Image Super-Resolution Via Sparse Representation

Soumendu Majee
Omar Elgendy

Super Resolution

- Image super resolution is a special case of image interpolation.
- Given a low resolution image, estimate its high resolution version.
- It’s an ill-posed problem:
 - Have to incorporate prior information about the image
 - Locally smooth assumption
 - Trained dictionary
Signal Model

- Observed low resolution image: Y
- Unknown high resolution image: X
- Y can be written as the blurred and down-sampled version of X.

\[Y = SHX. \]

Where, S is a down-sampling operator and H is a blurring filter.
The patches x of the high resolution image X can be represented as sparse linear combination in a dictionary D_h:

$$x \approx D_h \alpha \quad \text{for some } \alpha \in \mathbb{R}^K \text{ with } \|\alpha\|_0 \ll K.$$

The sparse representation, α is recovered by representing the patches from the low resolution image Y with respect to a low resolution dictionary, D_l contained within D_h.
The two dictionaries D_h, D_l are trained to have the same sparse representation for each high-resolution and low-resolution patch pair.

For every low-resolution patch, find its sparse representation in D_l as:

$$\min ||\alpha||_1 \quad \text{s.t.} \quad ||FD_l\alpha - Fy||_2^2 \leq \epsilon,$$

where, F is a linear feature extraction operator to get perceptually meaningful constraint.
Adjacent patch compatibility

- Enforcing sparse representation of each local patch does not guarantee adjacent patches to be compatible.

- Scan patches in raster order and enforce compatibility by:

 \[
 \min \| \alpha \|_1 \quad \text{s.t.} \quad \| FD_l \alpha - F y \|_2^2 \leq \epsilon_1 \\
 \| PD_h \alpha - w \|_2^2 \leq \epsilon_2
 \]

 where, \(P \) extracts the overlap between current and previous patch and contains the overlapped reconstructed values of previous patch.

- Or more concisely:

 \[
 \min_{\alpha} \| \tilde{D} \alpha - \tilde{y} \|_2^2 + \lambda \| \alpha \|_1
 \]

 where \(\tilde{D} = [FD_l \quad \beta PD_h] \) and \(\tilde{y} = [F y \quad \beta w] \).
Reconstructing the high resolution patch

- After the optimal sparse representation α^* has been found from the low resolution patch and previous reconstructions, the high resolution patch can be found as:

$$x = D_h \alpha^*.$$
The previous reconstruction might produce images that are inconsistent with the blurred down-sampled signal model. This is rectified by projecting the previous reconstruction, X_0 onto the solution space of the signal $Y = SHX$, by computing:

$$X^* = \arg \min_X \|SHX - Y\|_2^2 + c\|X - X_0\|_2^2.$$
Full Super-resolution algorithm

Algorithm 1 (SR via Sparse Representation).

1: **Input:** training dictionaries D_h and D_l, a low-resolution image Y.
2: **For** each 3×3 patch y of Y, taken starting from the upper-left corner with 1 pixel overlap in each direction,
 - Compute the mean pixel value m of patch y.
 - Solve the optimization problem with \tilde{D} and \tilde{y} defined in (8): $\min_{\alpha} \| \tilde{D}\alpha - \tilde{y} \|_2^2 + \lambda \| \alpha \|_1$.
 - Generate the high-resolution patch $x = D_h \alpha^*$. Put the patch $x + m$ into a high-resolution image X_0.
3: **End**
4: Using gradient descent, find the closest image to X_0 which satisfies the reconstruction constraint
 \[X^* = \arg \min_X \| SHX - Y \|_2^2 + c \| X - X_0 \|_2^2. \]
5: **Output:** SR image X^*.

Super Resolution of Face Images

- Face image resolution enhancement is useful in surveillance scenarios since large distance between camera and the person makes the resolution of the face part very low.

- Fortunately, human faces have a specific structure that can be exploited in addition to local patch sparsity
Face subspace from NMF

- Face image has several independent parts such as eyes, nose etc
 - Good fit for NMF (Non-negative matrix factorization)

- Given concatenated data matrix, X with each column as a data point, find the best basis matrix U and coefficient matrix V as:

\[
\arg\min_{U,V} \|X - UV\|_2^2 \quad \text{s.t.} \quad U \geq 0, V \geq 0
\]
Increase face resolution by using the face subspace and smooth image assumption:

\[c^* = \arg \min_c \| SHUc - Y \|_2^2 + \eta \| \Gamma Uc \|_2 \quad \text{s.t.} \quad c \geq 0. \]

where, \(\Gamma \) is a matrix performing high pass filtering

Estimate the new median resolution image as:

\[\hat{X} = Uc^* \]

Use patch sparsity to increase the resolution further from the medium resolution image
Algorithm 2 (Face Hallucination via Sparse Representation)

1: Input: sparse basis matrix U, training dictionaries D_h and D_l, a low-resolution aligned face image Y.
2: Find a smooth high-resolution face \hat{X} from the subspace spanned by U through:
 - Solve the optimization problem in (16)
 $$\arg\min_{c} \|SHUC - Y\|_2^2 + \eta \|\Gamma U c\|_2 \quad \text{s.t.} \quad c \geq 0.$$
 - $\hat{X} = UC^*$.
3: For each patch y of \hat{X}, taken starting from the upper-left corner with 1 pixel overlap in each direction,
 - Compute and record the mean pixel value of y as m.
 - Solve the optimization problem with \tilde{D} and \tilde{y} defined in (8):
 $$\min_{\alpha} \|\tilde{D}\alpha - \tilde{y}\|_2^2 + \lambda \|\alpha\|_1.$$
 - Generate the high-resolution patch $x = D_h\alpha^* + m$.
 - Put the patch x into a high-resolution image X^*.
4: Output: SR face X^*.
Learning the Dictionary Pair \((D_h, D_l)\)

Single Dictionary Training

- **Given:** Set of training examples
 \[X = \{x_1, x_2, \ldots, x_t\} \]

- **Problem Formulation**
 \[
 D = \arg \min_{D, Z} \|X - DZ\|_2^2 + \lambda \|Z\|_1
 \]
 \[
 \text{s.t. } \|D_i\|_2^2 \leq 1, i = 1, 2, \ldots, K
 \]

 - To enforce sparsity
 - To remove the scaling ambiguity
 - Non-Convex!
 - In both \(D, Z\)
Single Dictionary Training

Solution: Alternative minimization

1) Initial guess: Gaussian random matrix D with each column normalized

2) Fix D, update Z by

$$Z = \arg \min_Z \|X - DZ\|_2^2 + \lambda \|Z\|_1$$

3) Fix Z, update D by

$$D = \arg \min_D \|X - DZ\|_2^2$$

s.t. $\|D_i\|_2^2 \leq 1, i = 1, 2, \ldots, K$

4) Iterate between 2 and 3 until converge
Learning the Dictionary Pair \((D_h, D_l)\)

Joint Dictionary Training

- **Given:**
 - Sampled high resolution image patches \(X^h = \{x_1, x_2, \ldots, x_n\}\)
 - Corresponding low resolution patches \(Y^l = \{y_1, y_2, \ldots, y_n\}\)

- **Goal:** learn \(D_h\) and \(D_l\), so that the sparse representations of \(x_i\) and \(y_i\) are the same \(\forall i = 1, \ldots, n\)

Joint Dictionary Training

- **Problem Formulation**

\[
\min_{\{D_h, D_l, Z\}} \frac{1}{N} \|X^h - D_h Z\|^2_2 + \frac{1}{M} \|Y^l - D_l Z\|^2_2 \\
+ \lambda \left(\frac{1}{N} + \frac{1}{M}\right) \|Z\|_1
\]

- **Can be rewritten as**

where

\[
\min_{\{D_h, D_l, Z\}} \|X_c - D_c Z\|^2_2 + \hat{\lambda} \|Z\|_1
\]

\[
X_c = \begin{bmatrix} \frac{1}{\sqrt{N}} X^h \\ \frac{1}{\sqrt{M}} Y^l \end{bmatrix} \quad D_c = \begin{bmatrix} \frac{1}{\sqrt{N}} D_h \\ \frac{1}{\sqrt{M}} D_l \end{bmatrix}
\]
Learning the Dictionary Pair \((D_h, D_l)\)

Jianchao Yang, Hao Tang, Thomas Huang, Yi Ma, appeared in TIP’10
Quantitative Comparison:

girl, zoom by 4x (flower dictionary)

Input, upsampled

Bicubic

MRF / BP
[Freeman IJCV ‘00]

Soft edge prior
[Dai ICCV ‘07]

SRSR

Original

Quantitative Comparison

<table>
<thead>
<tr>
<th>Image</th>
<th>Bicubic</th>
<th>Neighborhood embedding</th>
<th>SRSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flower</td>
<td>3.51</td>
<td>4.20</td>
<td>3.23</td>
</tr>
<tr>
<td>Girl</td>
<td>5.90</td>
<td>6.66</td>
<td>5.61</td>
</tr>
<tr>
<td>Parthenon</td>
<td>12.74</td>
<td>13.56</td>
<td>12.25</td>
</tr>
<tr>
<td>Raccoon</td>
<td>9.74</td>
<td>9.85</td>
<td>9.19</td>
</tr>
</tbody>
</table>

This approach outperforms bicubic interpolation and neighbor embedding on all examples tested.

Fig. 2. Results of our algorithm compared to other methods. From left to right columns: low resolution input; bicubic interpolation; back projection; sparse coding via NMF followed by bilater filtering; sparse coding via NMF and Sparse Representation; Original.

Jianchao Yang, Hao Tang, Thomas Huang, Yi Ma, appeared in TIP’10
Thank You
Questions?