Reading Report of Figueiredo et al.
(ECE 695, Reading Assignment 01, Spring 2018)

Overview of the Paper

The paper addresses the issue of solving #; regularized optimization problems for tasks such as sparse signal
reconstruction and compressed sensing. The authors formulates the problem as a quadratic program where
x is separated into positive and negative parts. Due to the constraints on the two parts, the problem then
becomes a standard bounded-constrained quadratic program(BCQP).

Then the BCQP is solved using gradient projection algorithm, where we calculate the gradient of the
objective function at the current solution from the previous iteration and use backtracking line search to
generate a solution for the current iteration. The author also proposed an alternative approach using the
concept by Barzilai and Borwein. For this approach the search direction is calculated in a different way and
a standard line search is perform to calculate step size.

Prior Work

Because of the nondifferentiable nature of £; regularized problems, generic methods such as ellipsoid method
and subgradient methods can be used while being slow. And since £; LSP can also be converted into a
convex quadratic problem with linear inequality constraints, it can be solved by convex optimization solvers
such as interior point method like MOSEK for small or medium sized problems. Specialized methods that
exploits matrix-vector operations of A and AT are able to handle large scale problems. Homotopy based
methods such as LARS were also proposed for solving the same problem. Of course, interior points method
such as the one from our first assignment is also discussed. There are also matching pursuit-and orthogonal
matching pursuit algorithms that can find the sparse representation of a signal on a dictionary of functions.

Key Ideas of the Paper

The first key idea of this paper is the formulation of the original #; problem as a BCQP by introducing this
positive-part operator. Using this positive-part operator, the £; term can be simply written as the sum of
two vector inner products. Since the inner products are calculated with the vector of one’s, the £ becomes
just the sum of elements of the two newly introduced variable w and ». Then by careful construction, the
objective function can be written as the standard BCQP.

The second key idea is about the analysis of the dimensions of BCQP. Although the BCQP formulation
seems to double the dimensions of the original problem, It can be shown that the operations can be simplified
to have the same dimensions as the original problem. For example, Bz can be calculated by applying A
and AT each once on the difference between u and v. z7 Bz can be reduced into applying A once followed
by a vector norm operation.

Another key point is the adoption of the following thresholding operation for the search direction.

" {(AF(zk))i, ifz% > 0or (AF(2%)); <0,
q; = .
0 otherwise.

Basically, the algorithm will update the value of an element if and only if the element satisfies two cases:1)
value for the current solution is positive ;2) the gradient for this element is negative. If we look at the second
case, since « is positive, that means the new value for this element is always increased(more positive) due
to the negative gradient. The first case means the element value will not be updated if the current value
is already negative unless the it satisfy the second case is satisfied so that the element will become more
positive. As a result, both cases prefer positive solutions, which matches our purpose due to the BCQP
formulation.

A fourth key point is the various usage of the ()4 operator used in both the basic version and the BB
version. This operator will also bias the solution toward the positive quadrant.
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Figure 1: Experiment results for image deblurring

Comments

I ran their code package first for a image deblurring case. The input image is the cameraman. Based on
Fig 2, the three approaches proposed by the paper have similar convergence rate, while the IST method
takes a longer time to converge to the optimum of the objective function. We can notice that for the case
of GPSR-BB non-monotone, the solution path is quite turbulent, this means the solutions can fluctuates a
lot from the current iteration to the next iteration. This is very reasonable since the non-monotone case
choose a constant step size of one and could well land on the bad solution along the search direction. The
turbulence becomes worse then the 7 is smaller, which means a higher weight on the data term(forward
model). This is reasonable, since the level surfaces(surface of the same cost) for the data term is much
more turbulent than the prior term, and then data term dominates the fixed step size will just cause more
turbulence. The monotone approach however uses a line search to guarantee that the cost of the objective
function will at least decrease throughout iterations. Another thing we can notice is that while the proposed
method performs better than IST in terms of the cost of the objective function, the IST approach performs
better with quite some margin in the MSE with the ground truth. This is due to the fact that ISt uses a
diagonal matrix to bound the AT A, and in the case of deconvolution the bound can be tight. As a result,
although the proposed methods converges faster in terms of objective function, they might actually never
converge to a prefered solution that is closer to the ground truth.

T also compared the 11-Is method with the proposed method on compressed sensing experiment. The
number of observation is 1024 and the signal length is 4096. For a small 7, the l1-Is method actually
outperforms the proposed methods with fixed 7. Both the GPSR methods took about 6 sec to solve the
problem, while 11-Is took less than 4 sec. However, with the continuation scheme for tuning the 7 parameter
on the run, the GPSR methods are able to solve the problem in less than 2 sec. This almost feels like cheating
considering the continuation scheme actually changes the objective function on the run. However, in practice
this smart cheat might actually be prefered. For the case where 7 is relatively large(signal very sparse), the
GPSR methods outperforms 11-ls even without using the continuation scheme. The GPSR methods in this
case take about half of the runtime of 11-Is, which is about 2 sec.



Reading Report of Fugueiredo et al.
(ECE 695, Reading Assignment 02, Spring 2018)

Overview of the Paper

The paper talks about the algorithm, Gradient Projection for Sparse Reconstruction (GPSR), to solve the
famous l1-regularized least square minimization problem (1).

1
min > |y — Az |* +7 || = | M)

The algorithm is inspired by Gradient Projection Method. It derives the search direction, applies the line
search method to find the step size, and does the iteration until it satisfies the termination criterion. The
author provide two kinds of iterative algorithm, GPSR-BASIC and GPSR-BB, with detailed steps and
analysis. In the experiment results, it clearly proves that the proposed algorithms outperforms the existing
methods on efficiency (iteration and CPU time).

Prior Work

This paper mentions and compares with several previous approaches regarding the 11-regularized least square
equation. For example, the famous solution is the least square absolute shrinkage and selection operator
(LLASSO), even though it’s not efficiency to solve the large scale problem. The author talked about the [1.ls
approach, the algorithm which we read in the Assignment 01. [1.ls approach uses Interior-Point Method
to design the algorithm and applies the PCG searching direction to save the computation cost. In the
experiment result, it clearly shows that the proposed algorithm in this paper does outperform those previous
approaches significantly.

Key Ideas of the Paper

In this paper, the author focuses on the well-known 11-regularized, convex unconstrained optimization prob-
lem (eugation (1)) with GPSR approach, which is faster and more efficient. Through the substitution of
equation (6), the equation(8) is the standard bound-constrained quadratic program (BCQP) which can
represent the equation (1). The Gradient Projection Algorithm would be the good choice to solve BCQP
problem.

To solve the equation (8), the GPSR approach search the negative gradient of object function as the
projection direction. It performs ”the backtracking line search” to find the reasonable value for the decrease
in the object function. After that, it stops the iteration if the convergence test is satisfied, otherwise do the
iteration. This approach is called GPSR-BASIC in this paper.

The author provides another improvement of GPSR approach, Barzilai-Borweign Gradient Projection
(GPSR-BB). Barzilai-Borweign approach provide the simple approximation to calculate the search direction
8(). The GPSR-BB exploits the exact line search instead of the backtracking line search.

The termination condition is extremely important for the iteration algorithm. The well-designed ter-
mination criterion can get the good enough result without excessive calculation. The author provide four
different condition for the termination criterion (equation (16), (17), (19), (20)). It doesn’t analyze the
performance between these termination criterion but choose the equation (17) as the one for the simulation.

Debiasing is applied after the approximate solution is derived by the proposed algorithm. It uses the CG
algorithm to get the explanatory result in least-square sense. With debiasing, it can get the better solution -
according to the experiment results.

Warm Starting is important in the iterative algorithm. ”Warming Starting” means that the initial point
of the second iteration is the solution of the first iteration. With the selected warming starting point , the
efficiency (iteration and CPU time) will be largely improved.




Comments

I tried the code package with "the signal dimension=4096" and ”the number of observation=1024". The
number of non-zero signal is 160 unless otherwise noted.

The termination criterion. For the iterative algorithm, it’s difficult to decide whether the approximate
solution is good enough without excessive compution cost. I run the simulation to compare between different
termination criterion. Both case with tolp = 0.01. The first termination criterion is the equation (16).
And the second one is the equation (19). We can see the simulation results in Figure 1. With the first
termination criterion, the algorithm stops around (MSE, CPU Time)=(0.1,0.015) before debiasing and
terminate at (MSE, CPU Time)=(0.3281,0.0077) after debiasing. With the second one, it stops around
(MSE, CPU Time)=(0.32,0.0033) before debiasing and terminate at (MSE, CPU Time)=(0.4688,9.5+107%)

- after debiasing. We can see that the second termination criterion leads to the better performance with
_ slightly more time. The folp plays an important role in the termination criterion. However, ”the meaning
of tolp” would be different between different termination criterion, so the termination criterion could only
be selected based on the experiment results.

The debiasing effect. The author proposes the debiasing step which chooses the optimal value for
the components according to the least-squares criterion. Here I define the ratio between Debiased MSE and
Biased MSE (MSE before debiasing) and plot the figure of this ratio versus the number of non-zero signals,
Ngpike- In Figure 2, we can observe that the debiasing step can improve the performance significantly when
Nspike 1S below 240 (which means sparse enough). However, the improvement due to the debiasing step
drops quickly when the ngpike is over 240. When ngpike = 300, the ratio is almost 1. It means that the

debiasing doesn’t help in this scenario. I conclude that the deblasmg step 1mproves the signal reconstruction
ns;nke 300 i
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Figure 1: MSE versus CPU time with different termination criterion. (Left plot) equation 16, (Right plot)
equation 19
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Figure 2: MSE ratio between debiased and biased signal



Reading Report of Figueiredo et al.
(ECE 695, Reading Assignment 02, Spring 2018)

Overview of the Paper

In this paper, the following [;-regularized least square minimization problem is considered.
min  3llAz - y|i + Mz (1)

To solve (1), the authors first transform it to an equivalent bound-constrained quadratic program (BCQP),
and propose gradient projection (GP) algorithms to solve the BCQP. Analysis of computational complexity
of each iteration of the proposed GP algorithms is provided. Finally, numerical results are provided to show
that the proposed GP algorithms outperform existing ones in terms of computation time.

Prior Work

Problem (1) is convex but non-smooth, and has no closed-form solution. Hence, several algorithms have
been proposed (before this work) to solve (1) or its equivalent convex problems. Specifically, homotopy
algorithms, which require the evaluation of (sub-matrices) AT A, have been proposed for solving (1) or its
equivalent QP. The standard interior-point (IP) algorithm, which also require the evaluation of AT A, can
also be adopted to solve the QP formulation of (1). Since the computational complexity of evaluating AT A s
high for large-dimension problems, several algorithms have been proposed without such evaluation for solving
(1) or its equivalent convex problems, which includes customized IP algorithms, majorization-minimization
(MM) based algorithms, and orthogonal matching pursuit (OMP) algorithms.

Key Ideas of the Paper

In this paper, the authors derive an equivalent BCQP form of (1). For such constrained problems, pure
gradient descent algorithm cannot be applied directly since it may lead to infeasible point in the next
iteration. To cope with the feasibility issue, a natural idea is to adopt projection (to the feasible set)
operation. Using this idea, the authors propose a GP algorithm for such problem. Since the computational
complexity of such GP algorithm mainly comes from the evaluation of the objective function and its gradient,
which does not require the evaluation of AT A, its computational complexity is generally lower than the ones
requiring such operation. To further reduce the computational complexity and improve performance, the
authors also propose several variants of the GP algorithm. First, to speed up line search, GP algorithm with
BarzilaiBorwein type approaches are adopted. Second, an additional debiasing step is proposed for some
applications to further refine the solution. Finally, for computationally hard problems, e.g., (1) with large
(BB) dimension and small 7, the authors propose a warm start approach: first solving a computationally easy
problem which is far away from the original problem (e.g., large 7 in (1)), and then use the solution as a
starting point for solving a harder but closer problem (e.g., smaller 7 in (1)) to the original one, and so on.

Comments

It is a well-written paper: the introduction clearly captures most of the existing works, and their differences
from this work; the description of the proposed algorithm and the idea behind it are succinct and easy to
follow; it also provides some guidelines for different applications, including the selection of terminal criterion,
and the use of debiasing and warm starting. However, I think this paper could be better, and I will list my
comment in the following. :

First, it is not clear on the theoretical advantage of the proposed algorithm compared to state-of-the-art
ones, i.¢., for those do not require the evaluation of AT A. In this paper, analysis of computational complexity
of each iteration is provided, but the authors do not compare it with existing ones. Furthermore, although
this paper provides numerical comparison among different algorithms, the metric (i.e., CPU time) is not very
representative since the algorithms are run in MATLAB, since CPU time in MATLAB is not an accurate
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Figure 1: Average CPU time versus number of continuations for GPSR-Basic and GPSR-BB.

measure of computational complexity. It would be better to show the CPU time when implementing using
C++, or flops in MATLAB.

Second, since the authors propose several variant of GP algorithms, it would be better if they provide
more guideline of the selection of the algorithms, i.e., engineers working on a specific application would like
to know which GP algorithm should they implement in order to have the best performance; should they
apply BB methods? should they apply debiasing?

In the following, I will provide numerical results as well as discussions on a related problem I am interested
in. In the paper, the authors state that for computationally hard problem, it would be better to adopt the
warm starting and continuation strategy. For example, for (1) with small 7, the strategy is to start with a
large 7, solve the problem and then reduce 7 and use the previous solution as a the initial point of the new
problem, and so on. This paper also provides numerical results to show that this strategy indeed works.
However, this paper does not provide any clue on the selection of intermediate 7. For example, if we would
like to solve (1) with 7 = 0.05]|ATyllec and we know (1) with 7 = 0.1|ATy|| is easy to solve, should we
solve (1) with two different 7, i.e., 7 = 0.1|ATyljes and 7 = 0.05[[ATyl? or solve more, say six different 7,
Le., 7= {0.1,0.09,0.08,0.07,0.06,0.05}|| AT y||oo? In the simulation, the parameters adopted is listed in the
following: A, is generated according to the method of Section IV-D in the paper, with dimension of A,z
being 1024 x 4096,4096 x 1, y = Az. Target and initial 7 are 0.005|A”y||c and 0.8]| ATy| s, respectively.
The results are averaged over 10 realizations, as shown in the figure.

In the figure, we can observe the following results. First, the CPU time of GPSR-Basic, which is the
proposed GP algorithm with backtracking line search, is lower than that of GPSR-BB for all number of
continuations, which is GP algorithm with BB method. The above result is due to the fact that BB method
greatly reduces the computational complexity of line search, no matter what 7 is. Second, we can observe the
existence of minimum in the figure, as expected, with the reason listed below. As number of continuations
increases, the time for each continuation decreases due to warm starting from a solution corresponding to a
problem with closer 7. Since CPU time is the product of the time for each continuation and the number of
continuations, when the number of continuations is small, increasing number of continuations should lead to
decrease of CPU time due to significant reduction of the time for each continuation. However, as the number
of continuations getting larger, the marginal improvement of the time for each continuation becomes smaller,
which causes the increase of CPU time. This result is more clear in GPSR-Basic (10 is the minimum point),
and not less clear in GPSR-BB, because I think the increasing of CPU time may be more clear for number
of continuations greater than 20.
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Reading Report of: Gradient Projection for Sparseﬁ
Reconstruction: Application to Compressed Sensing and Other
Inverse Problems by Figueiredo et al.

(ECE 695, Reading Assignment 01, Spring 2018)

Overview of the Paper

This paper deals with the efficient solution of the well known £;-regularized LS problem. The problem has
a wide range of applications including sparse signal recovery in ill-/underdetermined linear systems. The
authors attempt to improve upon existing algorithms by reformulating the problem as a bound-constraint
quadratic program (BCQP) which requires only one level of iteration. To speed up the computation time
the algorithm makes use of an approximations of the Hessian matrix of the objective function and uses a
warm start technique to compute an array of solutions with different regularization.

Prior Work

The body relevant prior work mostly overlaps with that of 11_1s (HW1) and the paper emphasizes explicit
comparisons to that algorithm. By referencing 11_1s’s superiority to existing algorithm the authors use
it as a state-of-the art benchmark for comparison. Further, it mentions homotopy algorithms that are
useful when the number of nonzeros is small and the overall problem size is big. Also, there were iterative
shrinkage/thresholding and matching pursuit algorithms which are effective in certain problem conditions.

Key Ideas of the Paper

One of the key ideas of this paper is that the minimization problem of equation 1 in the paper is transformed
into the BCQP

1
min§ lly —A(u—v)||§ +r1futr1)v (1)

s.t. u>0 and v>0
where the solution to the problem is x = (u—v). Using the vector z" = [u’v '] yields the property that the
constraint can simply be maintained by projecting a proposed update direction onto the positive orthant.
That is, if 7 satisfies the constraints then zy = [zg + A(d)] also satisfies it for any vector d and any positive
scaler, A\. The authors present two algorithms that differ in the choice of the expressions for d and A.

The GPSR-Basic algorithm uses as an initial guess the step size that minimizes the unconstrained ob-
jective function from equation 1 in the negative gradient direction. Then the final step size and direction is
found using projection on the positive orthant and a backtracking line search approach.

In the GPSR-BB algorithm the update is determined using a variant of the BARZILAI-BORWEIN approach.
Here, the update pattern vaguely resembles the NEWTON method while approximating the Hessian as a
multiple of the identity.

Another key aspect of the paper is the use of a continuation method which enables the fast computation
of the solution even when the regularization parameter, 7, is small or to obtain the solution for an array
of 7’s. The authors show how by solving the problem for initially large 7’s, the estimates, z, can be used
as an initial starting points for gradually smaller values of 7. In practice the intermediate estimates are
often useful by themselves, however the continuation technique may often even speed up the computation
in comparison to directly aiming for the small 7.

Comments

In my experiments I was particularly interested in the properties of the continuation method. Also, I was
interested in how the GPSR algorithm performs in comparison with the 11_1s algorithm from the previous
homework. For this I used the simple demo_continuation.m example as a basis. I needed to ensure that
the GPSR and 11_1s terminated at approximately the same MSE, thus I modified the 11_1s code so that



it uses the ground truth to compute the MSE after each iteration while artificially terminating the solvers
in post-analysis.

As a metric of comparison I chose the CPU time required to reach the same, final MSE. To consider a
wide range of problems I stuck with the given problem size (2'° x 2!2) while changing the number of nonzero
+1 spikes in the unknown signal, x. T also changed the regularization parameter 7 = {0.1,1,10} 79 where
T0 = 0.005 HATyHOO. I only focus on the GPSR-BB algorithms as the results were similar to the GPSR-Basic

ones.
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Figure 1: CPU time for different values of 7 and MSE for the mid r value over the number of nonzero spikes

Figure 1 shows the plots of the CPU time till convergence for 3 different 7’s and the MSE of the algorithms
for the mid 7 at the time they were stopped.

Some Observations:

o As the number of nonzero values grows, the MSE grows smoothly resulting in moderate error until a
sort of critical number of nonzeros is reached (about at 250 spikes) beyond which the error is 1 to 2 orders
of magnitude higher. At that point the convergence times of either of the 3 algorithms is unpredictable
(compare the 2 graphs with 7 = 79) when given a problem of similar size but different instances of the
random signals and matrix. In these cases the values of 7 is simply too small to result in a good prediction
of the unknown.

When focusing on the parts below the critical number of nonzeros (~ 10 to 200) the GPSR algorithms
seem to increase in CPU time faster than the 11_1s algorithm (slope of the CPU time graphs). At a low
number of nonzeros the 11_ls may be slower then the GPSR algorithm whereas at a higher number of
nonzeros it may be faster than the GPSR-BB algorithm and comparable to GPSR-BB-continued algorithm.
Further, at high 7’s the GPSR-BB algorithm is fastest and the 11_1s slowest while at low 7’s the GPSR-
continued algorithm is fastest and the GPSR algorithm slowest.




