MAP and MMSE Estimation

Ahmed Ibrahim
School of Electrical and Computer Engineering
Purdue University
ibrahim1@purdue.edu
Outline

- Motivation
- Stochastic Model & Estimation Goals
- Background on MAP
- Background on MMSE
- The Oracle Estimation
- The MAP Estimation
- Approximating the MAP Estimator
- The MMSE Estimation
Outline

- Motivation
- Stochastic Model & Estimation Goals
- Background on MAP
- Background on MMSE
- The Oracle Estimation
- The MAP Estimation
- Approximating the MAP Estimator
- The MMSE Estimation
Description of the pursuit algorithm was on a deterministic level

Claim: The pursuit algorithms correspond to an approximation of MAP

To prove our claim, we give a clear and formal definition of the stochastic model generating the sparse representation vector

This leads to deriving a MMSE estimator as well

MMSE approximation is also possible
Outline

- Motivation
- **Stochastic Model & Estimation Goals**
- Background on MAP
- Background on MMSE
- The Oracle Estimation
- The MAP Estimation
- Approximating the MAP Estimator
- The MMSE Estimation
The Measurement Vector

\[y = HAx + e \]

Estimation Goal is to recover \(x \) or \(z \) based on \(y \) and the statistical information of \(x \) and \(e \).
Outline

- Motivation
- Stochastic Model & Estimation Goals
- Background on MAP
- Background on MMSE
- The Oracle Estimation
- The MAP Estimation
- Approximating the MAP Estimator
- The MMSE Estimation
Background on MAP Estimator

\[
P(x|y) = \frac{P(y|x)P(x)}{P(y)} \quad \Rightarrow \quad \hat{x}^{MAP} = \max_x P(x|y)
\]

\[
\hat{x}^{MAP} = \max_x P(x|y) = \max_x P(y|x)P(x)
\]

\[
\hat{x}^{MAP} = \max_x P(y|x)
\]
Outline

- Motivation
- Stochastic Model & Estimation Goals
- Background on MAP
- **Background on MMSE**
- The Oracle Estimation
- The MAP Estimation
- Approximating the MAP Estimator
- The MMSE Estimation
Background on MMSE Estimator

\[
\text{MSE}_x = E \left(\|\hat{x} - x\|_2^2 | y \right) = \int x \|\hat{x} - x\|_2^2 P(x|y)dx
\]

\[
\frac{\partial \text{MSE}_x}{\partial \hat{x}} = 2 \int (\hat{x} - x) P(x|y)dx = 0.
\]

\[
\hat{x}^{\text{MMSE}} = \frac{\int xP(x|y)dx}{\int P(x|y)dx} = \int xP(x|y)dx = E(x|y)
\]
Background on MWMSE Estimation

\[
WMSE_x = E \left(\| W(\hat{x} - x) \|_2^2 | y \right) \\
= \int_x \| W(\hat{x} - x) \|_2^2 P(x|y) dx
\]

\[
\frac{\partial WMSE_x}{\partial \hat{x}} = 2W^T W \int_x (\hat{x} - x) P(x|y) dx = 0
\]

Minimizing

\[
E(\| x - \hat{x} \|_2^2 | y)
\]

Minimizing

\[
E(\| Ax - \hat{z} \|_2^2 | y)
\]

Minimizing

\[
E(x|y)
\]

\[
AE(x|y)
\]

Does this have a unique solution for the minimizer??!
Outline

- Motivation
- Stochastic Model & Estimation Goals
- Background on MAP
- Background on MMSE
- The Oracle Estimation
- The MAP Estimation
- Approximating the MAP Estimator
- The MMSE Estimation
Although Infeasible (as it assumes knowledge of the support s)

- Core Ingredient for practical estimators
- Simple and convenient closed-form expression
- Gives a reference performance quality to compare against
- Easy to derive and reveals some interesting insights
As the support is known, the measurement vector representation will change to

$$y = HA_s x_s + e$$

x_s a vector of length $|s|$ containing those unknowns

$$x_s \sim \mathcal{N}(0, \sigma^2 x I)$$

A_s is a sub-matrix of size $n \times k$
The Oracle Estimation

Q1: is the product of two Gaussian rv's a Gaussian rv?
Answer: NO

Q2: is the product of two Gaussian pdfs a Gaussian Pdf?
Answer: proportional to a Gaussian with a mean = sum of scaled original means

The Oracle Estimation

\[P(x_s|y) = \frac{P(y|x_s)P(x_s)}{P(y)}\]

\[P(x_s) = \frac{1}{(2\pi)^{s/2}\sigma_x^s} \exp \left\{-\frac{x_s^T x_s}{2\sigma_x^2}\right\}\]

\[P(y|x_s) = \frac{1}{(2\pi)^{q/2}\sigma_e^q} \exp \left\{-\frac{||HA_s x_s - y||_2^2}{2\sigma_e^2}\right\}\]

\[P(x_s|y) \propto \exp \left\{-\frac{x_s^T x_s}{2\sigma_x^2} - \frac{||HA_s x_s - y||_2^2}{2\sigma_e^2}\right\}\]
The Oracle Estimation

\[
\hat{x}_{s}^{MAP-oracle} = \max_{x_s} P(x_s|y)
\]

\[
= \max_{x_s} \exp \left\{ -\frac{x_s^T x_s}{2\sigma_x^2} - \frac{||HA_s x_s - y||_2^2}{2\sigma_e^2} \right\}
\]

\[
= \left(\frac{1}{\sigma_e^2} A_s^T H^T H A_s + \left(\frac{1}{\sigma_x^2} I \right)^{-1} \right)^{-1} \frac{1}{\sigma_e^2} A_s^T H^T y
\]

- What about the MMSE-ORACLE minimizer ??
Outline

- Motivation
- Stochastic Model & Estimation Goals
- Background on MAP
- Background on MMSE
- The Oracle Estimation
- The MAP Estimation
- Approximating the MAP Estimator
- The MMSE Estimation
Return to our main assumption where we have no knowledge about the support

\[P(x|y) = \sum_{s \in \Omega} P(x|s, y)P(s|y) \]

\[\hat{x}^{MAP} = \arg \max_x P(x|y) = \arg \max_{s \in \Omega, x_s} P(x_s|s, y)P(s|y) \]

This means that we search for the support and the values of the entries in the support in one process

The MAP Estimation
The MAP Estimation

\[\hat{x}^{MAP} = \arg \max_x P(x|y) = \arg \max_{s \in \Omega, x_s} P(x_s|s, y)P(s|y) \]

\[P(x_s|s, y)P(s|y) = \frac{P(y|s, x_s)P(x_s|s)}{P(y|s)} \cdot \frac{P(y|s)P(s)}{P(y)} \]

\[= \frac{P(y|s, x_s)P(x_s|s)P(s)}{P(y)}. \]

\[\hat{x}^{MAP} = \arg \max_x P(x|y) \]

\[= \arg \max_{x, s} P(y|s, x_s)P(x_s|s)P(s). \]

\[P(y|s, x_s) = \frac{1}{(2\pi)^{q/2}\sigma_e^q} \exp \left\{ -\frac{\|HA_s x_s - y\|^2}{2\sigma_e^2} \right\} \]

\[P(x_s|s) = \frac{1}{(2\pi)^{k/2}\sigma_x^k} \exp \left\{ -\frac{\|x_s\|^2}{2\sigma_x^2} \right\} \]
The MAP Estimation

\[\hat{x}^{\text{MAP}} = \arg \min_{x, s} \left\{ \frac{||HA_s x_s - y||_2^2}{2\sigma_e^2} + \frac{||x_s||_2^2}{2\sigma_x^2} + k \log(\sqrt{2\pi\sigma_x}) - \log(P(s)) \right\} \]

\[\hat{x}^{\text{MAP}} = \arg \max_x P(x|y) \]
\[= \arg \max_{x, s} P(y|s, x_s)P(x_s|s)P(s) \]

\[P(y|s, x_s) = \frac{1}{(2\pi)^{q/2}\sigma_e^q} \exp \left\{ -\frac{||HA_s x_s - y||_2^2}{2\sigma_e^2} \right\} \]

\[P(x_s|s) = \frac{1}{(2\pi)^{k/2}\sigma_x^k} \exp \left\{ -\frac{||x_s||_2^2}{2\sigma_x^2} \right\} \]
The MAP Estimation

\[\hat{x}^{MAP} = \arg \min_{x,s} \left\{ \frac{\|HA_s x_s - y\|^2}{2\sigma_e^2} + \frac{\|x_s\|^2}{2\sigma_x^2} + k \log(\sqrt{2\pi\sigma_x}) - \log(P(s)) \right\} \]

\[P(s) = Const \cdot \exp(-\alpha|s|) \]

\[\hat{x}^{MAP} = \arg \min_{x,s} \left\{ \frac{\|HA_s x_s - y\|^2}{2\sigma_e^2} + \frac{\|x_s\|^2}{2\sigma_x^2} + (\alpha + \log(\sqrt{2\pi\sigma_x}))|s| \right\} \]

\[|s| = \|x\|_0 \]

\[\hat{x}^{MAP} = \arg \min_{x} \left\{ \frac{\|Hx - y\|^2}{2\sigma_e^2} + \frac{\|x\|^2}{2\sigma_x^2} + (\alpha + \log(\sqrt{2\pi\sigma_x}))\|x\|_0 \right\} \]
The MAP Estimation

\[\hat{x}_{MAP} = \arg \min_{x, s} \left\{ \frac{||HA_s x_s - y||^2}{2\sigma_e^2} + \frac{||x_s||^2}{2\sigma_x^2} + k \log(\sqrt{2\pi\sigma_x}) - \log(P(s)) \right\} \]

\[P(s) = \delta(|s| - k) \]

\[\hat{x}_{MAP} = \arg \min_{x, s} \left\{ \frac{||HA_s x_s - y||^2}{2\sigma_e^2} + \frac{||x_s||^2}{2\sigma_x^2} + k \log(\sqrt{2\pi\sigma_x}) - \log(P(s)) \right\} \]

\[\hat{x}_s^* = \left(\frac{1}{\sigma_e^2} A_s^T H^T H A_s + \frac{1}{\sigma_x^2} I \right)^{-1} \left(\frac{1}{\sigma_e^2} A_s^T H^T y \right) \]

To use this expression, we sweep over all possible \(s \) and evaluate the Oracle Estimator penalty for each of them and choose the one leading to the least penalty !!!!
Outline

- Motivation
- Stochastic Model & Estimation Goals
- Background on MAP
- Background on MMSE
- The Oracle Estimation
- The MAP Estimation
- Approximating the MAP Estimator
- The MMSE Estimation
Approximating the MAP Estimator

\[\hat{x}_s^* = \left(\frac{1}{\sigma_e^2} A_s^T H^T H A_s + \frac{1}{\sigma_x^2} I \right)^{-1} \frac{1}{\sigma_e^2} A_s^T H^T y \]

\(k = 1 \)

\(\tilde{a}_i \) is column \(i \) in the matrix \(HA \)

\[\text{Val}(i) = \frac{\tilde{a}_i^T y}{\frac{\|\tilde{a}_i\|_2^2}{\sigma_e^2} + \frac{1}{\sigma_x^2}}. \]
Assuming that $k=1$, we find the column maximizing the term

$$\text{Val}(i) = \frac{||\tilde{a}_i^T y||_2^2}{\frac{||\tilde{a}_i||_2^2}{\sigma_e^2} + \frac{1}{\sigma_x^2}}.$$

If the columns \tilde{a}_i are of the same norm, this is just maximizing the absolute inner product of the measurement vector with each column in HA.

Can propose a greedy algorithm that accumulates the elements of k one by one.

Leads to a variant of the Matching-Pursuit algorithm, thus, we can regard OMP (or any of its variants) as an approximation of the MAP Estimation problem.
Approximating the MAP Estimator

- It should be noted that the OMP is slightly different from the greedy algorithm that emerges here.

- Choosing the second entry will be through maximizing

\[
\text{Val}(i_2) = \begin{bmatrix} \tilde{a}_{i_1}^T y & \tilde{a}_{i_2}^T y \end{bmatrix} \left[\frac{\|\tilde{a}_{i_1}\|_2^2}{\sigma_e^2} + \frac{1}{\sigma_x^2} \frac{\tilde{a}_{i_1}^T \tilde{a}_{i_2}}{\sigma_e^2} + \frac{\|\tilde{a}_{i_2}\|_2^2}{\sigma_e^2} + \frac{1}{\sigma_x^2} \right]^{-1} \begin{bmatrix} \tilde{a}_{i_1}^T y \\ \tilde{a}_{i_2}^T y \end{bmatrix}
\]

- This is different from computing the residual from \(y \) after removal of the first column and repeating.
Outline

- Motivation
- Stochastic Model & Estimation Goals
- Background on MAP
- Background on MMSE
- The Oracle Estimation
- The MAP Estimation
- Approximating the MAP Estimator
- The MMSE Estimation
The MMSE Estimation

- As mentioned earlier

\[\hat{x}_{MMSE}^{MMSE} = \frac{\int x P(x|y)dx}{\int P(x|y)dx} = \int x P(x|y)dx = E(x|y) \]

- Can be written to include prior of the support

\[\hat{x}_{MMSE}^{MMSE} = E(x|y) = \int x P(x|y)dx \]

\[= \sum_{s \in \Omega} P(s|y) \int_{x} x P(x|s, y)dx \]
The MMSE Estimation

\[
\hat{X}^{MMSE} = \sum_{s \in \Omega} P(s|y) \left(\frac{1}{\sigma_e^2} A_s^T H^T H A_s + \frac{1}{\sigma_x^2} I \right)^{-1} \frac{1}{\sigma_e^2} A_s^T H^T y
\]

- The MMSE is a weighted average of many oracle estimators, each weighted by its likelihood to be correct \(P(s|y)\).
- How to develop an expression for the probability \(P(s|y)\)?!
The MMSE Estimation

\[P(s|y) = \frac{P(y|s)P(s)}{P(y)} \]

\(P(s) \) is constant over all the supports \(s \in \mathcal{O} \) such that \(|s| = k \).

\(P(y) \) can be considered as a normalizing factor.

\[P(y|s) = \int_{x_s} P(y|s, x_s) P(x_s|s) \, dx_s \]

\(P(x_s|s) \) is known to be Gaussian, \(\mathcal{N}(0, \sigma_x^2 I) \).

\(y \) is also Gaussian, with \(\mathbf{H} \mathbf{A}_s x_s \) as its mean, and \(\sigma_e^2 \mathbf{I} \) as its covariance.
The MMSE Estimator

\[P(y|s) \propto \int_{v \in \mathbb{R}^k} \exp \left\{ -\frac{\|HA_s v - y\|^2_2}{2\sigma^2_e} - \frac{\|v\|^2_2}{2\sigma^2_x} \right\} dv \]

\[\frac{\|HA_s v - y\|^2_2}{2\sigma^2_e} + \frac{\|v\|^2_2}{2\sigma^2_x} = \frac{1}{2} (v - h_s)^T Q_s (v - h_s) - \frac{1}{2} h_s^T Q_s h_s + \frac{1}{2\sigma^2_e} \|y\|^2_2 \]

\[Q_s = \frac{1}{\sigma^2_e} A_s^T H^T H A_s + \frac{1}{\sigma^2_x} I \]

and

\[h_s = \frac{1}{\sigma^2_e} Q_s^{-1} A_s^T H^T y \]
The MMSE Estimator

\[P(y|s) \propto \int_{v \in \mathbb{R}^k} \exp \left\{ -\frac{||HA_s v - y||^2_2}{2\sigma_e^2} - \frac{||v||^2_2}{2\sigma_x^2} \right\} dv \]

\[
\frac{||HA_s v - y||^2_2}{2\sigma_e^2} + \frac{||v||^2_2}{2\sigma_x^2} = \frac{1}{2} (v - h_s)^T Q_s (v - h_s) - \frac{1}{2} h_s^T Q_s h_s + \frac{1}{2\sigma_e^2} ||y||^2_2
\]
The MMSE Estimator

\[P(y|s) \propto \int_{v \in \mathbb{R}^k} \exp \left\{ -\frac{\|HA_s v - y\|_2^2}{2\sigma_e^2} - \frac{\|v\|_2^2}{2\sigma_x^2} \right\} dv \]

\[\frac{\|HA_s v - y\|_2^2}{2\sigma_e^2} + \frac{\|v\|_2^2}{2\sigma_x^2} = \frac{1}{2} (v - h_s)^T Q_s (v - h_s) - \frac{1}{2} h_s^T Q_s h_s + \frac{1}{2\sigma_e^2} \|y\|_2^2 \]

\[P(y|s) \propto \exp \left\{ \frac{1}{2} h_s^T Q_s h_s - \frac{1}{2\sigma_e^2} \|y\|_2^2 \right\} \cdot \int_{v \in \mathbb{R}^k} \exp \left\{ -\frac{1}{2} (v - h_s)^T Q_s (v - h_s) \right\} dv. \]
The MMSE Estimator

\[P(y|s) \propto \int_{v \in \mathbb{R}^k} \exp \left\{ -\frac{\|HA_s v - y\|^2}{2\sigma_e^2} - \frac{\|v\|^2}{2\sigma_x^2} \right\} dv \]

\[= \exp \left\{ \frac{1}{2} h_s^T Q_s h_s - \frac{1}{2\sigma_e^2} \|y\|^2 \right\} \]

\[\sqrt{(2\pi)^k \det(Q_s^{-1})} \]

\[\int_{v \in \mathbb{R}^k} \exp \left\{ -\frac{1}{2} (v - h_s)^T Q_s (v - h_s) \right\} dv \]

\[P(y|s) \propto \exp \left\{ \frac{1}{2} h_s^T Q_s h_s \right\} \cdot \sqrt{\det(Q_s^{-1})} \]
Evaluate each of the above terms and normalize them for all \(s \in \Omega \).

This will give us the pdf \(P(s|y) \).

The MMSE estimator will be

\[
\hat{x}_{\text{MMSE}} = \frac{\sum_{s \in \Omega} q_s \left(\frac{1}{\sigma_e^2} A_s^T H^T H A_s + \frac{1}{\sigma_x^2} I \right)^{-1} \frac{1}{\sigma_e^2} A_s^T H^T y}{\sum_{s \in \Omega} q_s}
\]
Thank You

Questions?