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Today’s Agenda

Two Fundamental Questions about Adversarial Attack
Can We completely avoid adversarial attack?

Is there any classifier that cannot be attacked?
We will show that all classifiers are adversarial vulnerable

If adversarial attack is unavoidable, what can we do?
There is a natural trade-off between accuracy and robustness
You can be absolutely robust but useless, or absolutely accurate but
very vulnerable
We will characterize this trade-off

Our Plan: This lecture is based on two very recent papers

Fawzi et al. Adversarial vulnerability for any classifier, arXiv:
1802.08686
Zhang et al. Theoretically principled trade-off between robustness and
accuracy, arXiv: 1901.08573

This lecture is theoretical. We will not go into the details. We will
highlight the main conclusions and interpret their results.
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Outline

Lecture 33-35 Adversarial Attack Strategies

Lecture 36 Adversarial Defense Strategies

Lecture 37 Trade-off between Accuracy and Robustness

Today’s Lecture

Adversarial robustness of any classifier

Can we completely avoid adversarial attack?
Is there any classifier that cannot be attacked?
We will show that all classifiers are adversarial vulnerable

Robustness-accuracy trade off

If adversarial attack is unavoidable, what can we do?
There is a natural trade-off between accuracy and robustness
You can be absolutely robust but useless, or absolutely accurate but
very vulnerable
We will characterize this trade-off
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Adversarial Robustness of Any Classifier

The first question we ask: Is adversarial attack unavoidable?

There are several papers discussing this issue.

We will be focusing on: Fawzi et al. Adversarial vulnerability for any
classifier, arXiv: 1802.08686

There is another paper: Shafahi et al. Are adversarial examples
inevitable, arXiv 1809.02104

The results we are going to study are both general and restrictive

They are general because the results are universal bounds for all
classifiers

They are restrictive because they assume a generative model, require
high dimensionality, and are `p ball additive attack

Our plan: Understand the major claims, and not to worry about the
specific proofing techniques (e.g., Gaussian isoperimetric inequality)
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Notation

There is an input x

Assume that x comes from a generator x = g(z) where z is i.i.d.
Gaussian.

Think about a generative adversarial network (GAN) 1. You give me
z , and then I generate the image x according to x = g(z).

r is perturbation

f is classifier

In-distribution robustness:

rin(x) = min
r∈Z
‖g(z + r)− x‖ subject to f (g(z + r)) 6= f (x). (1)

1GAN is not the same as adversarial attack. GAN is a method that approximates the
distribution.
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rin(x)

Let us take a closer look at rin(x):

rin(x) = min
r∈Z
‖g(z + r)− g(z)‖ subject to f (g(z + r)) 6= f (g(z)).

To make things clearer, let us replace all the x by g(z)

You can do that because you assume x is generated from g

f (g(z + r)) 6= f (g(z)) says that the perturbed data is classified
differently from the original

minr∈Z ‖g(z + r)− x‖ says that for those that causes
mis-classification, I will minimize the perturbation strength

The smallest perturbation that still causes misclassification is then
defined as the robustness of f

You want rin(x) as large as possible. The larger it is, the stronger
perturbation the hacker needs to launch in order to fool your classifier
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Unconstrained Robustness

Can we generalize the result to arbitrary perturbations?

That is, we are not limited to generative models

To do so we need to define the unconstrained robustness

runc(x) = min
r∈X
‖r‖ subject to f (x + r) 6= f (x) (2)

You can show that
runc(x) ≤ rin(x).

For certain classifiers, you can further have 1
2 rin(x) ≤ runc(x). See

Fawzi Theorem 2.

So if you bound rin(x) ≤ η, you can also bound runc(x)
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Main Result

Here we are going to summarize the main result.

We will present the result in its simplest form, i.e., a very narrow
case, so that we can bypass the technical details.

Read the paper to learn more.

Theorem (Fawzi et al. 2018 Theorem 1)

Let f : Rd → {1, . . . ,K} be an arbitrary classification function. Then, for
any η,

P[rin(x) ≤ η] ≥ 1−
√
π

2
e−

η2

2L2 (3)

where L is the Lipschitz constant of g .

Remark: Lipschitz constant defines the maximum slope of a function. See
https://en.wikipedia.org/wiki/Lipschitz_continuity
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Interpreting the Result

Let us look at this equation

P[rin(x) ≤ η] ≥ 1−
√
π

2
e−

η2

2L2 (4)

The event you are measuring is rin(x) ≤ η.

This says: You want the robustness to be no better than η. This a
bad event.

The equation says: The probability could be big.

There exists a perturbation of magnitude η ∝ L such that the
classifier can be fooled.

Normally, L�
√
d , where d is the dimension of x (think of an

image).

If you plug in η = 2L, then you can show that P[rin(x) ≤ 2L] ≥ 0.8.

For just 2L perturbation magnitude, you have 0.8 probability of
fooling the classifier.
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What Does Attack Scale with d?

Let us also quickly look at Shafahi et al. Are adversarial examples
inevitable, arXiv 1809.02104

The findings are quite similar to Fawsi’s.

They showed that with probability at least

1− Vc

(π
2

) 1
2

exp

{
−d − 1

2
ε2
}
, (5)

then one of the followings will hold

The data x is originally misclassified, or
x can be attacked within an ε-ball.

You can ignore the constant Vc .

As the data dimension d grows, the probability will go to 1.

So for large images, the probability of attacking is high.
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So what do we learned?

Existence of Attack:

The results above are existence results.

With high probability, there exists a direction which can almost
certainly fool the classifier.

This holds for all classifiers, as long as the dimension is high enough.

Think in this way: Each perturbation pixel is small, but the sum can
be big.

How to find this attack direction? Not the focus here.

Can Random Noise Attack?

Random noise cannot attack, especially for white-box.

The probability of getting the correct attack direction is close to zero.
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Outline

Lecture 33-35 Adversarial Attack Strategies

Lecture 36 Adversarial Defense Strategies

Lecture 37 Trade-off between Accuracy and Robustness

Today’s Lecture

Adversarial robustness of any classifier

Can We completely avoid adversarial attack?
Is there any classifier that cannot be attacked?
We will show that all classifiers are adversarial vulnerable

Robustness-accuracy trade off

If adversarial attack is unavoidable, what can we do?
There is a natural trade-off between accuracy and robustness
You can be absolutely robust but useless, or absolutely accurate but
very vulnerable
We will characterize this trade-off
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Trade Off Analysis

If adversarial attack is unavoidable, what can we do?
We want to show that there is a natural trade-off between accuracy
and robustness
You can be absolutely robust but useless, or absolutely accurate but
very vulnerable

Intuitively, the existence of trade-off makes sense:
You can be very robust, e.g., always claims class 1 regardless what you
see. Then you are ultimately robust but not accurate.
You can be very accurate, e.g., a perceptron algorithm for linearly
separable problems. But you have terrible robustness.

Our discussion is based on this paper
Zhang et al. Theoretically principled trade-off between robustness and
accuracy, arXiv: 1901.08573
Published in ICML 2019

There is another very interesting paper
Tsipras et al., Robustness May Be at Odds with Accuracy, arXiv:
1805.12152
Some observations are quite intriguing.
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Main Messages of Zhang et al. 2019

We will focus on Zhang et al. Theoretically principled trade-off between
robustness and accuracy, arXiv: 1901.08573.

There are three messages:

(1) There is an intrinsic trade off between robustness and accuracy

(2) It is possible to upper bound both terms using a technique called
classification-calibrated loss

(3) You can develop a heuristic algorithm to minimize the empirical
risk

In addition, the paper showed a few very interesting results

The trade-off optimization generalizes adversarial training

They outperform defense methods in NIPS 2018 challenges
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Notation

x ∈ X : Input data. Random variable X . Realization x .

y ∈ Y = {+1,−1}: Label. Random variable Y . Realization y .

Classifier: f : X → Y
B(x , ε) = an ε-ball surrounding the point x

B(x , ε) = {x ′ ∈ X : ‖x ′ − x‖ ≤ ε}
Decision boundary of the classifier DB(f ) = {x ∈ X : f (x) = 0}.
Neighborhood of the decision boundary B(DB(f ), ε).

B(DB(f ), ε) = {x ∈ X : ∃x ′ ∈ B(x , ε)s.t.f (x)f (x ′) ≤ 0}
Basically: The band surrounding the decision boundary
Pick a point x . If x is inside the band, then you can find x

′ with the
epsilon ball of x , where f (x) = +1 and f (x ′) = −1.
If x is outside the band, then within the same epsilon ball you will not
be able to find a point that is predicted with an opposite label.
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Notation
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Accuracy and Robustness

Natural Classification Error

Rnat(f ) = E(X ,Y )∼DI{f (X )Y ≤ 0}. (6)

You pick an input X .

The prediction is f (X ).

You compare with the true label Y .

If mismatch, then f (X )Y ≤ 0.

The indicator function I will tell you whether this is indeed a mistake.

Then you average over all the possible inputs X ∼ D.

This will tell you the amount of error made by your classifier.

Of course, you want this natural error as small as possible.

1−Rnat(f ) is the natural accuracy. You want it as high as possible.
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Accuracy and Robustness

Boundary Classification Error

Rbdy(f ) = E(X ,Y )∼DI{X ∈ B(DB(f ), ε), f (X )Y > 0} (7)

X ∈ B(DB(f ) means the point X is inside the band.

f (X )Y > 0 means that X is correctly classified.

So, Rbdy(f ) is anything inside the band and is correctly classified.
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Accuracy and Robustness

Robust Classification Error

Rrob(f ) = Rnat(f ) +Rbdy(f ) (8)

This is the sum of the two error: Anything that you have already
made mistake (natural error), plus anything that you will likely to
make mistake (boundary error)
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Example

The input is x ∈ [0, 1].

The true label y is either +1 or -1.

Partition the input space into segments. Each segment has length ε.

Odd segments are -1. Even segments are +1.

Also define the posterior probability η(x)
def
= P[Y = +1|X = x ]
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Example

Because you know the posterior distribution, Bayesian optimal
classifier (based on MAP) will be exactly the same as η(x). So
Rnat = 0 and it is optimal.

The boundary error is 1, because the band is just the entire internal

You can choose an all-one classifier. You always claim 1.

This is a bad classifier in terms of natural accuracy. Half is correct,
half is wrong.

But the robustness error is actually better than Bayesian optimal.
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Upper Bounding the Error

After defining how to measure robustness, we can now ask about the
fundamental limit of Rrob(f ).
The approach proposed by the paper is to

Define R∗nat = minf Rnat(f ) be the best classifier (based on minimize
the natural error).
We want to upper bound Rrob(f )−R∗nat, so that we know Rrob(f ) is
more than R∗nat by some maximum amount.
If we can find such upper bound, then we can perhaps minimizing the
upper bound.

Let us first state the theorem, and discuss the equations.

We will skip the details. You should read the paper.

Theorem (Zhang et al. 2019 Theorem 3.1)

Rrob(f )−R∗nat ≤ ψ−1
(
Rφ(f )−R∗φ

)
+ E max

X
′∈B(X ,ε)

φ(f (X ′)f (X )/λ). (9)
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Basic Argument

The theorem states that

Rrob(f )−R∗nat ≤ ψ−1
(
Rφ(f )−R∗φ

)
+E max

X
′∈B(X ,ε)

φ(f (X ′)f (X )/λ). (10)

The basic argue goes as follows.

Rrob(f )−R∗nat
(a)
= Rnat(f )−R∗nat +Rbdy(f ) because Rrob = Rnat +Rbdy

(b)

≤ ψ−1(Rφ(f )−R∗φ) +Rbdy(f ) using surrogate loss ψ

(c)
= ψ−1(Rφ(f )−R∗φ) + P[X ∈ B(DB(f ), ε), f (X )Y > 0]

(d)

≤ ψ−1(Rφ(f )−R∗φ) + E max
X

′∈B(X ,ε)
φ(f (X ′)f (X )/λ), for some λ > 0.

Let us talk about these steps one by one.
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Step (b)

Rrob(f )−R∗nat = Rnat(f )−R∗nat +Rbdy(f )

(b)

≤ ψ−1(Rφ(f )−R∗φ) +Rbdy(f )

In principle, Rnat(f ) should be measured using
Rnat(f ) = E(X ,Y )∼DI{f (X )Y ≤ 0}.
The 0-1 loss is not differentiable, and poses difficulty in analysis.
One way to handle that is to replace the 0-1 loss by the so-called
classification-calibrated surrogate loss 2.
Surrogate loss comes with a pair of functions φ and ψ.
Here are some examples

2See Peter L Bartlett, Michael I Jordan, and Jon D McAuliffe. Convexity,
classification, and risk bounds. Journal of the American Statistical Association,
101(473):138156, 2006.
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Step (b)

So if you choose the hinge loss, for example, then
φ(α) = max(1− α, 0) and ψ(θ) = θ.

Substituting these into the equation, you will have
Rrob(f )−R∗nat ≤ Rφ(f )−R∗φ +Rbdy(f )

If you can further upper bound (Rφ(f )−R∗φ) then you are good

It turns out that (Rφ(f )−R∗φ) can be bounded using Theorem 2

Theorem (Zhang et al. 2019 Theorem 3.2)

ψ

(
θ − E max

X
′∈B(X ,ε)

φ(f (X ′)f (X )/λ)

)
≤ Rφ(f )−R∗φ

≤ ψ
(
θ − E max

X
′∈B(X ,ε)

φ(f (X ′)f (X )/λ)

)
+ ξ.
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Step (c) and (d)

Steps (c) and (d):

(c) is just the definition of the Rbdy(f )

(d) follows from this

P[X ∈ B(DB(f ), ε), f (X )Y > 0]

≤ P[X ∈ B(DB(f ), ε)] former is a subset of latter

= E max
X

′∈B(X ,ε)
I{f (X ′) 6= f (X )}

= E max
X

′∈B(X ,ε)
I{f (X ′)f (X )/λ < 0} for all λ

≤ E max
X

′∈B(X ,ε)
φ(f (X ′)f (X )/λ)

You can think of λ as a regularization parameter

Theorem 3.1 holds for all λ

Theorem 3.2 says that in order for theorem to hold, you need to
carefully pick a λ
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Optimization

The theorem above suggest an optimization to minimize
Rrob(f )−R∗nat:

min
f

ψ−1(Rφ(f )−R∗φ)︸ ︷︷ ︸
accuracy

+ E max
X

′∈B(X ,ε)
φ(f (X ′)f (X )/λ)︸ ︷︷ ︸

robustness

You can replace the first term by the empirical risk φ(f (X )Y )

This will give you

min
f

E
{
φ(f (X )Y )︸ ︷︷ ︸

accuracy

+ max
X

′∈B(X ,ε)
φ(f (X ′)f (X )/λ)︸ ︷︷ ︸
robustness

}

There is a regularization parameter λ
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What do you gain?

Let us look at this optimization again:

min
f

E
{
φ(f (X )Y )︸ ︷︷ ︸

accuracy

+ max
X

′∈B(X ,ε)
φ(f (X ′)f (X )/λ)︸ ︷︷ ︸
robustness

}

This optimization is a trade-off between accuracy and robustness

Recall adversarial training (Madry et al.)

min
f

E
{

max
X

′∈B(X ,ε)
φ(f (X ′)Y )

}
It is an upper bound of Rrob(f )

The upper bound offered by the trade-off formulation is tighter
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Summary

What do we learn from this lecture?
All classifiers are vulnerable

Nature of the problem. As long as your perturbation is strong enough,
you can fool the classifier
Especially true when the dimension of the data is high

There is a trade off between accuracy and robustness
You need to trade the two through optimization
More general than adv. training, but still along the same line
Computational cost is as high as adversarial training

Some general advice for students

The worst research project today is to develop new attack / defense.
The trade-off is interesting but kind of expectable.
The more difficult question is to go beyond the `p-ball.
Much more valuable: Improve natural accuracy in different
environment, not customized attack.
If you want to defend attacks, defend new attacks that you have not
seen, at scale.
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