Reading Report of: Interior-Point Method for Large-Scale
t1-reg. LS by Kim et al.

(ECE 695, Reading Assignment 01, Spring 2018)

Overview of the Paper

The problem at hand is the well known least squares problem with ¢; regularization as in equation 3 of the
paper . The methods in this paper attempt to find the solution faster than previous methods or with higher
numerical accuracy while allowing dense data matrices. The problem is compared to its £y -regularized
counter part which can be solved in closed form partly due to its differentiability and strict convexity. The
£1 cost function is not differentiable and thus is solved numerically using a Newton method based approach
that uses fast algorithms for the arising subproblems.

Further, the performance of this method is demonstrated on numerical examples while the computational
complexity is empirically determined. Also, possible extensions and variations are described.

Prior Work

For problem this there were a wide variety of algorithms known. As generic algorithms for non-differentiable
objective functions are often slow, some methods aim to exploit certain prior assumptions about the problem.
FExamples are path-following-methods that are suitable for extremely sparse solutions. Also, algorithms that
used specialized specialized matrix-vector operations can be suitable for large problems. Further, a variety
of iterative gradient descent or coordinate descent methods were shown to handle larger problems efficiently.

Key Ideas of the Paper

To deal with the non-differentiability of the primal cost function the problem is transformed into a differen-
tiable minimization with linear inequality constraints, shown in equation 13 of the paper:

minimize ¢(z,u) = ||Az — yl||3 + )\Zui subject to —u; < z; < uy; for all 4 (1)
i

The constraints are then lifted by augmenting the objective function of equation 13 (1) with a logarithmic
barrier function ®(z,u). The barrier is smooth, convex and grows unbounded at points near the boundaries
of the feasible set. A minimization of ¢(x,u) = to(z, u) + P(x, v) is simple (when given a feasible starting
point) as it is strictly convex and differentiable. However, a minimizer, (z(t),u(t)), of ¢¢+(z,u) is not not
necessarily primal feasible for any t. Also, note that for ¢ = oo the minimizer, z(t) , is feasible and z(t) = «*
is a solution to the overall primal problem as the barrier function ®(x,u)/t resembles an (infinitely high)
indicator function for the feasible set when ¢ — co. However, as the minimization for large (or infinite) ¢ is
very difficult the proposed method aims to start at a feasible suboptimal point and solves the minimization
of ¢¢(z,u) for increasing ¢ in an iterative fashion.

To solve the resulting convex optimization for a given ¢, a Newton based method is applied where the
solution of Newton system from equation 14 in the paper ylelds the search direction (Axz, Au). The key
ideas to achieve the performance are:

- only approximately solving the Newton system using PCG with an good initial point and and an efficient
stopping criterion (truncation rule)

- performing a fast line search using the described backtracking method

- using a good update scheme for the t-variable that balances the trade-off between ” fast minimization
with Newton” vs. ” fast closing of the duality gap”.

Comments

As T am completely new to £1-regularized LS T aimed my experiments mostly towards verifying the properties
of this problem that we discussed in class rather than answering questions about the quality. I did however



make some modifications to the code such that I could vary the step size parameters p and 8 and plot their
influence and the convergence speed (PCG iterations and overall iterations). These experiments gave me
relatively boring results as the algorithms seemed particularly robust against bad choices for the p and 8
parameters, which in itself is interesting.

For the main focus I chose a sparse zp € {—1,0,1}" (see figure 1 left) and a random, zero-mean data
matrix. The system is with 55 = m < n.= 60 slightly under-determined and while adding some Gaussian
noise (see figure 1 right) I aimed for a poor LS solution and a good regularized solution.
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Figure 1: Left: ground truth, zo, and recovered signal, z(Apes:). Right: Signal, y = Azp and signal yo after
adding Gaussian noise

First, to find the optimal regularization parameter the problem is solved for a wide range of A’s and the
mean squared error is minimized to yield A = Apest (see figure 2). As the reciprocal of A is on the horizontal
axis the problem converges to the unregularized problem (LS) on the right side of the plot and all z-variables
will be 0 on the left side of the plot where A > [|2A47y||co. The curve for the error clearly has a (local)
minimum which is not when A = co. The minimum occurs when A = Apes¢ Which yields a good match for x
(and a perfect match for = after some appropriate thresholding).

The plot of the coordinates of 2(A) is shown in figure 2 (right). It shows how the true nonzero coordinates
(blue) of x sprout out of zero first, giving a perfect sparse solution even when A > Apese. At around Apeg:
even some false nonzeros coordinates (red) are becoming nonzeros. Thus, the solution z(Apest) is slightly
inferior in the sense that it does not have the same sparsity as xo (see figure 1 right).
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Figure 2: Left: Mean squared error for a range of A values. Right: Coordinates of minimizers x(\)



Reading Report of Kim et al.
(ECE 695, Reading Assignment 01, Spring 2018)

Overview of the Pape

The paper addresses the issue of solving ¢; regularized optimization problems for tasks such as sparse signal
reconstruction, feature selection and others. For #; regularized problems we have the assumption that the
desired solution is sparse meaning most of its elements should be zero. The authors focus on a specific
method called interior-point method, which is an iterative method involving the calculation of a search
direction and a step size for each iteration. While existing interior-point methods prior to this work perform
well for smaller linear system, they appear to be unpractical when the linear system is huge containing
millions of variables. The main contribution of the paper is then a specialized interior-point method that
uses preconditioned conjugate gradients algorithm to approximate the search direction calculated from the
Newton system. By doing this, the proposed method is able to handle large-scale £; regularized problems.

The paper talked about two problems they are interested in: compressed sensing and linear regression. For
the case of compressed sensing, they assume the data we want to recover is sparse in a transform domain.
As a result, we would expect a transform matrix inside the £; term. And when the transform matrix is
invertible, the minimization problem can be converted into a standard least-squared program which is the
interest of this paper.

Prior Work

Because of the nondifferentiable nature of /1 regularized problems, generic methods such as ellipsoid method
and subgradient methods can be used while being slow. And since ¢; LSP can also be converted into a
convex quadratic problem with linear inequality contraints, it can be solved by convex optimization solvers
such as interior point method like MOSEK for small or medium sized problems. Specialized methods that
exploits matrix-vector operations of A and AT are able to handle large scale problems. Homotopy based
methods were also proposed for solving the same problem.

Key Ideas of the Paper

The first key idea of this paper is the design of the logarithmic barrier for the bound constraint. By design,
when z; approaches v;, the input to the log is close to zero which in turn produce a huge cost for the
objective function. Since —log(*) is infinity for zero inputs, the we almost never expect the solution to be
at the barrier.

The second key idea is using the PCG method to approximate the search direction resulted from the
Newton system. While the approximate solution will never be ideal, it offers a good trade-off between
the error and speed which is essential for large-scale problems. And since the PCG solver is iterative for
approximation of the solution of the Newton system, the overall method is a Truncated Newton method.

Another key point is the adoption of the following update rule for the parameter ¢.

‘e maz{pmin{2n/n,t},t} 5> Smin
t, 8 < 8min

s is basically used as a measurement for the proximity of the current solution to the central path. When s
is large, the update rule will attempt to increase ¢ so that the solution will be less sub-optimal. The amount
of increase for t is determined by 2n /. This is also reasonable since when the duality gap is large meaning
a early iteration of the algorithm, it might not be reasonable to increase ¢ too much.

A fourth key point is the truncation rule which depends on the duality gap. Using this design, in early
iterations the duality gap is large and the PCG result will have a lower accuracy, and in later iterations the
duality gap is small thus a PCG result with high accuracy is preferred.



ariginal signal x0

1
s} 1
Ak . : E o8

- a
0 200 400 600 800 1000 1200 g

R

reconstructed signal x

-1k s 1 L L . L] 12 14
0 200 400 600 800 1000 1200
(a)Input-Output (b)Duality Gap
%0 T T T T T 1 T T T T
s 0.95
i
0.9 H
201 085
. ° 0.8
g’ 1 gms
@ 0.7
10
0.85
sk 08
0.55
% os 4 . s 10 12 14
itr
(c)PCG Tterations (d)Step Size
Figure 1: Experiment results for sparse signal recovery case with = 0.5.
Comments

I ran their code package for a sparse signal recovery problem with signal dimension being 1024, and number
of observation being 128. The solution is reached in 14 iterations. The result is similar to the ground truth.

Apparently, for this case the step size is always greater or equal to 0.5, which makes the algorithm to
constantly update t for each iteration. From the figures we can also see the duality gap throughout the
iterations are pretty small, which means 2n/n (used in the update rule) is always greater than t since the
algorithm converges fast enough. This means the update rule for this example is basically the trivial ¢ = u*g
as used by typical interior point methods as mentioned in the paper. The constant step size through iterations
seems to be caused by a parameter S = 0.5 used for line search. If I change to 8 = 0.4, the step sizes are
oscilating between 0 and 8. This then cause the update rule to only update once every two iterations. This
change causes the algorithm to reach a solution after 24 iterations, which is a lot slower then using a 8 = 0.5,
although the final solution looks identical. This means updating t is crucial for a fast convergence of the
algorithm. With a large-scale problem where 2n /7 is basically always larger than t, this means the proposed
update rule just simply skips some iteration based on the choice of 8, and the skippings apparently does not
improve the performance or the convergence speed. So after running the experiments, I'm actually sort of
doubtful about their update rule and its usefulness.

Another thing I realize is that when I increase the dimension of the ground truth signal by a factor of
20, the algorithm terminates with a single iteration and output a vector of zeros. Decreasing the value of
A will stop the algorithm producing zeros as the output, while the output itself is not accurate. I suspect
this is due to the PCG not performing very well when the ground truth signal is very sparse, to improve
the performance of PCG I decrease the relative tolerance used by it hoping the solution of PCG is a better
approximation of the Newton system. However, making this change does not produce a more accurate final
solution. After second thought, by increasing dimensionality of the signal while not increasing the number
of spikes and keeping the noise level unchanged, I'm basically just increasing the noise signal ratio, and the
performance drop might just be reasonable.



Reading Report of S. J Kim, K. Koh, et al.
(ECE 695, Reading Assignment 01, Spring 2018)

Overview of the Paper

This paper focuses on solving the problem y=Ax+v in an eflicient way. To solve this problem, the authors
use the £;-regularized least squares programs (LSP) formulation given by:

minimize|| Az — yl|3 + A|z||1 (1)

Kim et al propose their own optimization method for very large sparse problems based of a combination of
different steps such as Interior Point Method , Newton’s Truncated Method, and Lagrange Duality.

The authors then demonstrate their method attains accurate solutions in a relatively shorter time than
other optimization algorithms, and they show they can generalize their method to more £; minimization
problems.

In order for this algorithm to work efficiently, they need certain conditions. For example, they need the
system to be number of unknowns to be much greater than the number of observations. In addition, to
obtain a non-zero solution they need A < ||[24%7y|| . Similarly, when this method is applied to compressed
sensing, the author assumes there is a linear transform W which can create a sparse representation of signal
. 2z in a different domain (paper’s equation (6) ).

Prior Work

The paper presents a wide range of prior approaches based off £, and £; optimization algorithms. For example,
the author talks about Tikhonov’s quadratic method (£2) to solve the initial problem. This method yields
a closed form solution but the matrix inversion is computationally expensive when the dimensions are high.
Regarding the the £;-LSQ approaches, they do not have a close form solution due to the nature of the /;
norm, so all the algorithms are iterative. The author talks about ellipsoid or sub-gradient methods, but he
mentions that these approaches are slow. The author also mentions interior point methods such as MOSEK;
however this approach does not work efficiently for large problems. There are conjugate descend methods
that are very fast but their results do not obtain high accuracy. The author mentions that Figueiredo et
al proposed a ” Gradient Projection Method” for sparse inverse problems that does work efficiently for large
dataset, so it would be interesting to explore the comparison between these two approaches.

Key Ideas of the Paper

First, the author makes sure that A is within the desired constraints. This condition will ensure the method
yields non-zero solutions. Second, the paper derives a Lagrange Dual Function for equation (1) by letting
z = Az — vy , and showing there is a dual function v(z) that will help to minimize the primal function.

For the Interior Point Method, equation (1) is expressed as a convex quadratic minimization function with
linear constrains (replacing z from the second term of equation (1) with variable u;), where —u; < x < u;.
These constrains are added as a logarithmic function ®(=z,u) to the the quadratic constrained equation to
create a new function to minimize. Therefore the new equation to be minimized is:

dulz,w) = Az — gl +¢ > M+ (e, u) (2)

i€{1,n]

The author uses the Truncated Newton Method to minimize the Interior Point Function. The Truncated
Newton Method computes first a PCG search direction before applying Newton’s Method in order to save
computational cost. Finally, at each iteration, the author varies the parameter t from 0 to oo, using the
Dual Function v*(¢) as a reference. The author performs these iterations and updates the value of t until
the desired duality gap is achieved. The complete and detailed algorithm is given in the paper.




Figure 1

original signal x0 reconstructed signal x ) = 0.001 Error=0.00237%

1

0.5

1]

~0.5

-1
1000 1500 2000 2500 o]

500 500 1000 1500 2000 2500

reconstructed signal x \ = 0.01 Error= 0.015267% reconstructed signal x ) = 0.1 Error=
1 c[ T 1
- -1

0 500 1000 1500 2000 2500 i}

0.13728%

[nla}

0.5

-0.5

500 1000 1500 2000 2500

Figure 1: Code Outputs for Different Values of A

Comments

The algorithm itself seems very fast and accurate. The comparisons shown in the results between TNIPM
and other top notch algorithms such ag I1-magic, and MOSEK have one order of magnitude of difference
for running times with large problems. For this section, I will show results of their sample codes, vary their

One possible problem I find is that this method relies on sparsity, or that the signal has a Sparse representation
in another domain. For example, in a signal with 2048, if it contains only 10 non-zero elements, the method
attains a 0% error rate. If the number of non-zero elements is increased to 100, the method achieves 6% error
rate. Finally, if the number of non-zero elements is increaged to 1000, the algorith ,
which is worse than a random guess. This error could happen due to the regularization parameter pushing
as many arguments as possible to be zero. Therefore, both the search direction and Newtons approach could
yield non-optimal solutions due to the increase in dimensionality. Similarly, the optimization results can
change for different choices of X within the allowed range. For example, the sample codes provide a DCT
transform as a measurement matrix for a random sparse signal with 10 spikes within 2048 variables and 128
measurements. For this case, Ammaz = 1.6. When )\ € [0,0.07], the signal can be mostly recuperated; however,
for values above 0.08, the recuperated signal becomes random.This issue could influence the optimization
for larger problems and the authors mention the optimal value of A can be found by trial and error, the
difficulty of this task can become cumbersome when dealing with a very large problem.

Finally, 11-magic has a library available which performs similar operations to the methods used in this
problem such ag log-barrier optimization and interior point method optimization; however, due to time,space
constrains and code compatibility (shape Ineasurement matrix A in the same way it is created for this
problem), the comparison will not be included in thig report,.
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Reading Report of Kim et al.
(ECE 695, Reading Assignment 01, Spring 2018)

Overview of the Pap:

In this paper, a low computational complexity with high accuracy algorithm is proposed for solving the
following [;-regularized least square minimization problem

min Az — ylF + Alzllx (1)

Comparing with existing algorithm, the low computational complexity nature makes the proposed algorithm
more favorable for large problems, i.e., problems with large number of variables to be optimized. The authors
provide analytical results of performance, and computational complexity of the proposed algorithm. Finally,
numerical results are provided for comparison of the proposed algorithm and existing ones.

Prior Work

First, the problem (1) has no closed-form solution, so one must solve it numerically. Since (1) is convex but
non-differentiable, algorithms for such problems, including ellipsoid method and sub-gradient method, can
be applied to solve (1). These algorithms do not perform well in terms of computational complexity. Another
idea of solving (1) comes from the fact that (1) is equivalent to convex quadratic program {QP) with linear
constraint. In this way, standard algorithms such as interior-point method can be adopted to solve (1). Note
that standard interior-point methods are less suitable for large problems involves matrix-vector operations
with A and AT, which appears in solving (1). There are other algorithms proposed before this paper to solve
(1), such as coordinate-wise descent methods, a fixed-point continuation method, Bregman iterative regu-
larization based methods, sequential subspace optimization methods, bound optimization methods, iterated
shrinkage methods, gradient methods, and gradient projection algorithms. Note that some of the algorithms
above performs well in terms of computational complexity for large problems.

Key Ideas of the Paper

In this paper, instead of working on (1) directly, the authors tackle its equivalent convex QP (with linear
constraint). Since interior-point methods are standard algorithm for solving convex QP, and they suffer from
(relatively) high computational complexity when dealing with QPs which are transformed from (1) of large
gize, a natural idea is to develop a low computational complexity version of interior-point method for such
problem. Because the high computational complexity comes from finding the exact search direction, the
author propose to adopt the preconditioned conjugate gradients algorithm to compute the search direction,
in order to reduce the computational complexity. In a nutshell, the authors propose an interior-point
method with the preconditioned conjugate gradients algorithm for computing the search direction to solve the
equivalent problem of (1).

Comments

I think this paper deserves high citations and the best paper award, since it solve a practical and widely
applicable problem, i.e., the computational complexity issue of solving (1) of large size. Specifically, a detailed
description of the proposed algorithm is provided, including the (brief) theory behind it, each step of the
algorithm, and the guideline of parameter selection in the algorithm, which makes researchers and engineers
easy to implement (without downloading the code from the authors website), customize (according to the
parameter selection guideline), and possibly improve (according to theory provided) the propose algorithm.
However, there are still some parts which can be further improved, in my perspective, which will be list in
the following.

First, the authors do not provide convergence analysis of the proposed algorithm. In the paper, the
authors state that convergence of interior-point method with backtracking line search and exact search di-

7 rections is guaranteed. However, the proposed algorithm adopts inexact search directions, and the authors
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Figure 1: Performance of proposed algorithm for different SNR.

do not provided analytical performance guarantee of such algorithm. (In this paper, the authors only states
that the update rule appears to be quite robust and work well when combined with the PCG algorithm we
will describe soon.) In other words, according to the analysis in this paper, it is possible that the algorithm
never converges in some cases.

Second, the authors give the computational complexity for some parts (in terms of flops) of the al-
gorithm, e.g., the computational complexity of some matrix-vector products, but they do not provide the
computational complexity of the whole algorithm, i.e., given the parameters such as problem size and relative
tolerance, what is the computational complexity of the proposed algorithm. Such analysis is important due
to the following reasons: first, for a system designer, it is necessary to design the system parameters. For
example, a magnetic resonance imaging (MRI) machine designer needs the computational complexity to have
the knowledge the answer of the following questions (for a given hardware capability): for a given resolution
and accuracy, how much time is needed for the MRI machine to finish the task, what is the best result (in
terms of resolution and accuracy) given the maximum tolerance waiting time, etc. For research purposes,
it is also important to know the analytical computational complexity for performance comparison. In this
paper, numerical results are provided to show the performance of the proposed algorithm as well as other
‘algorithms. However, without analytically proof, even if 100 examples show that the proposed algorithm
works better than other algorithms, we still cannot assert that the proposed algorithm outperforms other
algorithm for the 101 example.

Third, for the numerical results, it would be better to provide some results when the elements of matrix
A are correlated, which often happen in practical examples. The scores of GRE verbal and TOEFL should
be correlated is an example mentioned in class. Since performance of an algorithm could be quite different
for A with different properties, it would be better to show that results. Same story for the noise.

By the way, since I wonder the effect of signal to noise ratio (SNR) on the performance, I ran a simulation
to investigate such effects. The parameters I adopted is as follows: A == 0.01, €.q; = 0.01,

1 0 0 05 (1)
A=10 1 02 03 |,@= |,
0 01 1 02 .

noise is generated according to the Gaussian model N(0,0%I). The performance metric I adopted is the
CPU time of the algorithm, with the result being averaged over 100 noise realizations. Figure show the
results. It is shown that the performance is affected by SNR of signal, in the example adopted -20 dB SNR
yields the best performance. However, the difference is not significant in our simulation, possibly due to the
small problem size. It is interesting to see the performance of large size problems.



