

ECE 695 / STAT 695 Sparse Modeling and Algorithms in Statistical Learning

Spring 2018

Stanley Chan

What is sparse modeling?

How much can we compress an image?

Why does wavelet work?

For most images, we need very few wavelet coefficients to "encode" the image.

What is sparsity?

A (discrete-time) signal is sparse if it has very few non-zeros.

What is the Mathematical Problem then?

$$y = Ax$$

$$oldsymbol{y} \in \mathbb{R}^M$$
 Observed signal

$$oldsymbol{y} \in \mathbb{R}^M$$
 Observed signal $oldsymbol{x} \in \mathbb{R}^N$ Unknown representation coefficient (to be determined)

$$oldsymbol{A} \in \mathbb{R}^{M imes N}$$
 Measurement matrix (known)

The difficulty of the problem is when

$$M \ll N$$

That is, we have more unknowns than equations.

If this is the case, then this **underdetermined** system has **infinitely** many solutions.

How can sparsity help?

If I know the **number** of non-zeros, and if I know **where** are these non-zeros, then

What is this course about?

How to solve the problem when you do **NOT** know **where** the zeros are.

Three parameters:

Under WHAT conditions can we get unique solution? and How?

Applications

Statistical Regression

Model Selection: Find the support of solution

LASSO:

minimize
$$\| oldsymbol{A} oldsymbol{x} - oldsymbol{y} \|^2$$
 subject to $\| oldsymbol{x} \|_1 \leq au$

BP-Denoise:

minimize
$$\lambda \| \boldsymbol{x} \|_1 + \| \boldsymbol{A} \boldsymbol{x} - \boldsymbol{y} \|^2$$

(for appropriate choice of \lambda and \tau, LASSO = BPDN)

Matrix Completion

minimize
$$\| {m X} \|_*$$
 subject to $A({m X}) = {m Y}$
$$\| {m X} \|_* \stackrel{\mathsf{def}}{=} \textstyle \sum_{n=1}^N \sigma_n({m X})$$

Communication System

https://www.ti.rwth-aachen.de/research/applications/cs.php

Single-pixel Camera

$$y = Ax$$

 $oldsymbol{A}=\mathsf{binary}$ random matrix

Image Denoising

Mairal, Elad, Sapiro, T-IP 2008

Also for image deblurring, super-resolution, etc.

$$\underset{\boldsymbol{x}}{\mathsf{minimize}} \hspace{0.2cm} \lambda \|\boldsymbol{x}\|_1 + \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|^2$$

Course Information

Course Website:

https://engineering.purdue.edu/ChanGroup/ECE695.html

Disclaimer:

As of Jan 8, 2015, I am still reading chapter 3 of Hastie's book.

(There are 11 chapters of the book)

My Plan: Let's learn together

Course Objective

By the end of the semester, I hope you will

- Have a basic understanding of terminologies and concepts behind sparse modeling
- Be able to comment on sparse algorithms and do some implementation
- Be able to read some papers in the field
- Be able to apply some techniques to research problems

Course Work

1. Attendance (10%)

... because

- You need to learn something
- I don't want to talk to air

 No attendance sheet because, generally, I know who's here and who's not here

2. Homework (25%)

- 10 papers to read
- All very popular papers
- Write me a 2-page summary
- Tell me the problem, the algorithm, and assumptions
- Tell me your comment. Pros and cons of the method
- I will test you in the mid term

3. Mid Term (25%)

- Some basic questions about the lecture
- Some basic questions about your reading assignment

4. Project (40%)

- Group size: Min: 1, Max: 2
- Proposal (individual submission)
- Report (individual submission)
- Presentation (depend on enrollment)

Any topic involves sparse modeling and algorithm

Auditing

- You are welcome to audit (i.e., sit in) the class
- Basic requirement:
 - 2/3 attendance
 - No texting / no apps during class
 - Arrive on time / don't leave early
 - Attend student lecture

Will I get a good grade?

• I have given F to graduate students

- No curve
- You are competing with yourself
- For a small class like this, I will be able to know everyone very well
- The more effort you spend, the better grade you will get
- Historically, so far, I have no complaint about grades.

Plagiarism

- I am serious
- If it is not your work, give proper credit
- Proposal/Report: write in your own word even if you work as a group (Tell me your contribution)
- If I know you plagiarized, I will take very serious actions, including:
 - Fail your course immediately
 - Report to graduate school
 - Worst case: suspend you from school
- Plagiarism is a fatal crime in academia

Emergency

Read the emergence note

- Bad weather: If you don't feel safe, stay home
- Civil disturbance: Stay calm, find shelter

• Sick: (Recommendation) If you are sick, stay home

Don't worry about "attendance" in these situations.
 I understand.

Final Words

- Enjoy
- Have fun

Question?