cubicle of jots to form the N x N gray-scale image shown
on the right, where N = M/K.

the QIS image formation process. The high spatial-temporal oversampling of QIS increases its dynamic
range to levels even higher than CMOS and CCD.

This package presents the MATLAB code used to produce the results in [1]. First, we present the func-
tions the reproduce important figures in the paper. Seconds, we present the functions used for experimental

evaluation of QIS based on simulations.

2 Important Utility functions

To simulate the photon counts using the imaging model in Fig.2 in the paper, the following function can be

used.

y = generatePhotonCounts(c,K,T,alpha,kernel)

This function takes the following inputs

e The ground truth image c

The spatial oversampling factor K

The temporal oversampling factor T

The sensor gain alpha

The point spread function of the interpolation filter kernel.

It generate a 3d array of size mK x nK x T containing the photon counts, where m and n are the number
of rows and columns in the ground truth image, respectively.
In the main paper, two quantization maps (Qmaps) can be generated: 1) Uniform Qmap, and 2)

Adapted Qmap. These Qmaps can be generated by the function



function [QmapLR,QmapHR] = generateQmap(imSize,K,type,opts)

This function takes the following inputs
e A 2d array containing the number of rows and columns imSize
e The Spatial oversampling factor K
e The type of the Qmap type, which can be one of the strings uniform’ or ’bisection’.
e Other parameters stored in the variable opts
It produces the following outputs:
e A high resolution Qmap (QmapHR) used for quantizing the photon counts

e a low resolution Qmap (QmapLR) used for reconstructing the ML estimate after binning the binary

measurements.

The ML estimate is obtained by running the function imageReconstruct which is defined as

function ¢ = imageReconstruct(b,K,alpha,QmapLR)

This function takes the following inputs
e A 3d array of size mK x nK x T containing the binary measurements b
e The spatial oversampling factor K
e The sensor gain alpha
e The low resolution Qmap QmapLR

and produces the ML estimate ¢ as an output.

The bisection adaptation algorithm (Algorithm 1 in the paper) is implemented in the following func-

tion:

[Q_map,t_bisection,gamma_1f,B,errQ,Q_map_iter,gamma_iter]=BisectionAdapt(y0,gmax,

Qblocksize,oracleQmap,NbBisectionIter,Pixidx,flag)

This function takes the following inputs:
e A 3d array containing the photon counts y0

e The maximum threshold value gqmax




The size of block of pixels sharing the same threshold Qblocksize

e The oracle threshold map oracleQmap to calculate the MSE with iterations

The desired number of iteration of the algorithms NbBisectionIter

The indices of pixels at which the output is tracked.

A flag used to specify whether to calculate the MSE with the oracle map or not
And produces the following outputs

e The adapted high resoultuin Qunatization map Q_map

The elapsed time of the algorithm t_bisection

e The final proportions of ones in each kernel of jots gamma_1f

The binary measurements at different iterations B

The MSE with the oracle map at different iterations Q_map_iter

The proportion of ones at different iterations gamma_iter

The Markov Chain adaptation algorithm proposed in [6] is implemented in the following function

function [Q_map,b,t_Markov,err_Qmap,Q_map_iter]=MCAdapt(y,qmax,oracleQmap,L,Beta,Pixidx)

One challenge in this algorithm is that it assumes temporal ovesampling T only and no spatial oversam-
pling; whereas our algorithm assumes both spatial K and temporal oversampling T'. To solve this problem,
we reorganize the photon counts s to have an enlarged temporal oversampling T, = K27 and no spatial

oversampling. This function takes the following inputs
e A 3d array containing the photon counts y

e The maximum threshold value gmax

The oracle threshold map oracleQmap to calculate the MSE with iterations

The parameter L which defines the number of states per threshold in the Markov chain 2%

The staying probability beta which determines the probability that a state stays unchanged.

The indices of pixels at which the output is tracked.
It produces the following outputs

e The adapted high resoultuin Qunatization map Q_map



e The binary measurements at different iterations b

The elapsed time of the algorithm t_Markov

e The MSE with the oracle map at different iterations Q_map_iter

The proportion of ones at different iterations gamma_iter

The reconstruction algorithm proposed in [7] is implemented in the following function.

function [IM_CR,PSNR_CR]=ConditionalResetAlg(yOn,Kt,Q_sequence,c0)

This function takes the following inputs
e A 3d array containing the photon counts yOn
e The spatial oversampling factor Kt
e The sequence of increasing (or decreasing) thresholds, a uniform threshold for each frame. Q_sequence
e The ground truth image cO
It produces the following outputs
e The reconstructed image IM_CR

e The reconstruction PSNR PSNR_CR

3 Demonstration File

The simulation file demo .m shows a demostration of how to simulate QIS binary measurements, and how to

reocnstruct a grayscale image from them. First, the QIS simulation parameters are specified as follows

K = 4; % Spatial Overasampling Factor

T_adapt = 8; % Frames for Threshold Adaptation

T_recon = 22; % Frames for Image Recosntruction

T = T_adapt+T_recon; % Temporal Overasampling Factor

Qsize = K; % Kernel size of pixels that share the same threshold
qmax = 16; % Maximum Threshold

g = ones(K)/K"2; % Box-car Interpolation kernel

After that, the ground truth image is read, downscaled, and transfomed to a grayscale image. The or-
acle threshold map is estimated Proposition 5 in the paper. The photon counts are generated using the

generatePhotonCounts function as follows



if size(IM,3)"=1;
IM

end

[rows,cols]

alpha

oracle(map

y

IM = imresize(im2double(imread(’./ImageData/SSIPDataset/IMG_0138.JPG’)),0.1);

rgb2gray (IM) ;

size(IM);
K~2*(gmax-1) ; % Sensor gain
floor (alpha*IM/K~2)+1;

generatePhotonCounts (IM,K,T,alpha,g) ;

The next step is to generate the adapted Qmap using the first Thqapt frames. This Qmap is used to generate

the subsequent Tiecon binary frames used for reconstruction.

opts.y
opts.qgmax
opts.oracleQmap
opts.T_adapt
opts.Qblock
[QmapLR, QmapHR]
reconFrames

b

Y

qmax;

oracle(map;

T_adapt;

Qsize;

generateQmap ([rows,cols],K, ’bisection’,opts);
T_adapt + (1:T_recon);

1*(y(:,:,reconFrames)>=repmat (QmapHR,1,1,T_recon));

The final step is to reconstruct the grayscale image using the imageReconstruct function.

IM_gs

PSNR

imageReconstruct(b,K,alpha,QmapLR) ;

psnr(IM_gs,IM);

4 Reproduce Figures 1, 4, 5, 6 and 8

4.1 Motivation Figure

The motivation figure (Fig. 1 in the paper) can be reproduced by running the following simulation

DrawMotivationFig.m

In this simulation, QIS binary measruements are generated using a) low uniform threshold value (¢ = 3),

b) high uniform threshold value (¢ = 12), and ¢) our proposed bisection adapted threshold map. For the

uniform thresholds, the whole T" frames are used for reconstruction; whereas for our adapted threshold map,



Tadapt and Trecon frames are used for adapting the threshold map and reconstruction the image, respectively,

where T' = Ta.da.pt + Trecon'

4.2 Signal-to-Noise Ratio

An important performance metric of QIS is the signal-to-noise (SNR) ratio of its maximum likelihood (ML)
estimate. Two variants of SNR were derived in the paper: 1) the output-referred SNR and 2) the exposure-

referred SNR. The variation of these metrics with the light exposure can be drawn by running the simulation:
SNRcalculations.m

This simulation file also generates the SNR curves for different thresholds and different integration periods
for HDR imaging. In this simulation, 4 integration times (normalized to the readout scan time) are used to
generate an HDR image: 1, 0.2, 0.04, and 0.08. The SNR versus the light exposure values is drawn for low
threshold value (¢ = 1) and high threshold value (¢ = 16). These sub-optimal methods are compared to our

method which use the optimal threshold for each light exposure value.

4.3 Phase Transition Behavior

One of the main contributions in our paper is the phase transition behavior of the ML estimate for QIS
images. The ML solution is asymptotically unbiased when the threshold lies in a certain interval of thresholds.
Outside this interval, the ML solution deteriorates quickly. The relevant figures for this phenomenon are

generated by running the simulation:
PhaseTransitionSimulations.m

In this simulation, Monte Carlo simulation is performed using 5000 realizations of the Poisson counts to
get an estimate for the average ML solution. These realizations are generated using different spatial and
temporal oversampling factors, K and T. For each combination of K and T, the ML solution is obtained

using different values of quantization thresholds q.

4.4 Bisection Algorithm for Threshold Adaptation

We propose a bisection algorithm to adapt the quantization threshold g to the light exposure value. Assuming
a temporal oversampling factor T', this algorithms uses Taqapt frames to learn the best quantization threshold
for each pixel (or a kernel of pixels) without reconstructing the image. After obtaining a quantization
map of adapted thresholds, the image is reconstructed using the remaining frames, which are denoted by

TRecon def T — Tadapt- This process is depicted in Figure 2. The simulation file

DrawBisectionFig.m
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Figure 2: Our proposed image reconstruction technique: Tagaps frames are used for adapting the threshold
map. Then, this map is used for reconstructing the image using Trecon frames. T' = Tadapt + TRecon

draws a figure showing the operation of the bisection algorithm for an arbitrary scenario.

5 Reproduce Experimental Results

5.1 Experiment 1: Convergence of Threshold Adaptation Algorithm

In this experiment, we compare convergence behavior of our proposed bisection method to the method
presented in [6]. We use the two methods to generate an adapted threshold map for 77 images and calculate
the mean square error (MSE) with respect to the oracle threshold map. To eliminate the randomness in the
photon counts, we repeat this experiment 50 times and take the average MSE, then we take the average over

the 77 images. The output figures can be generated by running the simulation

Experiment1ThresholdMapConvergence.m

5.2 Experiment 2: Image Reconstruction Quality

In this experiment, we evaluate the reconstruction quality using different threshold maps. The results are

generated by the simulation
Experiment2ThresholdMapPerformance.m

We use uniform threshold maps with different that have the same quantization value for all pixels. We try

different quantization values, which are stored in the following variable



QmapU = [1 5 10 16]; % Uniform Threshold

We also use a sequence of decreasing or increasing threshold as proposed in [7]. Because this method does not
tolerate spatial oversampling, we assumed a temporal oversampling factor that is equivalent to the combined

temporal-spatial oversampling factor in our simulation. This is shown in the following part of code

TCR

K~ 2x*T; %Temporal Overasampling Factor

sampling_interval_Dur logspace(0,-10g10(TCR) ,TCR) ;
yOCR=zeros (rows,cols,TCR) ;
for t=1:TCR
yOCR(:,:,t)=poissrnd(alpha*c*sampling_interval_Dur(t)/K"2); % Photon Count
end
Q_sequence = fliplr(l:gmax)’;
[IM_CR_descQ_descDur ,PSNR_CR_desQ_descDur(i,r)]=ConditionalResetAlg(yOCR,TCR,Q_sequence,d

Q_sequence = (1:gmax)’;

[IM_CR_ascQ_descDur,PSNR_CR_ascQ_descDur(i,r)]=ConditionalResetAlg(yOCR,TCR,Q_sequence,c

5.3 Experiment 3: Influence of QIS Threshold on HDR Imaging

In this experiment, we compare the performance of our adapted threshold map to uniform thresholds on
HDR imaging. We use the HDR-Eye dataset by Nemoto et al. [8,9]. This dataset contains 9 images acquired
at different exposure settings (—2.7,—2, —1.3, —0.7, 0, 0.7, 1.3, 2, and 2.7 EV) to reconstruct one HDR image.
For image fusion and tone mapping, we use the HDR toolbox [10] to reconstruct an HDR image. The results

can be obtained by running the simulation

Experiment3HDRImaging.m

6 Installation

The MATLAB package includes all necessary files for QIS simulations. After unzipping the package, the

following files will be present:

./ImageData/
./Utilities/
demo.m

DrawBisectionFig.m

~



DrawMotivationFig.m
SNRcalculations.m
PhaseTransitionSimulations.m
ExperimentiThresholdMapConvergence.m
Experiment2ThresholdMapPerformance.m

Experiment3HDRImaging

ImageData

This folder includes two datasets
e Our own dataset, which contains 77 images captured by Canon EOS Rebel T6i camera.

e HDREye dataset [8,9], which must be downloaded from https://mmspg.epfl.ch/hdr-eye

Utilities
The utilities folder contains necessary functions to support the main routines. The following 3rd party

packages must be installed:

e HDRToolbox: A package for performing image fusion and tone mapping for HDR imaging. It can be
downloaded from: https://www.mathworks.com/matlabcentral/linkexchange/links/2792-the-

hdr-toolbox

e blockfun: A package for executing arbitrary functions on a sliding block over an image. It can be down-
loaded from https://www.mathworks.com/matlabcentral/fileexchange/17000-blockfun-applies-

function-on-sub-blocks-of-an-array

e columnlegend: A package for drawing a legend containing many entries efficiently. It can be downloaded

from https://www.mathworks.com/matlabcentral/fileexchange/27389-simonhenin-columnlegend

7 Copyright

This package is Copyright (© 2017 Statistical Signal and Image Processing Lab, Purdue University.
Permission to use, copy, modify, and distribute this software and its documentation for educational,

research and non-profit purposes, without fee, and without a written agreement is hereby granted, provided

that the above copyright notice, this paragraph and the following three paragraphs appear in all copies.
The software program and documentation are supplied “as is”, without any accompanying services

from Purdue University. Purdue University does not warrant that the operation of the program will be

10



uninterrupted or error-free. The end-user understands that the program was developed for research purposes

and is advised not to rely exclusively on the program for any reason.
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