Lecture 16

Minimum Variance Unbiased Estimator (II)

1. Proof of Factorization Theorem

(\Rightarrow) Suppose $T(Y)$ is a suff. stat. Then, by definition $f_{Y|T(Y)}(y|t;\theta)$ must be indep of θ. Therefore, by conditional probability definition,

$$f_Y(y;\theta) = \underbrace{f_{Y|T(Y)}(y|t;\theta)}_{\text{def } h(y)} \underbrace{f_T(Y)(t;\theta)}_{\text{def } g_\theta(t)}.$$

(\Leftarrow) Suppose that

$$f_Y(y;\theta) = g_\theta(T(y))h(y).$$

Since

$$f_{Y|T(Y)}(y|t;\theta) = \frac{f_{Y,T(Y)}(y,t;\theta)}{f_T(Y)(t;\theta)},$$

and since $T(Y)$ is a function of Y,

$$f_{Y|T(Y)}(y|t;\theta) = \begin{cases} \frac{f_Y(y;\theta)}{f_T(Y)(t;\theta)}, & \text{if } T(y) = t \\ 0, & \text{if } T(y) \neq t. \end{cases}$$

Also, since

$$f_T(Y)(t;\theta) = \int_{T(y)=t} f_Y(y;\theta) \, dy,$$
So \(f_y(y; \theta) = g_\theta(T(y))h(y) \) implies that

\[
\frac{f_{Y|T(Y)}(y|t; \theta)}{f_{T(Y)}(t; \theta)} = \begin{cases}
\frac{g_\theta(T(y))h(y)}{\int_{T(y)=t} g_\theta(T(y))h(y)\,dy}, & T(y)=t \\
0, & T(y) \neq t
\end{cases}
\]

\[
= \frac{g_\theta(T(y))h(y) \mathbb{1}\{T(y)=t\}}{\int_{T(y)=t} h(y)\,dy} = \frac{h(y) \mathbb{1}\{T(y)=t\}}{\int_{T(y)=t} h(y)\,dy},
\]

which is independent of \(\theta \).

\(\mathbb{X} \)

Rao-Blackwell Theorem

(A procedure to "improve" any unbiased estimator)

Theorem

Suppose that \(\hat{g}(y) \) is an unbiased estimate of \(g(\theta) \) and that \(T(y) \) is a sufficient statistic for \(\theta \). Then

1. \(\hat{g}(T(y)) \) defined as \(\mathbb{E}_{Y|T(Y)}[\hat{g}(Y) \mid T(Y) = T(y)] \) is also an unbiased estimator of \(g(\theta) \)

2. \(\text{Var}_{T(Y)}[\hat{g}(T(y))] \leq \text{Var}_{Y}[\hat{g}(Y)] \)

with equality holds iff

\[
P\left(\hat{g}(T(Y)) \neq \hat{g}(Y) \right) = 1.
\]
Proof:

(1) To show $\tilde{g}(T(Y))$ is an unbiased estimator, note that

$$E_{T(Y)} \left[\tilde{g}(T(Y)) \right]$$

$$= E_{T(Y)} \left[E_{Y|T(Y)} \left(\tilde{g}(Y) | T(Y) = T(y) \right) \right]$$

$$= E_Y \left[\tilde{g}(Y) \right] = g(\theta).$$

(2) $Var_{T(Y)} \left[\tilde{g}(T(Y)) \right]$

$$= E_{T(Y)} \left[\tilde{g}(T(Y))^2 \right] - g(\theta)^2$$

$$Var_Y \left[\tilde{g}(Y) \right]$$

$$= E_Y \left[\tilde{g}(Y)^2 \right] - g(\theta)^2.$$

Note that

$$E_{T(Y)} \left[\tilde{g}(T(Y))^2 \right] = E_{T(Y)} \left[E_{Y|T(Y)} \left[\tilde{g}(Y)^2 \right] \right]$$

where (a) holds because of Jensen's inequality, and (b) is the result of iterated expectation. Equality holds when Jensen's inequality holds, i.e.,

$$P(\tilde{g}(T(Y)) = \tilde{g}(Y)) = 1.$$
Implication of Rao-Blackwell:

(1) With a sufficient statistic, we can improve any unbiased estimator that is not already a function of \(T \) by conditioning it on \(T(Y) \).

(2) If \(T \) is sufficient for \(\Theta \), and if there is only one function of \(T \) that is an unbiased estimator of \(g(\Theta) \) (i.e. \(\hat{g}(T(Y)) \)) then that function must be MVUE.

To see this:

Suppose \(\hat{g}^*(T(Y)) \) is the only function of \(T(Y) \) such that \(E_{T(Y)}[\hat{g}^*(T(Y))] = g(\Theta) \).

Let \(\hat{g}(Y) \) be any unbiased estimator. Then, RB says \(\hat{g}(T(Y)) = E_Y[\hat{g}(Y)|T(Y) = T(Y)] \) is also unbiased and has a variance

\[
\text{Var}_{T(Y)}[\hat{g}(T(Y))] \leq \text{Var}_T[\hat{g}(Y)].
\]

But since \(\hat{g}^*(T(Y)) \) is arbitrary, we have

\[
\text{Var}_{T(Y)}[\hat{g}^*(T(Y))] \leq \text{Var}_{T(Y)}[\hat{g}(T(Y))],
\]

So \(\hat{g}^*(T(Y)) \) is an MVUE.
Jensen's inequality

For any convex function f,

$$ f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]. $$

Think of: $f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y)$. Therefore,

$$ \mathbb{E}[X]^2 \leq \mathbb{E}[X^2] , \text{ and so } $$

$$ \mathbb{E}_{Y \mid T(Y)} \left[\hat{g}(Y) \right]^2 \leq \mathbb{E}_{Y \mid T(Y)} \left[\hat{g}(Y)^2 \right]. $$