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Today’s Agenda

Last lecture we have learned the basic terminologies of adversarial
attack.

In today’s and the next lectures, we will go into the details of how to
attack.

We will discuss three forms of attacks

Min-distance attack
Max-loss attack
Regularized attack

We will discuss everything for the linear model.

And then we will talk about deep models.

You are only required to know how to attack the linear model.

For deep models, you probably need to have some prior experience
with deep neural networks in order to understand what we are going
to discuss.
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Minimum Distance Attack

Definition (Minimum Distance Attack)

The minimum distance attack finds a perturbed data x by solving the
optimization

minimize
x

‖x − x0‖
subject to maxj 6=t {gj(x)} − gt(x) ≤ 0,

(1)

where ‖ · ‖ can be any norm specified by the user.

I want to make you to class Ct .
So the constraint needs to be satisfied.

But I also want to minimize the attack strength. This gives the
objective.
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Geometry: Attack as a Projection

What is the Geometry of the Attack?

Claim: Attacking a data point = projecting it onto the decision
boundary

Let us look at `2 minimum distance attack

Theorem (Minimum-Distance Attack as a Projection)

The minimum-distance attack via `2 is equivalent to the projection

x
∗ = argmin

x∈Ω
‖x − x0‖2, where Ω = {x | max

j 6=t
{gj(x)} − gt(x) ≤ 0},

= PΩ(x0),

where PΩ(·) denotes the projection onto the set Ω.
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Geometry: Attack as a Projection

Figure: Geometry: Given an input data point x0, our goal is to send x0 to a
targeted class Ct by minimizing the distance between x and x0. The decision
boundary is characterized by g(x) = gi∗(x)− gt(x). The optimal solution is the
projection of x0 onto the decision boundary.
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Geometry: Overshoot

What if you move along the attack direction but overshoot?

Define
x = x0 + α(PΩ(x0)− x0).

Three cases:

You overshoot but you still stay in the target class.
You overshoot and you go back to the original class.
You overshoot and you go to another class.
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Targeted VS Untargeted Attack

Figure: [Left] Targeted attack: The attack has to be specific from Ci to Ct .
[Right] Untargeted attack: The attack vector can point to anywhere outside Ci .

Targeted attack: The constraint set Ω is

Ω = {x | max
j 6=t
{gj(x)} − gt(x) ≤ 0}

Untargeted attack: The constraint set Ω is

Ω = {x | gi (x)−min
j 6=i
{gj(x)} ≤ 0}
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White-box VS Black-box Attack

White-box: You know everything about the classifier.

So you know all gi ’s, completely.

The constraint set is

Ω = {x | max
j 6=t
{gj(x)} − gt(x) ≤ 0}

Black-box: You can only probe the classifier finite times.

So you only know
{
gi (x

(1)), gi (x
(2)), . . . , gi (x

(M))
}

.

The constraint set is

Ω = {x | max
j 6=t
{ĝj(x)} − ĝt(x) ≤ 0},

where ĝ is the best approximation you can get from the finite
observations.
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Launching the Attack: Basic Principles

Principle 1: You need to solve the optimization

minimize
x

‖x − x0‖
subject to maxj 6=t {gj(x)} − gt(x) ≤ 0,

or its variations.

Principle 2: You do not need to solve inequality. Equality is enough.

You just need to hit the decision boundary.
Then you add a small ε to your step.

Principle 3: You do not need to be optimal.

Optimal = The nastiest attack.
You can still fool the classifier with a less nasty attack.

Our Plan: Look at linear classifiers, and binary classifiers only.
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So, if we restrict ourselves to binary linear classifiers ...

The min-distance attack (`2-norm)

minimize
x

‖x − x0‖2

subject to maxj 6=t {gj(x)} − gt(x) ≤ 0,

will become ...

Linear classifiers, we have

gi (x)− gt(x) = w
T
x + w0.

Two class: the constraint is simplified to

gi (x)− gt(x) ≤ 0

And we just need to hit the boundary. So the attack becomes

minimize
x

‖x − x0‖2

subject to w
T
x + w0 = 0.
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Recall: Distance Between Point and Plane

What is the closest distance between a point and a plane?

w
T
x = 0 is a line.

Find a point x on the line that is closest to x0.
Solution is

x = x0 + w(wT
w)−1(0−w

T
x0)

= x0 −
(
w

T
x0

‖w‖2

)T

w .
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Minimum-Distance Attack: Solving the Optimization

Theorem (Minimum `2 Norm Attack for Two-Class Linear Classifier)

The adversarial attack to a two-class linear classifier is the solution of

minimize
x

‖x − x0‖2 subject to w
T
x + w0 = 0,

which is given by

x
∗ = x0 −

(
w

T
x0 + w0

‖w‖2

)
w

‖w‖2
.

This is just finding the closest point to a hyperplane!

w/‖w‖2 is the normal direction = best attack angle.
w

T
x0+w0
‖w‖2

is the step size.
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Minimum-Distance Attack: Two-Class Linear Classifier

Figure: Geometry of minimum-distance attack for a two-class linear classifier with
objective function ‖x − x0‖2. The solution is a projection of the input x0 onto
the separating hyperplane of the classifier.
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Deep-Fool (CVPR, 2016)

Let’s Connect to the Real Problem.

Proposed by Moosavi-Dezfooli, Fawzi and Frossard

Generalize linear classifier to neural network

Definition (DeepFool Attack by Moosavi-Dezfooli et al. 2016)

The DeepFool attack for a two-class classification generates the attack by
solving the optimization

minimize
x

‖x − x0‖2 subject to g(x) = 0,

where g(x) = 0 is the nonlinear decision boundary separating the two
classes.
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How to deal with non-linearity?

First order approximation

g(x) ≈ g(x (k)) +∇xg(x (k))T (x − x
(k)),

Modify the problem (assume x
(0) = x0)

x
(k+1) = argmin

x

‖x − x
(k)‖2 subject to g(x) = 0.

...

x
(k+1) = argmin

x

‖x − x
(k)‖2

subject to g(x (k)) +∇xg(x (k))T (x − x
(k)) = 0.

Now, rewrite

g(x (k)) +∇xg(x (k))T (x − x
(k))

= ∇xg(x (k))Tx + g(x (k))−∇xg(x (k))Tx (k).
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How to deal with non-linearity?

So here is our problem

x
(k+1) = argmin

x

‖x − x
(k)‖2

subject to g(x (k)) +∇xg(x (k))T (x − x
(k)) = 0.

Let w (k) = ∇xg(x (k)) and w
(k)
0 = g(x (k))−∇xg(x (k))Tx (k)

Then equivalent to

x
(k+1) = argmin

x

‖x − x
(k)‖2 subject to (w (k))Tx + w

(k)
0 = 0

This is just a linear problem!
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How to deal with non-linearity?

Here is the optimization

x
(k+1) = argmin

x

‖x − x
(k)‖2 subject to (w (k))Tx + w

(k)
0 = 0

So the solution is

x
(k+1) = x

(k) −

(
(w (k))Tx (k) + w

(k)
0

‖w (k)‖2

)
w

(k)

= x
(k) −

(
g(x (k))

‖∇xg(x (k))‖2

)
∇xg(x (k)).

How to evaluate the gradient?

∇xg(x (k)) can be computed via back propagation.
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How to deal with non-linearity?

Now, for this attack

x
(k+1) = x

(k) −

(
g(x (k))

‖∇xg(x (k))‖2

)
∇xg(x (k)).

You can control the perturbation magnitude:

x
(k+1) = P[0,1]

{
x

(k) −

(
g(x (k))

‖∇xg(x (k))‖2

)
∇xg(x (k))

}
.

P[0,1]: Projection onto a ball, e.g., P[0,1](x) clips x to [0, 1].
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Deep-Fool (CVPR, 2016)

Corollary (DeepFool Algorithm for Two-Class Problem)

An iterative procedure to obtain the DeepFool attack solution is

x
(k+1) = argmin

x

‖x − x
(k)‖2

subject to g(x (k)) +∇xg(x (k))T (x − x
(k)) = 0

= x
(k) −

(
g(x (k))

‖∇xg(x (k))‖2

)
∇xg(x (k)),

with x
(0) = x0.

This is not the complete Deep-fool.

We assume two classes only.

If you have multiple classes, you need to take care of “maxj 6=t gj(x)”
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The `∞ Case

How about we try to solve this?

minimize
x

‖x − x0‖∞ subject to w
T
x + w0 = 0.

Not the `2-norm, but the `∞-norm.

Let r = x − x0, b0 = −(wT
x0 + w0).

Rewrite the problem as

minimize
r

‖r‖∞ subject to w
T
r = b0.

Setup Lagrangian function and take derivative?

L(r ,λ) = ‖r‖∞ + λ(b0 −w
T
r).

Doesn’t work because `∞ is not differentiable.
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Solving the `∞-norm Problem

Theorem (Holder’s Inequality)

Let x ∈ Rd and y ∈ Rd . Then,

−‖x‖p‖y‖q ≤ |xT
y | ≤ ‖x‖p‖y‖q

for any p and q such that 1
p + 1

q = 1, where p ∈ [1,∞].

Let p = 1 and q =∞
Can show that |xT

y | ≤ ‖x‖1‖y‖∞
Then

|b0| = |wT
r | ≤ ‖w‖1‖r‖∞, =⇒ ‖r‖∞ ≥

|b0|
‖w‖1

.

So ‖r‖∞ is lower bounded by a constant.

If r∗ can reach this lower bound, then r
∗ is the minimizer.
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Solving the `∞-norm Problem

How about this candidate?

r = η · sign(w)

for some constant η to be determined.

We can show that

‖r‖∞ = max
i
|η · sign(wi )| = |η|.

So if we let η = b0/‖w‖1, then we will have

‖r‖∞ = |η| =
|b0|
‖w‖1

.

Lower bound achieved! So the solution is

r =
|b0|
‖w‖1

· sign(w)
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The `∞ Solution

Theorem (Minimum Distance `∞ Norm Attack for Two-Class Linear
Classifier)

The minimum distance `∞ norm attack for a two-class linear classifier, i.e.,

minimize
x

‖x − x0‖∞ subject to w
T
x + w0 = 0

is given by

x = x0 −
(
w

T
x0 + w0

‖w‖1

)
· sign(w).

Search direction is sign(w).

This means ±1 for every entry.

In 2D, the search direction is ±45o or ±135o .
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The `∞ Solution

Is it the ”optimal” direction? No.

The fastest search direction is `2.

Can it move x0 to another class? Yes, if η is large enough.
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Summary

Min-Distance Attack

minimize
x

‖x − x0‖
subject to maxj 6=t {gj(x)} − gt(x) ≤ 0,

We have talked about the geometry.
You can see that the geometry applies beyond linear models.
For linear models, we can derive closed-form solutions.
Deep models apply successive approximations.

Next Lecture

Max-Loss Attack

maximize
x

gt(x)−maxj 6=t {gj(x)}
subject to ‖x − x0‖ ≤ η,

Regularized Attack

minimize
x

‖x − x0‖+ λ (maxj 6=t {gj(x)} − gt(x))
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