Reading Report of Gorodnitsky et al.
(ECE 695, Reading Assignment 05, Spring 2018)

Overview of the Paper

In order to estimate the solution to problems with limited data or estimate sparse signals, this paper
introduces the FOcal Underdetermined System Solver (FOCUSS). In particular it hopes to inexpensively
solve sparse problems in a nonparametric manner.

Prior Work

While the author mentions that there are many other methods to solving these sorts of problems, their goal
in developing FOCUSS was to compensate for the weaknesses of these prior methods. Sparse signals can be
estimated with greedy algorithms that searches A to find the solution, so can Linear Programming methods
that solve L1 or Ly minimization. But the author feels the solutions with these methods are arbitrary with
respect to the real signal. They also discuss the use of parametric methods, acknowledging they are good in
some situations, but say they are interested in times where the signal doesn’t have a good parametric model.

Key Ideas of the Paper

The author makes an effort to point out the algorithm is nonparametric because there are parametric methods
for estimating sparse signals but they can’t be used in all cases. There are cases where a parametric model
can’t accurately represent the signal. Also the author feels there are some steep limitations to using these
methods that can’t be overcome in some applications. There are two parts to the problem: finding an initial
low resolution estimate of the signal, then iteratively improving this estimate.

The paper doesn’t give much information on how to determine the low resolution estimate, though they do
recommend “beamforming” and say that sparse initial estimate should be blurred. Then, an Affine Scaling
Transformation (AST) is applied to constrain the sparse signal representation. If our problem is to solve
for  in Az = b, then AST can be represented as ¢ = X,:'_lat, with X1 = diag(xg—_1). This allows us to
change our problem to optimizing for g. With this “reduced” optimization problem, we can now minimize
it using the operations performed in the iterative step

FOCUSS’s iterative step involves finding the L, weighted-norm minimization of g with the constraint Wy, =
Xy_1. The author devotes a section of the paper explaining this formulation. They explain that the typical
solution to Ly minimization (%, = ATb) doesn’t provide a sparse solution. They introduce minimized
weighted-norm formulation as = W(AW)7b and modify W and the constraint so it is possible to find every
solution. Mathematically, this means after applying the AST we solve for zx = Wpkqy, where g = (AW,)Tb.
The idea is to update the weights for our minimization based on the solution found in the previous iteration.
While the author shows a Basic FOCUSS algorithm for conceptually understanding, they extend it to the
General FOCUSS algorithm so it can be used as ar optimization algorithm. This extension includes raising
ZTx—1 to some power ! and using an additional weight matrix W,,. Unlike Wy, Wy is calculated once
and is therefore independent of zx—1. The general form is therefore to calculate xp = Wy Wprqr, where
Wpi = diag(:cfk_l and gy = (AW, Wyr)Tb. The author then goes on to provide analysis on the convergence
rate of the algorithm.

Comments

I decided to compare the effectiveness of this method with that of a previous algorithm we have studied. In
our 3rd assignment we read about solving basis pursuit denoising (BPDN) using spectral projected-gradient
(SPG) in Van de Berg et al. I created artificial sparse signal b in MATLAB and tried to recover zy with both
FOCUSS and SPG_BPDN. While initially T used MSE to compare the similarity between the true signal
and the estimate, I was concerned because with sparse signal reconstruction you often get the lowest MSE
when an algorithm has smaller coefficients. These coefficients are not necessarily a good representation of
the signal, but because most of the coeflicients are zero, it will yield a better MSE. At the suggestion of a



friend, T decided to use the difference between Ly norms of the true and estimated signals as a metric (I
tried out both metrics to see how they compare).

The experiments I performed involved increasing the size of z¢ as well as the number of nonzeros in zg. For
a given zo and number of nonzeros k, I increased the "noise multiplier” o, which is a scalar that is multiplied
by the random noise vector v in our experiment as b = Az + va. Over all sizes of z, both the MSE and Ly
residual increased as the a increased, which isn’t surprising as the signal would be harder to reconstruct as
the amount of noise increases. For the first experiment I doubled the size of x as I doubled k, for my second
experiment I left the size of zg fixed but doubled k. Of course, zg would not be sparse as k increases, but I
wanted to see if the algorithms performed well regardless of sparsity.

For the first experiment (some of which is shown in figure 1), the performance of FOCUSS and SPG_BPDN
is roughly the same when looking at the L; residual, though FOCUSS has a slightly larger residual overall.
When looking at MSE, it is not entirely clear which one is better. For smaller values of the noise multiplier
SPG._BPDN is better, but for larger values FOCUSS is better. Perhaps SPG_BPDN performs better with
less noise because it uses a gradient method to find the signal, but its harder to get an accurate gradient
calculation with all the noise. FOCUSS does not involve computing the gradient to minimize the solution.
For our second experiment We see in figure 2 that both methods are both similar when looking at L
residual, but for MSE, FOCUSS performs worse as the noise increases. However, if the vector is not very
sparse (k = 448 when n = 512), FOCUSS actually performs better as the noise increases compared to -
SPG_BPDN. However, both methods perform worse in this less sparse case. So SPG_BPDN appears to
perform better on sparser data, but has a bigger drop in performance as the data becomes less sparse. I'm
not entirely sure why this is, but my guess is it is because the minimization technique used in FOCUSS is
much simpler computationally than in SPG_BPDN (which uses SPG) so it is less likely to be affected by a
change in sparsity.
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Figure 2: Comparison of Recovered Signal with FOCUSS and SPG_BPDN



Reading Report of Gorodnitsky et al.
(ECE 695, Reading Assignment 5, Spring 2018)

Overview of the Paper

This paper presents an algorithm for solving underdetermined system Az = b where A € R™" and m < n.
The algorithm introduced yields a sparse solution in general. The authors proved the convergence of the
algorithm under certain circumstances and gave two examples for showing possible application of their
algorithm.

Prior Work

Prior to this paper, many different algorithms have been designed for solving underdetermined system of
equations: various forms of greedy algorithms (e.g. matching pursuit), genetic algorithms, linear program-
ming methods etc.

Key Ideas of the Paper

The first key idea of the paper is about the uniqueness of sparse solution. Under the relatively strong
constraint of Unique Representation Property (URP), the solution is guaranteed to be unique if it has a
solution with dimension less than 5.

The second key idea of the paper is to use the affine scaling transformation (AST) for pruning the solution
space.

The third key idea of the paper is about the fixed point convergence. Given a sparse solution of FOCUSS
algorithm, there exists a neighborhood that always converges to this sparse solution. Given a non-sparse
solution of FOCUSS algorithm, the solution is a saddle point along certain trajectory in solution space. More
importantly, the FOCUSS algorithm converges to non-sparse solution/ saddle points with 0 probability.

The fourth key idea is to regularize the the pseudo-inverse of AW with either Tikhonov regularization

or with truncated SVD.

Comiments

In the proof of uniqueness section, the Unique Representation Property is actually a very strong constraint
on the structure of matrix A. What it requires is essentially that any single column of A must not live in
the m — 1 dimensional subspace spanned by any other columns of A. In other words, all m —1 dimensional
subspaces spanned by any m — 1 columns of A are unique; they cannot be spanned by other m — 1 columns
in A. This further implies that any k-dimensional subspace of F™, where F is any valid field, spanned by k
columns of A is unique in that dimension. From this, we can deduce that given a solution Z with k non-zero
entries, for which k > %, the most sparse solution is not unique if and only if the vector b lies in the
intersection between two different k-dimensional subspaces of F™™. Two interesting questions arise here: 1)
given a sparse solution with k non-zero entries, can we quickly verify whether it is the most sparse solution
if k> 37 2) given a solution with k (k > %) non-zero entries and that the solution is not unique, can we
quickly find all other solutions with same sparsity (same number of non-zero elements)?

In my experiment, I tried to address a weaker version of the second question, in which I enforce A
to satisfy URP, using FOCUSS. Assume that vector x; € R™ with k non-zero elements is a solution to
Az =bAc R™", and k > % (k < 5 case can be ignored since in that case, we know that the solution is
unique). If x; is not a unique most sparse solution, we have at least one other solution x3. From previous
paragraph, we know that the columns in A corresponding to x; and xg must be two disjoint sets (if they
are not disjoint, then the subspace of these two subspaces will not be unique, or in other words, the columns
will not be linearly independent). Hence, we can rewrite A as A = A; + Ay where A; contains columns



corresponding to x; and all other columns equal to zero. We obtain following equations:

A.Tl = b,A:L‘Q =b
A({El - Ig) = (Al +A2)(11 -+ .Z‘Q) = 2b
Az + Aszy = 2b

Agxg = c,where,c = 2b — Ajxq

Line2 to line 3 is based on the fact that Aszy = Ajze = 0. It can be seen that the last line is solving a
smaller version of the original sparse solution finding problem. The number of columns of Ay equal n — k.
Therefore, we can iteratively use equation above to find all solutions with dimension k. The maximum

number of iterations is upper bounded by 2—"(We remove k columns from A each time, then we can at most

remove 7 times, k is greater than or equal Ccno %, so iteration is less than or equal to %”)

Experimental setup: In my experiment, I chose A to be a 3x32 matrix. b = [0,0,1]. Columns of A
are generated by rotating unit vector [1,0,0] in x-y plane (rotate {5 radians each time) and then add [0,0,1].
Hence, the columns of A form a cone and no three columns are on the same plane (enforcing the linear
independence requirement of A). Using the procedures described by equations above, I was able to obtain all
16 different sets of solutions in 17 iterations. This experiment can be easily adapted to higher dimensional
space; we can fix a vector and rotate another vector and then sum the two to form a hyper-cone which

ensures that no three vectors live on the same hyper-plane.

Reference

I. F. Gorodnitsky and B. D. Rao, Sparse signal reconstruction from limited data using FOCUSS: A re-
weighted norm minimization algorithm, IEEE Trans. Signal Processing, 45, pp. 600616, March 1997.



Reading Report of Sparse Signal Reconstruction from Limited
Data using FOCUSS

(ECE 695, Reading Assignment V, Spring 2018)

Overview of the Paper

" This paper describes the mechanics of non-parametric iterative re-weighted least squares algorithm (FO-

CUSS) that is sparsity inducing. The algorithm is absolutely convergent. The authors provide detailed
mathematical analysis of the conditions under which this algorithm works and two applications of this
algorithm to a Neuroimaging inverse problem and direction of arrival estimation have been discussed.

Prior Work

Other sparsity inducing approaches that exist are matching pursuit for basis selection, genetic search algo-
rithms with a sparsity constraint, Bayesian restoration using Gibbs prior and I, norm minimization tech-
niques.

Key Ideas of the Paper & Assumptions

1. FOCUSS algorithm solves the following problem min ||W ™|/ s.to Az = b.The premise of this
algorithm is the following property :

N 1 Y Jz(n)\ 2
Solving |||, = <Z 1w(n)i> <= Solving |z|, = (Z w(n)2>
n=1 n=l1

Note |||, is the I, norm of . So FOCUSS is re-weighted least square algorithm that tries to ap-

proximate the [, norm solution of . If we write the above optimization problem as an augmented

lagrangian and solve for w(n), we get w(n) = w(n)%Tp In [1], the authors define p as the diversity

measure. The authors claim that in the range 0 < p < 1, the algorithm is sparsity inducing. The
choice of p = 1 is equivalent to minimizing the I; norm of the solution .

2. The methodology of scaling the iterates at every iteration by a power of the previous iterate is also
called generalized Affine Scaling Transformation (AST).

3. The Unique Representation Property (URP) gives us some intuition about the sparsity of the solution.
If the sensing matrix A € R™*" m < n has 2k linearly independent columns, then we can obtain a
unique solution using the re-weighted minimum norm approach only if the true solution has sparsity
< k. In other words ||z|lo < k.

4. Convergence of the algorithm is greatly affected by the choice of p and the quality of the initial point.
This is justified using the concept of basins of attraction.

Comments

Experimental Setup: The code in its present form is very primitive. For simplicity I chose a well-conditioned
random matrix A € R100%256 with elements iid Gaussian, and modified the code to run the un-regularized
version of the algorithm. The columns of the sensing matrix A have been to avoid issues (affinity to a
sub-optimal stable fixed point) that arise due to bias in A.The code is structured such that after 50% of
the prescribed iterations are completed, the code will truncate the current iteration by picking the k highest
components of @, where k is the desired sparsity in the solution. To make the stopping criterion more
robust, 2 conditions were set 1. if the sparsity of the current iterate meets the desired sparsity 2. if the
I} < tol). There were 2 main simulations run.The goal of the first simulation was to study

Nl
the URP constraint for a range of diversity measures p = 0.2,0.5 and 1 and for a range of k = 0 : 100

relative error (



(k = ||lz/lo = number of non-zeros elements). The initial point for all the conditions was kept the same
Tinit = (1/n)[1 1 -+ 1].There was no noise added to the measurements. The MSE error was computed
between the x.s and @4rye. The results of this simulation are shown in Figure 1. The MSE displayed was
computed by averaging over 100 runs to provide a more accurate picture.

Another simulation was done to study the convergence properties of the algorithm. Here, k = 20 was chosen
as the diversity of the solution because the algorithm seems to converge to a sparse solution, for the same 3
diversity measures (p = 0.2,0.5,1). Since the convergence is heavily influenced by the initial point, I chose

2 initial points for this simulation, a:fi)lt =(1/n)[1 1 --- 1] and :cgfl)n = 5 x rand(n,1).The second

initialization point was carefully chosen to be far away from the solution.The results for this simulation
exercise are shown in Figure 2.

Observations - URP Although the MSE is not the best metric for accuracy, considering it suffers from
bias, the graph of the MSE does portray a trend which is in agreement with our understanding of the
algorithm. For the case p = 1, which corresponds to the I; norm, FOCUSS is able to recover a solution
with low MSE when the number of non-zeros < 30. For n > 30, we start seeing a degradation in the MSE.
This can be attributed to the URP which requires atleast 2 x nnz columns of A to be linearly independent.
The rank of matrix A was found to be 100,hence good performance for nnz< 30 implies that a basis for the
solution exists. In the presence of noise, we see a much more rapid degradation in noise. The un-regularized
TRLS is no match for problems with poor SNR in the measurements.
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Observations - Convergence - Convergence is better when p = 1 as compared to p < 1. If we look at the
objective function for p < 1, the objective function is piecewise convex and has a lot of local minimas. For each
of these local minima’s, we have a basin of attraction. Depending on which basin we pick, FOCUSS converges
to the minima corresponding to that basin. Figure 2 clearly explains this phenomenon. For 0 < p < 1, two
different initialization points lead to 2 different solutions. But for p = 1, for both initializations, we arrive

at the same minima. One key takeaway from this simulation was that if we don’t have apriori knowledge |

of our solution, it is very hard to initialize the algorithm close to the basin that corresponds to the correct
solution. The basins of attraction are tightly interlinked to the diversity measure p and the matrix A. :“

References

[1] Kenneth Kreutz-Delgado, Joseph F. Murray, Bhaskar D. Rao, Kjersti Engan, Te-Won Lee, and Ter-
rence J. Sejnowski, “Dictionary learning algorithms for sparse representation,” Neural Computation, vol.
15, no. 2, pp. 349-396, 2003.




Reading Report of Gorodnitsky et al.
(ECE 695, Reading Assignment 05, Spring 2018)

Overview of the Paper

The paper proposed an non-parametric iterative method for solving inverse linear problems in general sig-
nal processing or image processing. The problem addressed is under-determined and no prior knowledge
about the signal we want to recover is assumed. The method requires a initial estimation, and then the
iterative process is performed to refined the result. The refinement procedure is built upon a weighted norm
minimization concept such that the result is sparse. The weight is determined based on the result of the
previous iteration. The proposed algorithm is a general tool for estimation and can be used across different
applications. Proof of difference convergence properties and convergence rate is also included in the paper.
Although the basic version of the proposed FOcal Underdetermined System Solver(FOCUSS) does not re-
quires any prior information of the data we want to recover, the more general version of FOCUSS can makes
use of a priori term in the iterative refinement process.

Prior Work

Many existing algorithms can be used to solve under-determined systems. Common techniques include
exhaustive search methods like greedy algorithm,evolutionary searches such as a generic algorithm with
sparsity constraint. However, these methods does not makes of additional information other than the sparsity.
So the results are often not well constrained. [ norm minimization and Linear Programing approaches also
exist, but these methods introduces cost functions that is arbitrarily related to the real signal we want to
recover. As a result, their solution to the problem is often arbitrary as well. When the regularization term is
11, then there are a lot of competitive methods. Some notable ones are MOSEK, LARS, SEDUMI, PDCO,
11ls and SPGL. The FISTA method from the previous assignment can also be used in this case.

Key ldeas of the Paper

The key concept of FOCUSS algorithm is actually pretty straight forward. It’s the use of solution of the
previous iteration as the weight for norm minimization for the current iteration. The basic form of FOCUSS
is shown below

Wk = (diag(wx—1))
di = (Aka)+b
xr = Werq,

It is obvious that the zero elements in the initial estimate xo will stay zero. The weight matrix W essentiallwa
serves to prune the solution. If the entry for @y_; is large, then the corresponding diagonal entry in W will |
be large, which will then reduce the weight for this entry when minimizing the cost. And this will then lead
a large entry for ;. On the other hand, if an entry in @k — 1] is small, then the corresponding entry of
W is small which means a higher weight when minimizing the weighted norm. And this will then produce
a smaller value for the entry of y. So essentially the weight matrix serves as a soft thresholding operation
that resembles the iterative shrinkage method ISTA.

The general version of FOCUSS allows the user to raise the power of x;_1 from 1 to some arbitrary
number [ so that the thresholding effect could be even stronger. Another weight matrix is also added so
that the algorithm can be more flexible to be used for solving many different applications. This is especially
convenient when we want to input some a priori information in the FOCUSS algorithm for helping refine
the solution.

A cumulative form of FOCUSS is also discussed, where one can use the product of solutions from several
previous iterations as the weight instead of using only the precedent single iteration. The this form is shown
to produce more robust solution near the initialization.
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Comments

I ran the code provided by the author for different experimental setups. For a signal of dimension 1000,
the number of measurements is 128. I ran the test for ground truth signals with different number of spikes
ranging from 10, 20,50, 100. Apparently for this relatively short signal length 1000, the best performance is
achieved when the number of spikes are small. From the four pairs of figures above, we can see the cases
for 10 and 20 spikes the recovery is pretty good. However, as when the number of spikes is increased the
performance is not good any more as in case 3 and 4. This is very reasonable, since the problem is solved
under the assumption of sparsity of the signal. When the signal has a lot of spikes, the sparsity property is
lost, and the solution would be bad. .

One thing interesting is that the code provided by the author has a parameter called ’targetdiv’, which
corresponds to the number of spikes in the our tests. When the targetdiv is set to the correct number o
spikes, the performance is good, however if the parameter is set to a values very different from the correct
number of spikes in the ground truth signal, the result is quite different from the ground truth. This is

expected as further investigation into the code reveals the code simply keep the maximum number of values =

of the solution for each iteration. I don’t think this a good for the algorithm, as the sparsity of the ground |
truth signal is often unknown, and this makes the algorithm not very general. All previous algorithms we
learned from earlier reading assignments however does not require the user to input a sparsity measure. .
Although this paper claims to not rely on designing cost function, but it requires a given sparsity. And I;'
personally think this is not a good idea.

Another thing worth testing is the power used for producing the weight matrix from the solution of the
previous iteration. When we use a power of 1 or 2, the solution is pretty standard. However, if we use
a values that is close to 0, then the solution would have values that is closer to 0. This is probably not
surprising since the signal’s magnitude is smaller than 1, and with a power close to zero this will makes the
weights large, and thus smaller spikes are produced in the solution. It is also mentioned in the paper that
the power is often chosen as positive integers so that aforementioned issues could be ignored.

It is also worth mentioning the initial estimator of the algorithm. In the code provided by the author, the

initial estimated is chosen to be a vector of ones. It might be attempting to try using a vector of zeros as the .

initial guess, however due to the design of the algorithm, a zero value in the solution of any iteration, would
cause a zero value in the solution for the all following iterations. This makes one to expect the initial guess,

would have big impact on the final solution of FOCUSS, however this does not seem to be true based on : dryndtis

experiments as long as zeros are carefully handled in the initial estimate. In general, I think this method can
be applied to general inverse problem with sparsity assumption, however it does seem to be more restrictive
compared to methods likes FISTA and weird in the sense that it requires the user to input the number of
spikes in the ground truth in order to have a better performance.



