Normalization

Question: Will normalization of columns of A affect the performance of OMP?

Let A be a matrix. Let \tilde{A} be the normalized matrix
\[\tilde{A} = AW \]
so that $\|\tilde{a}_j\|_2 = 1$.

Theorem (3.1)
The OMP produces the same support S^k when using either A or \tilde{A}.

Proof: Consider the sweep:
\[e(j) = \| r^{k-1} \|_2^2 - \left(\frac{a_j^T r^{k-1}}{\| a_j \|_2} \right)^2 \]
\[= \| r^{k-1} \|_2^2 - (\tilde{a}_j^T r^{k-1})^2 \]
\[= \| r^{k-1} \|_2^2 - \left(\frac{\tilde{a}_j^T r^{k-1}}{\| \tilde{a}_j \|_2} \right)^2 . \]

So using a_j or \tilde{a}_j will lead to the same $e(j)$, and hence
\[j^* = \arg \min_j e(j) \]
is the same for both a_j and \tilde{a}_j.
For the LS step, since
\[x_s = (A_s^T A_s)^{-1} A_s^T b, \]
So \[r^k = b - A_s x_s \]
\[= b - A_s (A_s^T A_s)^{-1} A_s^T b \]
\[= (I - A_s (A_s^T A_s)^{-1} A_s^T) b \]
\[= (I - A_s W_s W_s^T (A_s^T A_s)^{-1} W_s^T W_s A_s^T) b \]
\[= (I - A_s W_s (W_s A_s A_s^T A_s W_s)^{-1} W_s A_s^T) b \]
\[= (I - \tilde{A}_s (\tilde{A}_s^T \tilde{A}_s)^{-1} \tilde{A}_s^T) b = \tilde{r}^k \]

Therefore, the residue is unchanged.
Convex Relaxation Algorithm

Idea: Convert \((P_0)\) into a sequence of easy problems.

Focuss Algorithm

Current approximate solution \(X_{k-1}\).

let \(X_{k-1} = \text{diag}(1, |x_{k-1}|^p)\).

Then, consider

\[
\| X_{k-1}^{-1} \times \|^2_2
\]

\[
\approx \| (\frac{1}{|x_i|^2} \cdot \cdots \cdot \frac{1}{|x_m|^2})(x_i) \|^2_2
\]

\[
= \| x \|_2^{2p-2}
\]

if we choose \(p = 1\), then \(\frac{1}{p} = \frac{1}{2}\).

(0 < p ≤ 1)

So, if \(\frac{1}{p} = 1 - \frac{p}{2}\), then \(\| X_{k-1}^{-1} \times \|^2_2 \approx \| x \|^p_2\).

Focuss Algorithm solves

\[
(M_k) \quad \min_x \| X_{k-1}^{-1} x \|^2_2 \quad \text{subject to } Ax = b.
\]

Solution of \((M_k)\):

\[
\dot{L}(x) = \| X_{k-1}^{-1} x \|^2_2 + x^T(b - Ax)
\]

\[
\frac{3}{3x}L = 0 \implies x_k = \frac{1}{2} X_{k-1}^{-1} A^T \lambda
\]

\[
\frac{3}{3\lambda}L = 0 \implies \lambda = 2(A X_{k-1}^{-1} A^T)^{-1} b
\]

So \(x_k = X_{k-1}^{-1} A^T (A X_{k-1}^{-1} A^T)^+ b\).
Two remarks for Focuss:

1. It guarantees convergence to a fixed point, not the global minimum. Instead, it may get stuck on a steady-state solution.

2. We need to initialize focuss at a non-zero entry. Otherwise it will just stay at zero.

Basis Pursuit

\[
(P_1) \quad \min_x \|x\|_1, \\
\text{subject to } Ax = b.
\]

Possible solutions:
- linear programming
- interior point method
- CVX
- L1 - LS
- SparCo
- L1 - magic
- SPAMS
- etc.
Performance Guarantee of OMP

Goal: To analyze the performance of OMP, and determine conditions under which OMP will return the sparsest solution.

Setting: Assume that the system $A x = b$ has a sparse solution x with k_0 non-zeros, i.e., $\|x\|_0 = k_0$.

Assume that $k_0 < \text{spark}(A)/2$.

Consider a two-ortho system:

$$A = \begin{bmatrix} \Phi & \Phi \end{bmatrix},$$

so that b is created by the first k_p columns of Φ, and the first k_Φ columns of Φ, such that $k_p + k_\Phi = k_0$:

$$b = \sum_{i=1}^{k_p} x_i \psi_i + \sum_{i=1}^{k_\Phi} x_i \phi_i$$

Let S_p and S_Φ be the sets of support indices.