
MATLAB User Guide for Plug-and-Play ADMM

Xiran Wang and Stanley Chan

Statistical Signal and Image Processing Lab, Purdue University

https://engineering.purdue.edu/ChanGroup/

Version 1.0

This user guide documents the usage of the MATLAB implementation of Plug-and-Play ADMM.

Acknowledgement of this package should be given to the following reference.

[1] S. H. Chan, X. Wang and O. A. Elgendy, “Plug-and-Play ADMM for image restoration: Fixed

point convergence and applications,” IEEE Trans. Computational Imaging, in Press, Nov. 2016. ArXiv:

https://arxiv.org/abs/1605.01710

1 Introduction

Plug-and-Play ADMM solves the following problem:

x̂ = argmin
x

f(x) + λg(x), (Problem (P))

where x ∈ Rn is the unknown clean image, f(·) is the forward model of the image formation process, g(·) is

a regularization function, and λ > 0 is a regularization parameter. Of interest to this package is the forward

model f(x) = 1
2‖Ax−y‖2, where y ∈ Rm is the observed image, and A ∈ Rm×n is the linear transformation

relating x and y.

Plug-and-Play ADMM solves Problem (P) by iteratively solving the a sequence of subproblems:

x(k+1) = argmin
x

f(x) +
ρk
2
‖x− x̃(k)‖2, x̃(k) def

= v(k) − u(k) (1)

v(k+1) = Dσk
(ṽ(k)), ṽ(k) def

= x(k+1) + u(k) (2)

u(k+1) = u(k) + (x(k+1) − v(k+1)) (3)

ρk+1 = γkρk, (4)

In this set of equations, {ρk | k = 1, 2, . . . , kmax} is a sequence of internal parameters, updated by constants

1

Inversion (Section 2)

x(k+1) = argmin
x

f(x) + ρ
2
‖x− x̃‖2

Denoising (Section 3)

v(k+1) = Dσ(ṽ)

Figure 1: Block diagram of Plug-and-Play ADMM: The inversion module solves the minimization with
x̃ = v(k) − u(k). The denoising module applies a denoiser to ṽ = x(k+1) + u(k).

{γk | k = 1, 2, . . . , kmax}. The function Dσk
(·) is called a denoiser, which can be any image denoising

algorithm. The parameter σk
def
=
√
λ/ρk is the “noise level” that the denoiser takes. The denoiser Dσk

(·)

takes the role of the regularization function g(·) in an implicit way. That is, given a denoiser D and under

appropriate conditions, there exists a regularization function g(·) such thatD(ṽ) = argmin
v

λg(v)+(ρ/2)‖v−

ṽ‖2. For detailed discussions, please see [1–3]. Figure 1 shows the block diagram of the algorithm.

2 Inversion Module

2.1 Image Deblurring

Image deblurring concerns about the problem

x̂ = argmin
x

1

2
‖Hx− y‖2 + λg(x), (5)

where H ∈ Rn×n is a circulant matrix denoting the blur. The matrix H is never formed explicitly in

Plug-and-Play ADMM. It is implemented using the convolution y = h ∗x with the equivalent blur kernel h:

h = fspecial(’gaussian’,[9 9], 1);

y = imfilter(x,h,’circular’);

In this MATLAB command, we assume that the blur has a circular boundary. If the boundary is not circular,

one can pad the image using symmetric or replicate pads, then trim the padded boundaries after running

Plug-and-Play ADMM.

The inversion step for image deblurring takes the form

x̂ = argmin
x

1

2
‖Hx− y‖2 +

ρ

2
‖x− x̃‖2,

2

which has a closed form solution

x̂ = (HTH + ρI)−1(HTy + ρx̃).

The MATLAB implementation of the closed-form expression uses Fourier transform to diagonalize the blur

matrix H.

dim = size(y);

Hty = imfilter(y,h,’circular’); % if h is not symmetric, do rot90(h,2)

eigHtH = abs(fftn(h, dim)).^2;

...

rhs = fftn(Hty+rho*xtilde,dim);

x = real(ifftn(rhs./(eigHtH+rho),dim));

Example. Run the demonstration file demo_deblur.m.

Input Output (method=’RF’) Output (method=’BM3D’)
31.48 dB, 0.73 sec 32.49 dB, 12.69 sec

2.2 Image Inpainting

Image inpainting handles the following problem

x̂ = argmin
x

1

2
‖Sx− y‖2 + λg(x), (6)

where S ∈ Rn×n is a diagonal masking matrix: Sii = 1 if the ith sampled is selected, and Sii = 0 if the

ith sample is not selected. The non-zero entries of S can be arbitrary. Implementation of S is done using a

mask. The following is an example for a random mask of 20% non-zeros.

mask = rand(size(z))>=0.8;

y = x.*mask;

3

The inversion step of image inpainting has the form

x̂ = argmin
x

1

2
‖Sx− y‖2 +

ρ

2
‖x− x̃‖2,

which has a closed form solution

x̂ = (STS + ρI)−1(STy + ρx̃).

Since STS is a diagonal matrix with binary entries, the closed form solution can be implemented using an

element-wise division.

Sty = y.*mask;

...

rhs = Sty+rho*xtilde;

x = rhs./(mask+rho);

Example. Run the demonstration file demo_inpaint.m.

Input Output (method=’RF’) Output (method=’BM3D’)
33.96 dB, 2.51 sec 37.38 dB, 49.91 sec

2.3 Image Super-resolution

Image super-resolution addresses the problem

x̂ = argmin
x

1

2
‖SHx− y‖2 + λg(x), (7)

where S ∈ Rm×n, m < n, is a binary matrix denoting the K-fold downsampling, and H ∈ Rn×n is a

convolution matrix reprsenting the anti-aliasing filter. Both S and H are not formed explicitly in Plug-and-

Play ADMM. H is implemented using convolution y = h ∗ x with the equivalent blur kernel h as in image

deblurring, and S is implemented using the built-in MATLAB function downsample with a scale of K. The

following MATLAB routine outlines the key steps in setting up the problem.

4

h = fspecial(’gaussian’,[9 9],1);

y = imfilter(z,h,’circular’);

K = 2;

y = downsample(downsample(x,K)’,K)’;

The inversion step of super-resolution has the form

x̂ = argmin
x

1

2
‖SHx− y‖2 +

ρ

2
‖x− x̃‖2,

which has the closed form solution (see the reference paper)

x = ρ−1b− ρ−1GT

(
F−1

{
F(Gb)

|F(h̃0)|2 + ρ

})
, (8)

where G = SH, b = GTy + ρx̃, F and F−1 are the forward and inverse Fourier transform operators, and

h̃0 is the 0th polyphase component of the filter HHT . The implementation in MATLAB is as follows:

[G,Gt] = defGGt(h,K);

GGt = constructGGt(h,K,rows,cols);

Gty = Gt(y);

...

rhs = Gty + rho*xtilde;

x = (rhs - Gt(ifft2(fft2(G(rhs))./(GGt + rho))))/rho;

where function defGGt defines the SH and HTST operators, and function constructGGt computes |F(h̃0)|2.

Example. Run the demonstration file demo_superresolution.m.

Input Output (method=’RF’) Output (method=’BM3D’)
26.51 dB, 2.16 sec 27.34 dB, 46.91 sec

5

2.4 General Linear Inverse Problem

For problems that assume a general A matrix, Plug-and-Play ADMM can be run under the general mode.

A general linear inverse problem has the following form:

x̂ = argmin
x

1

2
‖Ax− y‖2 + λg(x), (9)

where A ∈ Rm×n is an arbitrary matrix. In Plug-and-Play ADMM, we are mostly interested in imaging

applications where m and n are very large. Therefore, A is implemented via a function handle afun.m.

Function Handle. The routine below is an example provided in the package. In this example, A is a blur

operator with a point spread function specified by h. The function handle takes two options: transp or

no_transp. When no_transp is switched on, afun performs the matrix multiplication Ax. When transp

is switched on, afun performs the matrix multiplication ATx. The input and output to afun are vectors.

Therefore, reshape function is required.

function y = afun(x,transp_flag,h,dim)

rows = dim(1);

cols = dim(2);

if strcmp(transp_flag,’transp’) % y = A’*x

x = reshape(x,[rows,cols]);

y = imfilter(x,rot90(h,2),’circular’);

y = y(:);

elseif strcmp(transp_flag,’notransp’) % y = A*x

x = reshape(x,[rows,cols]);

y = imfilter(x,h,’circular’);

y = y(:);

end

The inverse step has the form

x̂ = argmin
x

1

2
‖Ax− y‖2 +

ρ

2
‖x− x̃‖2,

which is equivalent to

x̂ = argmin
x

1

2

∥∥∥∥∥∥∥
 A

√
ρI

x−

 y

√
ρx̃

∥∥∥∥∥∥∥
2

.

6

Since A is implemented using function handle, we solve the above quadratic equation using LSQR (available

in MATLAB). LSQR solves the quadratic equation by letting

G =

 A

√
ρI

 , and b =

 y

√
ρx̃

 .
Then, the algorithm calls the following routines

G = @(z,trans_flag) gfun(z,trans_flag,A,rho,dim);

rhs = [y(:); sqrt(rho)*xtilde(:)];

[x,~] = lsqr(G,rhs,1e-3);

The function handler gfun for the case of deblurring takes the original function handler afun and augment

the function to construct the matrix G.

function y = gfun(x,transp_flag,A,rho,dim)

rows = dim(1);

cols = dim(2);

N = rows*cols;

if strcmp(transp_flag,’transp’) % y = A’*x

x1 = x(1:N);

x2 = x(N+1:2*N);

Atx = A(x1,’transp’);

y = Atx + sqrt(rho)*x2;

elseif strcmp(transp_flag,’notransp’) % y = A*x

Ax = A(x,’notransp’);

y = [Ax; sqrt(rho)*x];

end

Example. Run demo_general.m. The following code demonstrates the example of image deblurring using

the general mode of Plug-and-Play ADMM.

dim = size(z);

h = fspecial(’gaussian’,[9 9],1);

A = @(z,trans_flag) afun(z,trans_flag,h,dim);

y = A(z(:),’transp’) + noise_level*randn(prod(dim),1);

out = PlugPlayADMM_general(y,A,lambda,method,opts);

7

3 Denoising Module

The denoising module of Plug-and-Play ADMM takes the form

v̂ = Dσ(ṽ), (10)

where ṽ is the “noisy” input, and σ is the “noise level”. In MATLAB, the denoising step is implemented as

the function denoise:

sigma = sqrt(lambda/rho);

v = denoise(vtilde,sigma);

Inside denoise, the user can choose one of the following image denoising algorithms.

switch method

case ’BM3D’

denoise=@wrapper_BM3D;

case ’TV’

denoise=@wrapper_TV;

case ’NLM’

denoise=@wrapper_NLM;

case ’RF’

denoise=@wrapper_RF;

otherwise

error(’unknown denoiser \n’);

end

Remark: Plug-and-Play ADMM can support any types of image denoisers. For denoisers that are not

shown in the list above, users can customize their own wrapper files to support the denoiser they use.

3.1 BM3D

The BM3D package can be downloaded at http://www.cs.tut.fi/~foi/GCF-BM3D/. The corresponding

paper [4] is available at http://www.cs.tut.fi/~foi/GCF-BM3D/BM3D_TIP_2007.pdf

When using the BM3D denoiser, we call the wrapper function

denoise=@wrapper_BM3D;

8

where the wrapper function is defined as:

function out = wrapper_BM3D(in,sigma)

[~,out] = BM3D(1, in, sigma*255);

end

Here, in is the input image, and σ ∈ [0, 1] is the noise level.

3.2 Total Variation (TV)

We use deconvtv for total variation (TV) image denoising. The deconvtv package can be downloaded at

https://www.mathworks.com/matlabcentral/fileexchange/43600. The corresponding paper [5] is avail-

able at https://engineering.purdue.edu/ChanGroup/publication/J2011_Chan_Khoshabeh_Gibson.pdf

When using TV denoiser, we call the wrapper function

denoise=@wrapper_TV;

where the wrapper function is defined as:

function out = wrapper_TV(in,sigma)

tmp = deconvtv(in,1,1/sigma^2);

out = tmp.f;

end

3.3 Non-local Means (NLM)

We use the official non-local means (NLM) package provided by IPOL. The package can be downloaded

at http://www.ipol.im/pub/art/2011/bcm_nlm/. The corresponding paper [6] is available at the same

website.

When using the NLM, we call the wrapper function

denoise=@wrapper_NLM;

where the wrapper function is defined as:

function out = wrapper_NLM(in,sigma)

Options.filterstrength=sigma;

out = NLMF(in,Options);

end

9

3.4 Recursive Filter (RF)

Recursive filter (RF) was originally proposed by Gastal and Oliveira in 2011, named under the framework

of domain transform [7]. The original domain transform package is available at http://inf.ufrgs.br/

~eslgastal/DomainTransform/, which includes the recursive filter.

For image denoising applications, several modifications of RF are required. These modifications

include: (i) Improve robustness using patches. (ii) Recalculate weights by subtracting the noise level. (iii)

Removal of cumulative sums as they are not needed. The modified RF code is provided in the Plug-and-Play

ADMM package.

When using the RF denoiser, we call the wrapper function

denoise=@wrapper_RF;

where the wrapper function is defined as:

function out = wrapper_RF(in,sigma)

out = RF(in, 3, sigma, sigma, 3);

end

4 Installation

The MATLAB package includes all necessary files of the Plug-and-Play ADMM. After unzipping the package,

the following files will be present:

./data/

./denoisers/

./utilities/

afun.m

demo_***.m

PlugPlayADMM_***.m

wrapper_***.m

Data

The testing data includes 9 standard testing images. In addition, there are 4 disparity images from Middle-

bury Stereo database http://vision.middlebury.edu/stereo/.

10

Utilities

The utilities folder contains necessary functions to support the main routines.

Denoisers

The denoiser folder contains four sub-folders:

./BM3D/

./NLM/

./RF/

./TV/

For BM3D, TV and NLM, the denoisers can be downloaded from

• BM3D: http://www.cs.tut.fi/~foi/GCF-BM3D/

• TV: https://www.mathworks.com/matlabcentral/fileexchange/43600

• NLM: http://www.ipol.im/pub/art/2011/bcm_nlm/

Once the denoisers are downloaded and installed, move the files into the subfolders of Plug-and-Play ADMM.

An alternative option is to change path in the demo files, e.g., change addpath(genpath(’./BM3D/’)) to

addpath(genpath(’C:/your_folder/BM3D/’)).

The modified RF is included in the Plug-and-Play ADMM package. There is no need to install RF.

5 Copyright

This package is Copyright c© 2016 Statistical Signal and Image Processing Lab, Purdue University.

Permission to use, copy, modify, and distribute this software and its documentation for educational,

re- search and non-profit purposes, without fee, and without a written agreement is hereby granted, provided

that the above copyright notice, this paragraph and the following three paragraphs appear in all copies.

The software program and documentation are supplied “as is”, without any accompanying services

from Purdue University. Purdue University does not warrant that the operation of the program will be

uninterrupted or error-free. The end-user understands that the program was developed for research purposes

and is advised not to rely exclusively on the program for any reason.

11

References

[1] S. H. Chan, X. Wang, and O. A. Elgendy, “Plug-and-Play ADMM for image restoration: Fixed point

convergence and applications,” IEEE Trans. Computational Imaging, 2016, In Press. Available at

https://arxiv.org/abs/1605.01710.

[2] S. Venkatakrishnan, C. Bouman, and B. Wohlberg, “Plug-and-play priors for model based reconstruc-

tion,” in Proc. IEEE Global Conference on Signal and Information Processing, 2013, pp. 945–948.

[3] S. Sreehari, S. V. Venkatakrishnan, B. Wohlberg, G. T. Buzzard, L. F. Drummy, J. P. Simmons, and

C. A. Bouman, “Plug-and-play priors for bright field electron tomography and sparse interpolation,”

IEEE Trans. Computational Imaging, vol. 2, no. 4, pp. 408–423, Dec. 2016.

[4] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3D transform-domain

collaborative filtering,” IEEE Trans. Image Process., vol. 16, no. 8, pp. 2080–2095, Aug. 2007.

[5] S. H. Chan, R. Khoshabeh, K. B. Gibson, P. E. Gill, and T. Q. Nguyen, “An augmented Lagrangian

method for total variation video restoration,” IEEE Trans. Image Process., vol. 20, no. 11, pp. 3097–3111,

May 2011.

[6] A. Buades, B. Coll, and J. M. Morel, “A non-local algorithm for image denoising,” in Proc. IEEE Conf.

Computer Vision and Pattern Recognition (CVPR), Jul. 2005, pp. 60–65.

[7] E. S. L. Gastal and M. M. Oliveira, “Domain transform for edge-aware image and video processing,”

ACM Trans. Graph. (SIGGRAPH), vol. 30, no. 4, pp. 69, Aug. 2011.

12

