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Agenda

Last lecture we have seen min-distance attack

In linear case, there is a very simple geometry

Today we are going to consider two of its variations

Max-loss attack
Regularized attack

We will again talk about their geometry using linear models.

And then we will link the results to deep models.

You will see that some of the most popular deep attack models out
there are based on one of the three formulations we discuss here
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Outline

Lecture 33 Overview

Lecture 34 Min-distance attack

Lecture 35 Max-loss attack and regularized attack

Today’s Lecture

Max-loss attack

Linear models
Deep models: FGSM and PGD

Regularized attack

Linear models
CW attack
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Maximum Loss Attack

Definition (Maximum Loss Attack)

The maximum loss attack finds a perturbed data x by solving the
optimization

maximize
x

gt(x)−maxj 6=t {gj(x)}
subject to ‖x − x0‖ ≤ η,

(1)

where ‖ · ‖ can be any norm specified by the user, and η > 0 denotes the
attack strength.

I want to bound my attack ‖x − x0‖ ≤ η
I want to make gt(x) as big as possible
So I want to maximize gt(x)−maxj 6=t {gj(x)}
This is equivalent to

minimize
x

maxj 6=t {gj(x)} − gt(x)

subject to ‖x − x0‖ ≤ η,
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If you restrict yourself to two classes only ...

The problem is

minimize
x

maxj 6=t {gj(x)} − gt(x)

subject to ‖x − x0‖ ≤ η,

η is the maximum loss attack strength

Want gt(x) to override maxj 6=t {gj(x)}
So maximize gt(x)

If you restrict to linear, and only two classes, then

minimize
x

w
T
x + w0 subject to ‖x − x0‖ ≤ η.

Solvable in closed-form.
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Max-Loss Attack using `2-norm

The problem is

minimize
r

w
T
r + b0 subject to ‖r‖2 ≤ η.

Cauchy inequality:

w
T
r ≥ −‖w‖2‖r‖2 ≥ −η‖w‖2.

Claim: Lower bound of wT
r is attained when r = −ηw/‖w‖2:

w
T
r = w

T

(
− ηw

‖w‖2

)
= −η‖w‖2.

So the solution is r = −ηw/‖w‖2.
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Max-Loss Attack using `∞-norm

Goal: Want to solve

minimize
x

w
T
x + w0 subject to ‖x − x0‖ ≤ η.

Define x = x0 + r . Then

w
T
x + w0 = w

T (x0 + r) + w0

= w
T
x0 + w

T
r + w0

= w
T
r + w

T
x0 + w0︸ ︷︷ ︸
=b0

Define b0 = (wT
x0 + w0). The optimization can be rewritten as

minimize
r

w
T
r + b0 subject to ‖r‖∞ ≤ η.
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Solution to Max-Loss Attack (`∞-norm)

Holder’s inequality (the negative side):

w
T
r ≥ −‖r‖∞‖w‖1 ≥ −η‖w‖1.

Claim: Lower bound of wT
r is attained when r = −η · sign(w)

w
T
r = −ηwT sign(w)

= −η
d∑

i=1

wi sign(wi )

= −η
d∑

i=1

|wi |

= −η‖w‖1.

So the solution is r = −η · sign(w).
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To Summarize the Attack

Theorem (Maximum Loss `∞ Attack of Two-Class Linear Classifier)

The max-loss `∞ norm attack for a two-class linear classifier, i.e.,

minimize
x

w
T
x + w0 subject to ‖x − x0‖∞ ≤ η.

is given by
x = x0 − η · sign(w).

Compare to minimum-distance attack:

x = x0 −
(
w

T
x0 + w0

‖w‖1

)
· sign(w).

η is now a free variable. You need to pick.
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FGSM (Goodfellow et al., NeurIPS 2014)

Define training loss as

J(x , w) = gt(x)−max
i 6=t
{gi (x)}

= −
(

max
i 6=t
{gi (x)} − gt(x)

)
.

Then max-loss attack is

maximize
x

J(x ,w) subject to ‖x − x0‖∞ ≤ η.

Training: Minimize J(x ,w) by finding a good w .

Attack: Maximize J(x ,w) by finding a nasty x .

For neural networks, J(x ,w) can be very general.
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FGSM (Goodfellow et al., NeurIPS 2014)

How to attack J(x ,w)?

Linearize:

J(x ; w) = J(x0 + r ; w) ≈ J(x0; w) +∇xJ(x0; w)T r .

Then solve

maximize
r

J(x0; w) +∇xJ(x0; w)T r subject to ‖r‖∞ ≤ η

Equivalent to

minimize
r

−∇xJ(x0; w)T r︸ ︷︷ ︸
w

T
r

− J(x0; w)︸ ︷︷ ︸
w0

subject to ‖r‖∞ ≤ η

Solution is
r = η · sign(−∇xJ(x0; w))
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FGSM (Goodfellow et al., NeurIPS 2014)

Definition (Fast Gradient Sign Method (FGSM) by Goodfellow et al 2014)

Given a loss function J(x ; w), the FGSM creates an attack x by

x = x0 + η · sign(∇xJ(x0; w)). (2)

Corollary (FGSM as a Max-Loss Attack Problem)

The FGSM attack can be formulated as the optimization with J(x ; w)
being the loss function:

maximize
r

∇xJ(x0; w)T r + J(x0; w) subject to ‖r‖∞ ≤ η,

of which the solution is given by

x = x0 + η · sign(∇xJ(x0; w)). (3)
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FGSM (Goodfellow et al., NeurIPS 2014)

Definition (Fast Gradient Sign Method (FGSM) by Goodfellow et al 2014)

Given a loss function J(x ; w), the FGSM creates an attack x by

x = x0 + η · sign(∇xJ(x0; w)). (4)

https://arxiv.org/pdf/1711.00117.pdf
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`∞ and `2 FGSM

Corollary (FGSM as a Max-Loss Attack)

The FGSM attack can be formulated as the optimization with J(x ; w)
being the loss function:

maximize
r

∇xJ(x0; w)T r + J(x0; w) subject to ‖r‖ ≤ η,

of which the solution is given by

x = x0 + η · sign(∇xJ(x0; w)) (`∞-norm)

and

x = x0 + η · ∇xJ(x0; w)

‖∇xJ(x0; w)‖2
(`2-norm)
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Iterative Fast Gradient Sign Method

By Kurakin, Goodfellow and Bengio (ICLR 2017)

Recall this equation

J(x ; w) = J(x0 + r ; w)

≈ J(x0; w) +∇xJ(x0; w)T r

= J(x0; w) +∇xJ(x0; w)T (x − x0)

= J(x0; w) +∇xJ(x0; w)Tx −∇xJ(x0; w)Tx0.

Let us consider the problem

maximize
x

���
��J(x0; w) +∇xJ(x0; w)Tx −(((((

(((∇xJ(x0; w)Tx0

subject to ‖x − x0‖ ≤ η, 0 ≤ x ≤ 1.
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Iterative Gradient Sign Method

Introduce iterative linearization

x
(k+1) = argmax

x

∇xJ(x (k); w)Tx

subject to ‖x − x
(k)‖∞ ≤ η, 0 ≤ x ≤ 1

The optimization becomes

x
(k+1) = argmax

x

∇xJ(x (k); w)Tx

subject to ‖x − x
(k)‖∞ ≤ η, 0 ≤ x ≤ 1

= P[0,1]

{
x

(k) + η · sign(∇xJ(x (k); w))
}
,

This is known as the projected gradient descent (PGD).

Strongest first order attack, so far.

You can add random noise to x
(k) to make it less predictable.

16 / 30



c©Stanley Chan 2020. All Rights Reserved.

Outline

Lecture 33 Overview

Lecture 34 Min-distance attack

Lecture 35 Max-loss attack and regularized attack
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Max-loss attack

Linear models
Deep models: FGSM and PGD

Regularized attack

Linear models
CW attack
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Two-Class Linear Classifier

We want to study

minimize
x

‖x − x0‖2 + λ

(
max
j 6=t
{gj(x)} − gt(x)

)
.

If we restrict to two-class, linear classifier, then simplified to

minimize
x

‖x − x0‖2 + λ
(

(wT
j x + wj ,0)− (wT

t x + wt,0)
)
,

which is
minimize

x

‖x − x0‖2 + λ(wT
x + w0).

Unconstrained minimization.

Let ϕ(x) = 1
2‖x − x0‖2 + λ(wT

x + w0). Then

0 = ∇ϕ(x) = (x − x0) + λw .

Solution is x = x0 − λw .
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Two-Class Linear Classifier

Theorem (Regularization-based Attack for Two-Class Linear Classifier)

The regularization-based attack for a two-class linear classifier generates
the attack by solving

minimize
x

1

2
‖x − x0‖2 + λ(wT

x + w0),

of which the solution is given by

x = x0 − λw .

w is search direction

λ is step size

You need to choose λ.
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Unboundedness of `1 Attack

Can we do `1 attack?

minimize
x

‖x − x0‖1 + λ(wT
x + w0),

which is equivalent to

minimize
r

‖r‖1 + λwT
r .

The optimality condition is (sort of):

sign(ri ) + λwi = 0.

This requires that

λwi =

{
±1, |ri | > 0,

∈ (−1, 1) ri = 0.

So |λwi | will never exceed 1.
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Unboundedness of `1 Attack

λwi =

{
±1, |ri | > 0,

∈ (−1, 1) ri = 0.

Therefore, if |λw | > 1, then the above equation is impossible to hold
regardless of how we choose r .

This means that the optimization does not have a solution.

You can show that the function

f (x) = |x |+ αx

goes to −∞ as x → −∞ if α > 1.

and goes to −∞ as x → +∞ if α > −1.

So unbounded below.
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Carlini-Wagner Attack (2016)

The idea is to solve

minimize
x

‖x − x0‖+ λ ·max

{(
max
j 6=t
{gj(x)} − gt(x)

)
, 0

}
,

If (maxj 6=t {gj(x)} − gt(x)) < 0: Already misclassified. No action
needed.

If (maxj 6=t {gj(x)} − gt(x)) > 0: Not yet misclassified. Need action.

Here we used the rectifier function

ζ(x) = max(x , 0).

So the problem can be written as

minimize
x

‖x − x0‖+ λ · ζ
(

max
j 6=t
{gj(x)} − gt(x)

)
.

¿7-¿ The norm here can be `1 or `2, or any other norm.
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Comparing Regularized and Min-Norm

Regularized attack is

minimize
x

‖x − x0‖+ λ · ζ
(

max
j 6=t
{gj(x)} − gt(x)

)
.

Min-distance attack is

minimize
x

‖x − x0‖+ ιΩ(x),

where

ιΩ(x) =

{
0, if maxj 6=t {gj(x)} − gt(x) ≤ 0,

+∞, otherwise.

So the regularized attack (CW attack) is a soft-version of the
min-distance attack.

23 / 30



c©Stanley Chan 2020. All Rights Reserved.

CW Attack for `1-norm

We showed that this problem is unbounded below.

minimize
x

‖x − x0‖1 + λ(wT
x + w0),

Now consider the CW attack:

minimize
x

‖x − x0‖1 + λmax
(
w

T
x + w0, 0

)
.

The objective function is always non-negative: ‖x − x0‖1 ≥ 0 and
max

(
w

T
x + w0, 0

)
≥ 0.

We are guaranteed to have a solution.

Here is a trivial solution.

Lower bound is achieved when x = x0 and w
T
x0 + w0 = 0.

This happens when the attack solution is x = x0 and x0 is on the
decision boundary.

Of course, the chance for this to happen is unlikely. So we can safely
ignore this trivial case.
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Convexity for Linear Classifier

The function h(x) = max(ϕ(x), 0) is convex in x if ϕ(x) is convex.

h(αx + (1− α)y) = max (ϕ(αx + (1− α)y), 0)

≤ max (αϕ(x) + (1− α)ϕ(y), 0)

≤ αmax (ϕ(x), 0) + (1− α) max(ϕ(y), 0)

= αh(x) + (1− α)h(y).

Our ϕ(x) = w
T
x + w0. So ϕ is convex.

So the overall optimization is convex

minimize
x

‖x − x0‖+ λmax
(
w

T
x + w0, 0

)
.

That means you can solve using CVX.
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General g

In general, CW attack solves

minimize
x

‖x − x0‖2 + λ · ζ
(

max
j 6=t
{gj(x)} − gt(x)

)
.

We can use gradient algorithms.

The gradient of ζ(·) is

d

ds
ζ(s) = I {s > 0} def

=

{
1, if s > 0,

0, otherwise.

Let i∗(x) be the index of the maximum response

i∗(x) = argmax
j 6=t

{gj(x)}

For the time being, let us assume that the index i∗ is independent of x

Then, the gradient is
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CW Attack Algorithm

The gradient is

∇xζ

(
max
j 6=t
{gj(x)} − gt(x)

)
= ∇xζ ({gi∗(x)} − gt(x))

=

{
∇xgi∗(x)−∇xgt(x), if gi∗(x)− gt(x) > 0,

0, otherwise.

= I {gi∗(x)− gt(x) > 0} · (∇xgi∗(x)−∇xgj(x))

Letting ϕ(x) be the overall objective function

ϕ(x) = ‖x − x0‖2 + λ ·max

{(
max
j 6=t
{gj(x)} − gt(x)

)
, 0

}
,

The gradient is

∇ϕ(x ; i∗) = 2(x−x0)+λ·I {gi∗(x)− gt(x) > 0}·(∇gi∗(x)−∇gj(x)) .
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CW Attack Algorithm

Gradient is

∇ϕ(x ; i∗) = 2(x−x0)+λ·I {gi∗(x)− gt(x) > 0}·(∇gi∗(x)−∇gj(x)) .

The algorithm is

For iteration k = 1, 2, . . .

i∗ = argmax
j 6=t

{gj(xk)}

x
k+1 = x

k − α∇ϕ(xk ; i∗).

α is gradient descent step size. You need to tune it.

λ is regularization parameter. You need to tune it.
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Comparison

https://arxiv.org/pdf/1711.00117.pdf
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Summary

So we have discussed three forms of adversarial attacks.
Min-Distance Attack

minimize
x

‖x − x0‖
subject to maxj 6=t {gj(x)} − gt(x) ≤ 0,

Max-Loss Attack

maximize
x

gt(x)−maxj 6=t {gj(x)}
subject to ‖x − x0‖ ≤ η,

Regularized Attack

minimize
x

‖x − x0‖+ λ (maxj 6=t {gj(x)} − gt(x))

Next time we will talk about defense

And then we will talk about fundamental trade off between
robustness and accuracy
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