ECE 645: Estimation Theory

Spring 2015

Instructor: Prof. Stanley H. Chan

(1)

Mid Term Solution

Mar 13, 2015

Name:	PUID:
By signing your name below, y thorized aid on this exam.	ou certify that you have neither given nor received unau-
Signature:	
Problem 1. (50 POINTS) Consider two hypotheses	$H = V = \Lambda((1 - 2))$
	$H_0: Y \sim \mathcal{N}(\mu_0, \sigma^2),$

where σ^2 is known and fixed. Assume $\mu_0 < \mu_1$.

(a) Assume uniform cost and prior (π_0, π_1) , determine the Bayes' decision rule if we observe Y = y. Express your answer in terms of $\pi_0, \pi_1, \mu_0, \mu_1$ and σ .

 $H_1: Y \sim \mathcal{N}(\mu_1, \sigma^2),$

(b) Derive the Neyman-Pearson rule for a significance level α . Express your answer in terms of the $\Phi(\cdot)$ function, α , μ_0 and σ .

Solution 1.

(a) The likelihood functions are

$$f_0(y) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(y - \mu_0)^2}{2\sigma^2}\right\} f_1(y) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(y - \mu_1)^2}{2\sigma^2}\right\},$$

Thus, the log-likelihood ratio is

$$\ell(y) = \ln \frac{f_1(y)}{f_0(y)} = \frac{-1}{2\sigma^2} \left[-2(\mu_1 - \mu_0)y + \mu_1^2 - \mu_0^2 \right].$$

Let τ be a threshold. Then, $\ell(y) > \tau$ implies that

$$2(\mu_1 - \mu_0)y - (\mu_1^2 - \mu_0^2) > 2\sigma^2\tau$$

and hence

$$y > \frac{2\sigma^2\tau + (\mu_1^2 - \mu_0^2)}{2(\mu_1 - \mu_0)}.$$

For uniform cost Bayesian setting, $\tau = \ln \frac{\pi_0}{\pi_1}$. Therefore, we have

$$y \leq_{H_1}^{H_0} \frac{2\sigma^2 \ln \frac{\pi_0}{\pi_1} + (\mu_1^2 - \mu_0^2)}{2(\mu_1 - \mu_0)}.$$

(b) Neyman-Pearson takes the form

$$\delta(y) = \begin{cases} 1, & \text{if } \ell(y) > \tau, \\ \gamma, & \text{if } \ell(y) = \tau, \\ 0, & \text{if } \ell(y) < \tau. \end{cases}$$

By letting

$$\eta = \frac{2\sigma^2\tau + (\mu_1^2 - \mu_0^2)}{2(\mu_1 - \mu_0)},$$

we can show that

$$\Psi(\tau) \stackrel{\text{def}}{=} \int_{\ell(y) > \tau} f_0(y) dy$$

$$= \int_{y > \eta} f_0(y) dy$$

$$= \int_{\eta}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(y - \mu_0)^2}{2\sigma^2}\right\} dy$$

$$= 1 - \int_{-\infty}^{\eta} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(y - \mu_0)^2}{2\sigma^2}\right\} dy$$

$$= 1 - \Phi\left(\frac{\eta - \mu_0}{\sigma}\right).$$

Therefore, $\alpha = \Psi(\tau)$ implies that

$$n = \sigma \Phi^{-1}(1 - \alpha) + \mu_0$$

Since $\Psi(\eta)$ is a continuous function, $\gamma = 0$. Therefore, the Neyman Peason test is

$$\delta(y) = \begin{cases} 1, & \text{if } y > \sigma \Phi^{-1}(1 - \alpha) + \mu_0, \\ 0, & \text{if } y \le \sigma \Phi^{-1}(1 - \alpha) + \mu_0. \end{cases}$$

Problem 2. (50 POINTS)

Let $\boldsymbol{Y} = [Y_1, \dots, Y_n]^T$ be a random vector such that $\boldsymbol{Y} = \theta \boldsymbol{s} + \boldsymbol{V}$, where $\boldsymbol{V} \sim \mathcal{N}(0, \sigma^2 \boldsymbol{I})$, $\boldsymbol{s} = [s_1, \dots, s_n]^T$ is a known vector, and $\boldsymbol{\theta}$ is a deterministic unknown parameter. Assume $\boldsymbol{\theta} \in \mathbb{R}$.

- (a) Show that the conditional distribution $f_{\theta}(\boldsymbol{y})$ belongs to the exponential family. Hence determine the complete sufficient statistic, and derive the MVUE.
- (b) Determine the MLE, i.e., $\widehat{\theta}_{ML}(\boldsymbol{Y})$, and the Cramer Rao Lower Bound. By evaluating $\operatorname{Var}\left(\widehat{\theta}_{ML}(\boldsymbol{Y})\right)$, show that $\widehat{\theta}_{ML}(\boldsymbol{Y})$ achieves the equality of the CRLB.

Solution 2.

(a)

$$f_{\theta}(\boldsymbol{y}) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^{n/2} \exp\left\{\frac{-1}{2\sigma^2} \|\boldsymbol{y} - \theta\boldsymbol{s}\|^2\right\}$$
$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^{n/2} \exp\left\{-\frac{\theta^2 \|\boldsymbol{s}\|^2}{2\sigma^2}\right\} \exp\left\{\frac{\theta}{\sigma^2} \cdot \boldsymbol{y}^T \boldsymbol{s}\right\} \exp\left\{-\frac{1}{2\sigma^2} \|\boldsymbol{y}\|^2\right\}.$$

By identifying

$$\begin{split} C(\theta) &= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^{n/2} \exp\left\{-\frac{\theta^2 \|\boldsymbol{s}\|^2}{2\sigma^2}\right\} \\ Q(\theta) &= \frac{\theta}{\sigma^2} \\ T(\boldsymbol{y}) &= \boldsymbol{y}^T \boldsymbol{s} \\ h(\boldsymbol{y}) &= \exp\left\{-\frac{1}{2\sigma^2} \|\boldsymbol{y}\|^2\right\}, \end{split}$$

we see that $f_{\theta}(y)$ is in the exponential family. Since $\theta \in \mathbb{R}$ and \mathbb{R} contains a rectangle, T(y) is a complete sufficient statistic. Now, consider $\mathbb{E}[T(Y)]$. We can show that

$$\mathbb{E}[T(\boldsymbol{Y})] = \mathbb{E}[\boldsymbol{Y}^T \boldsymbol{s}] = \theta \|\boldsymbol{s}\|^2.$$

Thus, if we let

$$\widehat{\theta}_{MVUE}(\boldsymbol{Y}) = \frac{T(\boldsymbol{Y})}{\|\boldsymbol{s}\|^2} = \frac{\boldsymbol{Y}^T \boldsymbol{s}}{\|\boldsymbol{s}\|^2},$$

then we have $\mathbb{E}[\widehat{\theta}_{MVUE}(\boldsymbol{Y})] = \theta$. So $\widehat{\theta}_{MVUE}(\boldsymbol{Y})$ is unbiased. Since $\widehat{\theta}_{MVUE}(\boldsymbol{Y})$ is a function of the complete sufficient statistic $T(\boldsymbol{Y})$, it must be MVUE.

(b) Take log on the likelihood function yields

$$\ln f_{\theta}(\boldsymbol{y}) = -\frac{n}{2}\ln(2\pi\sigma^2) - \frac{1}{2\sigma^2}\|\boldsymbol{y} - \theta\boldsymbol{s}\|^2.$$

Take first order derivative yields

$$0 = \frac{\partial}{\partial \theta} \ln f_{\theta}(\mathbf{y}) = \frac{1}{\sigma^2} \mathbf{s}^T (\mathbf{y} - \theta \mathbf{s}).$$

Thus,

$$\widehat{ heta}_{ML}(oldsymbol{y}) = rac{oldsymbol{s}^Toldsymbol{y}}{\|oldsymbol{s}\|^2}.$$

The Fisher Information is

$$I(\theta) = \mathbb{E}\left[-\frac{\partial^2}{\partial \theta^2} \ln f_{\theta}(\boldsymbol{y})\right]$$

= $\frac{\|\boldsymbol{s}\|^2}{\sigma^2}$.

Since $\widehat{\theta}_{ML}(\boldsymbol{Y})$ is unbiased, the CRLB is

$$\operatorname{Var}(\widehat{\theta}_{ML}(\boldsymbol{Y})) \geq \frac{\sigma^2}{\|\boldsymbol{s}\|^2}.$$

To show that $\widehat{\theta}_{ML}(Y)$ achieves the lower bound of CRLB, we note that

$$\operatorname{Var}(\widehat{\theta}_{ML}(\boldsymbol{Y})) = \operatorname{Var}\left(\frac{\boldsymbol{Y}^T \boldsymbol{s}}{\|\boldsymbol{s}\|^2}\right)$$

$$= \frac{1}{\|\boldsymbol{s}\|^4} \operatorname{Var}\left(\sum_{k=1}^n s_k Y_k\right)$$

$$= \frac{1}{\|\boldsymbol{s}\|^4} \sum_{k=1}^n s_k^2 \operatorname{Var}(Y_k)$$

$$= \frac{1}{\|\boldsymbol{s}\|^4} \sum_{k=1}^n s_k^2 \sigma^2 = \frac{\sigma^2}{\|\boldsymbol{s}\|^2}.$$

Problem 3. (Bouns, 10 Points)

Consider a Poisson distribution with parameter $\lambda > 0$ with

$$f_Y(y) = \frac{\lambda^y}{y!} e^{-\lambda}. (2)$$

It is given that the cumulant generating function is $\mu_Y(s) \stackrel{\text{def}}{=} \log \mathbb{E}[e^{sY}] = \lambda(e^s - 1)$. Let Y_1, \ldots, Y_n be a sequence of observations. Derive the large-deviation bound for

$$\mathbb{P}\left[\sum_{k=1}^{n} Y_k \ge n\lambda e\right],\tag{3}$$

where $e \approx 2.718$ is the natural number.

Solution 3.

Let $g(s) = st - \mu_Y(s)$, we have

$$\frac{\partial}{\partial s}g(s) = t - \lambda e^s = 0.$$

Thus, $s^* = \ln(t/\lambda)$ is the optimal point. Hence,

$$\varphi(t) = g(s^*) = \ln(t/\lambda)t - \lambda \left(e^{\ln(t/\lambda)} - 1\right)$$
$$= \ln(t/\lambda)t - (t - \lambda).$$

Therefore,

$$\mathbb{P}\left(\sum_{k} Y_{k} \ge n\lambda e\right) \le e^{-sn\lambda e} \left(\mathbb{E}\left[e^{sY_{1}}\right]\right)^{n}$$
$$= e^{-n(s\lambda e - \mu_{Y}(s))}.$$

Since $\varphi(\lambda e) = \ln(\lambda e/\lambda)\lambda e - (\lambda e - \lambda) = \lambda$, we have

$$\mathbb{P}\left(\sum_{k} Y_{k} \ge n\lambda e\right) \le e^{-n\lambda}.$$