

Mid Term

Mar 13, 2015

Name:

PUID:

By signing your name below, you certify that you have neither given nor received unauthorized aid on this exam.

Signature:

Problem 1. (50 POINTS) Consider two hypotheses

$$H_0: \quad Y \sim \mathcal{N}(\mu_0, \sigma^2),$$

$$H_1: \quad Y \sim \mathcal{N}(\mu_1, \sigma^2),$$
(1)

where σ^2 is known and fixed.

- (a) Assume uniform cost and prior (π_0, π_1) , determine the Bayes' decision rule if we observe Y = y. Express your answer in terms of $\pi_0, \pi_1, \mu_0, \mu_1$ and σ .
- (b) Derive the Neyman-Pearson rule for a significance level α . Express your answer in terms of the $\Phi(\cdot)$ function, α , μ_0 and σ .

Problem 2. (50 POINTS)

Let $\mathbf{Y} = [Y_1, \dots, Y_n]^T$ be a random vector such that $\mathbf{Y} = \theta \mathbf{s} + \mathbf{V}$, where $\mathbf{V} \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$, $\mathbf{s} = [s_1, \dots, s_n]^T$ is a known vector, and θ is a deterministic unknown parameter. Assume $\theta \in \mathbb{R}$.

- (a) Show that the conditional distribution $f_{\theta}(\boldsymbol{y})$ belongs to the exponential family. Hence determine the complete sufficient statistic, and derive the MVUE.
- (b) Determine the MLE, i.e., $\hat{\theta}_{ML}(\boldsymbol{Y})$, and the Cramer Rao Lower Bound. By evaluating $\operatorname{Var}\left(\hat{\theta}_{ML}(\boldsymbol{Y})\right)$, show that $\hat{\theta}_{ML}(\boldsymbol{Y})$ achieves the equality of the CRLB.

Problem 3. (BONUS, 10 POINTS)

Consider a Poisson distribution with parameter $\lambda > 0$ with

$$f_Y(y) = \frac{\lambda^y}{y!} e^{-\lambda}.$$
(2)

It is given that the cumulant generating function is $\mu_Y(s) \stackrel{\text{def}}{=} \log \mathbb{E}[e^{sY}] = \lambda(e^s - 1)$. Let Y_1, \ldots, Y_n be a sequence of observations. Derive the large-deviation bound for

$$\mathbb{P}\left[\sum_{k=1}^{n} Y_k \ge n\lambda e\right],\tag{3}$$

where $e \approx 2.718$ is the natural number.

Problem 4. (BONUS, 5 POINTS)

We still need a few more volunteers to help us typeset the note. If you volunteer, you will automatically gain 5 bonus points to this mid term. Just write: "Yes", or "No".