ECE595 / STAT598: Machine Learning I Lecture 34 Min-Distance Attacks

Spring 2020

Stanley Chan

School of Electrical and Computer Engineering Purdue University

© Stanley Chan 2020. All Rights Reserved

Today's Agenda

- Last lecture we have learned the basic terminologies of adversarial attack.
- In today's and the next lectures, we will go into the details of how to attack.
- We will discuss three forms of attacks
 - Min-distance attack
 - Max-loss attack
 - Regularized attack
- We will discuss everything for the linear model.
- And then we will talk about deep models.
- You are only required to know how to attack the linear model.
- For deep models, you probably need to have some prior experience with deep neural networks in order to understand what we are going to discuss.

Outline

- Lecture 33 Overview
- Lecture 34 Min-distance attack
- Lecture 35 Max-loss attack and regularized attack

Today's Lecture

- Linear models
 - Definition
 - Geometry
 - Optimization solutions
- Deep models
 - Deep fool
 - ℓ_∞ case

Minimum Distance Attack

Definition (Minimum Distance Attack)

The **minimum distance attack** finds a perturbed data x by solving the optimization

$$\begin{array}{ll} \underset{\boldsymbol{x}}{\text{minimize}} & \|\boldsymbol{x} - \boldsymbol{x}_0\| \\ \text{subject to} & \max_{j \neq t} \{g_j(\boldsymbol{x})\} - g_t(\boldsymbol{x}) \leq 0, \end{array} \tag{1}$$

where $\|\cdot\|$ can be any norm specified by the user.

- I want to make you to class C_t .
- So the constraint needs to be satisfied.
- But I also want to minimize the attack strength. This gives the objective.

Geometry: Attack as a Projection

What is the Geometry of the Attack?

- Claim: Attacking a data point = projecting it onto the decision boundary
- Let us look at ℓ_2 minimum distance attack

Theorem (Minimum-Distance Attack as a Projection)

The minimum-distance attack via ℓ_2 is equivalent to the projection

$$\begin{split} \mathbf{x}^* &= \mathop{argmin}_{\mathbf{x} \in \Omega} \|\mathbf{x} - \mathbf{x}_0\|^2, \quad \text{where} \quad \Omega = \{\mathbf{x} \mid \max_{j \neq t} \{g_j(\mathbf{x})\} - g_t(\mathbf{x}) \leq 0\}, \\ &= \mathcal{P}_{\Omega}(\mathbf{x}_0), \end{split}$$

where $\mathcal{P}_{\Omega}(\cdot)$ denotes the projection onto the set Ω .

Geometry: Attack as a Projection

$$g(\boldsymbol{x}) \stackrel{\mathsf{def}}{=} g_{i^*}(\boldsymbol{x}) - g_t(\boldsymbol{x}) = 0$$
 $g(\boldsymbol{x}) < 0$
 $g(\boldsymbol{x}) > 0$
 x_0
 \mathcal{C}_{i^*}

Figure: Geometry: Given an input data point x_0 , our goal is to send x_0 to a targeted class C_t by minimizing the distance between x and x_0 . The decision boundary is characterized by $g(x) = g_{i^*}(x) - g_t(x)$. The optimal solution is the projection of x_0 onto the decision boundary.

Geometry: Overshoot

- What if you move along the attack direction but overshoot?
- Define

$$\boldsymbol{x} = \boldsymbol{x}_0 + \alpha (\mathcal{P}_{\Omega}(\boldsymbol{x}_0) - \boldsymbol{x}_0).$$

- Three cases:
 - You overshoot but you still stay in the target class.
 - You overshoot and you go back to the original class.
 - You overshoot and you go to another class.

Targeted VS Untargeted Attack

Figure: [Left] Targeted attack: The attack has to be specific from C_i to C_t . [Right] Untargeted attack: The attack vector can point to anywhere outside C_i .

• Targeted attack: The constraint set Ω is

$$\Omega = \{ \boldsymbol{x} \mid \max_{j \neq t} \{ g_j(\boldsymbol{x}) \} - g_t(\boldsymbol{x}) \leq 0 \}$$

• Untargeted attack: The constraint set Ω is

$$\Omega = \{ \boldsymbol{x} \mid g_i(\boldsymbol{x}) - \min_{j \neq i} \{ g_j(\boldsymbol{x}) \} \leq 0 \}$$

© Stanley Chan 2020. All Rights Reserved

White-box VS Black-box Attack

- White-box: You know everything about the classifier.
- So you know all g_i 's, completely.
- The constraint set is

$$\Omega = \{ \boldsymbol{x} \mid \max_{j \neq t} \{ g_j(\boldsymbol{x}) \} - g_t(\boldsymbol{x}) \leq 0 \}$$

- Black-box: You can only probe the classifier finite times.
- So you only know $\{g_i(x^{(1)}), g_i(x^{(2)}), \dots, g_i(x^{(M)})\}.$
- The constraint set is

$$\Omega = \{ \boldsymbol{x} \mid \max_{j \neq t} \{ \widehat{g}_j(\boldsymbol{x}) \} - \widehat{g}_t(\boldsymbol{x}) \leq 0 \},$$

where \hat{g} is the best approximation you can get from the finite observations.

Launching the Attack: Basic Principles

• Principle 1: You need to solve the optimization

$$\begin{array}{ll} \underset{x}{\text{minimize}} & \|x - x_0\| \\ \text{subject to} & \max_{j \neq t} \{g_j(x)\} - g_t(x) \leq 0, \end{array}$$

or its variations.

• Principle 2: You do not need to solve inequality. Equality is enough.

- You just need to hit the decision boundary.
- Then you add a small ϵ to your step.
- Principle 3: You do not need to be optimal.
 - Optimal = The nastiest attack.
 - You can still fool the classifier with a less nasty attack.
- Our Plan: Look at linear classifiers, and binary classifiers only.

So, if we restrict ourselves to binary linear classifiers ...

The min-distance attack (ℓ_2 -norm)

$$\begin{array}{ll} \underset{\boldsymbol{x}}{\text{minimize}} & \|\boldsymbol{x} - \boldsymbol{x}_0\|^2 \\ \text{subject to} & \max_{j \neq t} \{g_j(\boldsymbol{x})\} - g_t(\boldsymbol{x}) \leq 0, \end{array}$$

will become ...

• Linear classifiers, we have

$$g_i(\mathbf{x}) - g_t(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0.$$

• Two class: the constraint is simplified to

$$g_i(\boldsymbol{x}) - g_t(\boldsymbol{x}) \leq 0$$

And we just need to hit the boundary. So the attack becomes

minimize
$$\|\boldsymbol{x} - \boldsymbol{x}_0\|^2$$

subject to $\boldsymbol{w}^T \boldsymbol{x} + w_0 = 0.$

Stanley Chan 2020. All Rights Reserved. 11 / 27

Recall: Distance Between Point and Plane

What is the closest distance between a point and a plane?

- $\boldsymbol{w}^T \boldsymbol{x} = 0$ is a line.
- Find a point x on the line that is closest to x_0 .
- Solution is

Minimum-Distance Attack: Solving the Optimization

Theorem (Minimum ℓ_2 Norm Attack for Two-Class Linear Classifier) The adversarial attack to a two-class linear classifier is the solution of

minimize
$$\|\mathbf{x} - \mathbf{x}_0\|^2$$
 subject to $\mathbf{w}^T \mathbf{x} + w_0 = 0$,

which is given by

$$\mathbf{x}^* = \mathbf{x}_0 - \left(\frac{\mathbf{w}^T \mathbf{x}_0 + w_0}{\|\mathbf{w}\|_2}\right) \frac{\mathbf{w}}{\|\mathbf{w}\|_2}.$$

This is just finding the closest point to a hyperplane!
w/||w||₂ is the normal direction = best attack angle.
<u>w^Tx₀+w₀</u> is the step size.

Minimum-Distance Attack: Two-Class Linear Classifier

Figure: Geometry of minimum-distance attack for a two-class linear classifier with objective function $||\mathbf{x} - \mathbf{x}_0||^2$. The solution is a projection of the input \mathbf{x}_0 onto the separating hyperplane of the classifier.

Outline

- Lecture 33 Overview
- Lecture 34 Min-distance attack
- Lecture 35 Max-loss attack and regularized attack

Today's Lecture

- Linear models
 - Definition
 - Geometry
 - Optimization solutions
- Deep models
 - Deep fool
 - ℓ_∞ case

Deep-Fool (CVPR, 2016)

Let's Connect to the Real Problem.

- Proposed by Moosavi-Dezfooli, Fawzi and Frossard
- Generalize linear classifier to neural network

Definition (DeepFool Attack by Moosavi-Dezfooli et al. 2016)

The DeepFool attack for a two-class classification generates the attack by solving the optimization

minimize
$$\|\mathbf{x} - \mathbf{x}_0\|^2$$
 subject to $g(\mathbf{x}) = 0$,

where g(x) = 0 is the nonlinear decision boundary separating the two classes.

÷

• First order approximation

$$g(\boldsymbol{x}) \approx g(\boldsymbol{x}^{(k)}) + \nabla_{\boldsymbol{x}} g(\boldsymbol{x}^{(k)})^{\mathsf{T}} (\boldsymbol{x} - \boldsymbol{x}^{(k)}),$$

• Modify the problem (assume $\mathbf{x}^{(0)} = \mathbf{x}_0$)

$$\mathbf{x}^{(k+1)} = \underset{\mathbf{x}}{\operatorname{argmin}} \|\mathbf{x} - \mathbf{x}^{(k)}\|^2$$
 subject to $g(\mathbf{x}) = 0$.

$$\begin{aligned} \boldsymbol{x}^{(k+1)} &= \underset{\boldsymbol{x}}{\operatorname{argmin}} \quad \|\boldsymbol{x} - \boldsymbol{x}^{(k)}\|^2 \\ \text{subject to} \quad \boldsymbol{g}(\boldsymbol{x}^{(k)}) + \nabla_{\boldsymbol{x}} \boldsymbol{g}(\boldsymbol{x}^{(k)})^T (\boldsymbol{x} - \boldsymbol{x}^{(k)}) = \boldsymbol{0}. \end{aligned}$$

Now, rewrite

$$g(\mathbf{x}^{(k)}) + \nabla_{\mathbf{x}}g(\mathbf{x}^{(k)})^{\mathsf{T}}(\mathbf{x} - \mathbf{x}^{(k)}) = \nabla_{\mathbf{x}}g(\mathbf{x}^{(k)})^{\mathsf{T}}\mathbf{x} + g(\mathbf{x}^{(k)}) - \nabla_{\mathbf{x}}g(\mathbf{x}^{(k)})^{\mathsf{T}}\mathbf{x}^{(k)}.$$

17 / 27

• So here is our problem

$$\begin{aligned} x^{(k+1)} &= \underset{x}{\operatorname{argmin}} \quad \|x - x^{(k)}\|^2 \\ \text{subject to} \quad g(x^{(k)}) + \nabla_x g(x^{(k)})^T (x - x^{(k)}) = 0. \end{aligned}$$

• Let
$$w^{(k)} = \nabla_x g(x^{(k)})$$
 and $w_0^{(k)} = g(x^{(k)}) - \nabla_x g(x^{(k)})^T x^{(k)}$

• Then equivalent to

$$\mathbf{x}^{(k+1)} = \operatorname*{argmin}_{\mathbf{x}} \|\mathbf{x} - \mathbf{x}^{(k)}\|^2$$
 subject to $(\mathbf{w}^{(k)})^T \mathbf{x} + w_0^{(k)} = 0$

• This is just a linear problem!

• Here is the optimization

$$\mathbf{x}^{(k+1)} = \underset{\mathbf{x}}{\operatorname{argmin}} \|\mathbf{x} - \mathbf{x}^{(k)}\|^2$$
 subject to $(\mathbf{w}^{(k)})^T \mathbf{x} + w_0^{(k)} = 0$

So the solution is

$$\begin{aligned} \mathbf{x}^{(k+1)} &= \mathbf{x}^{(k)} - \left(\frac{(\mathbf{w}^{(k)})^T \mathbf{x}^{(k)} + w_0^{(k)}}{\|\mathbf{w}^{(k)}\|^2}\right) \mathbf{w}^{(k)} \\ &= \mathbf{x}^{(k)} - \left(\frac{g(\mathbf{x}^{(k)})}{\|\nabla_{\mathbf{x}} g(\mathbf{x}^{(k)})\|^2}\right) \nabla_{\mathbf{x}} g(\mathbf{x}^{(k)}). \end{aligned}$$

- How to evaluate the gradient?
- $\nabla_{\mathbf{x}} g(\mathbf{x}^{(k)})$ can be computed via back propagation.

Now, for this attack

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} - \left(\frac{g(\boldsymbol{x}^{(k)})}{\|\nabla_{\boldsymbol{x}}g(\boldsymbol{x}^{(k)})\|^2}\right) \nabla_{\boldsymbol{x}}g(\boldsymbol{x}^{(k)}).$$

• You can control the perturbation magnitude:

$$\boldsymbol{x}^{(k+1)} = \mathcal{P}_{[0,1]} \left\{ \boldsymbol{x}^{(k)} - \left(\frac{g(\boldsymbol{x}^{(k)})}{\|\nabla_{\boldsymbol{x}} g(\boldsymbol{x}^{(k)})\|^2} \right) \nabla_{\boldsymbol{x}} g(\boldsymbol{x}^{(k)}) \right\}$$

• $\mathcal{P}_{[0,1]}$: Projection onto a ball, e.g., $\mathcal{P}_{[0,1]}(x)$ clips x to [0,1].

Deep-Fool (CVPR, 2016)

Corollary (DeepFool Algorithm for Two-Class Problem) An iterative procedure to obtain the DeepFool attack solution is

$$\begin{aligned} \mathbf{x}^{(k+1)} &= \underset{\mathbf{x}}{\operatorname{argmin}} \|\mathbf{x} - \mathbf{x}^{(k)}\|^2 \\ & \text{subject to } g(\mathbf{x}^{(k)}) + \nabla_{\mathbf{x}} g(\mathbf{x}^{(k)})^T (\mathbf{x} - \mathbf{x}^{(k)}) = 0 \\ &= \mathbf{x}^{(k)} - \left(\frac{g(\mathbf{x}^{(k)})}{\|\nabla_{\mathbf{x}} g(\mathbf{x}^{(k)})\|^2}\right) \nabla_{\mathbf{x}} g(\mathbf{x}^{(k)}), \end{aligned}$$

with $x^{(0)} = x_0$.

- This is not the complete Deep-fool.
- We assume two classes only.
- If you have multiple classes, you need to take care of "max_{$j\neq t$} $g_j(x)$ "

The ℓ_{∞} Case

• How about we try to solve this?

minimize $\|\mathbf{x} - \mathbf{x}_0\|_{\infty}$ subject to $\mathbf{w}^T \mathbf{x} + w_0 = 0$.

• Not the ℓ_2 -norm, but the ℓ_∞ -norm.

• Let
$$\mathbf{r} = \mathbf{x} - \mathbf{x}_0$$
, $b_0 = -(\mathbf{w}^T \mathbf{x}_0 + w_0)$.

• Rewrite the problem as

minimize $\|\boldsymbol{r}\|_{\infty}$ subject to $\boldsymbol{w}^T \boldsymbol{r} = b_0$.

• Setup Lagrangian function and take derivative?

$$\mathcal{L}(\mathbf{r}, \boldsymbol{\lambda}) = \|\mathbf{r}\|_{\infty} + \lambda (b_0 - \mathbf{w}^T \mathbf{r}).$$

• Doesn't work because ℓ_∞ is not differentiable.

Solving the $\ell_\infty\text{-norm}$ Problem

Theorem (Holder's Inequality) Let $\mathbf{x} \in \mathbb{R}^d$ and $\mathbf{y} \in \mathbb{R}^d$. Then,

$$-\|\boldsymbol{x}\|_{p}\|\boldsymbol{y}\|_{q} \leq |\boldsymbol{x}^{\mathsf{T}}\boldsymbol{y}| \leq \|\boldsymbol{x}\|_{p}\|\boldsymbol{y}\|_{q}$$

for any p and q such that $\frac{1}{p} + \frac{1}{q} = 1$, where $p \in [1, \infty]$.

- Let p = 1 and $q = \infty$
- Can show that $|\boldsymbol{x}^{\mathsf{T}}\boldsymbol{y}| \leq \|\boldsymbol{x}\|_{1}\|\boldsymbol{y}\|_{\infty}$

Then

$$|b_0| = |\boldsymbol{w}^T \boldsymbol{r}| \le \|\boldsymbol{w}\|_1 \|\boldsymbol{r}\|_{\infty}, \quad \Longrightarrow \quad \|\boldsymbol{r}\|_{\infty} \ge \frac{|b_0|}{\|\boldsymbol{w}\|_1}.$$

• So $\|\mathbf{r}\|_{\infty}$ is lower bounded by a constant.

• If **r**^{*} can reach this lower bound, then **r**^{*} is the minimizer.

Stanley Chan 2020. All Rights Reserved

Solving the $\ell_\infty\text{-norm}$ Problem

• How about this candidate?

$$\mathbf{r} = \eta \cdot \operatorname{sign}(\mathbf{w})$$

for some constant η to be determined.

We can show that

$$\|\boldsymbol{r}\|_{\infty} = \max_{i} |\eta \cdot \operatorname{sign}(w_{i})| = |\eta|.$$

• So if we let $\eta = b_0/\|\textbf{\textit{w}}\|_1$, then we will have

$$\|\boldsymbol{r}\|_{\infty} = |\eta| = \frac{|b_0|}{\|\boldsymbol{w}\|_1}.$$

• Lower bound achieved! So the solution is

$$\boldsymbol{r} = \frac{|b_0|}{\|\boldsymbol{w}\|_1} \cdot \operatorname{sign}(\boldsymbol{w})$$

The ℓ_∞ Solution

Theorem (Minimum Distance ℓ_∞ Norm Attack for Two-Class Linear Classifier)

The minimum distance ℓ_∞ norm attack for a two-class linear classifier, i.e.,

minimize
$$\|\mathbf{x} - \mathbf{x}_0\|_{\infty}$$
 subject to $\mathbf{w}^T \mathbf{x} + w_0 = 0$

is given by

$$\mathbf{x} = \mathbf{x}_0 - \left(\frac{\mathbf{w}^T \mathbf{x}_0 + w_0}{\|\mathbf{w}\|_1}\right) \cdot \operatorname{sign}(\mathbf{w}).$$

- Search direction is sign(**w**).
- This means ± 1 for every entry.
- In 2D, the search direction is $\pm 45^{\circ}$ or $\pm 135^{\circ}$.

The ℓ_∞ Solution

- Is it the "optimal" direction? No.
- The fastest search direction is ℓ_2 .
- Can it move x_0 to another class? Yes, if η is large enough.

Summary

Min-Distance Attack

 $\begin{array}{ll} \underset{x}{\text{minimize}} & \|x - x_0\| \\ \text{subject to} & \max_{j \neq t} \{g_j(x)\} - g_t(x) \leq 0, \end{array}$

- We have talked about the geometry.
- You can see that the geometry applies beyond linear models.
- For linear models, we can derive closed-form solutions.
- Deep models apply successive approximations.

Next Lecture

Max-Loss Attack

 $\begin{array}{ll} \underset{\boldsymbol{x}}{\text{maximize}} & g_t(\boldsymbol{x}) - \max_{j \neq t} \{g_j(\boldsymbol{x})\} \\ \text{subject to} & \|\boldsymbol{x} - \boldsymbol{x}_0\| \leq \eta, \end{array}$

• Regularized Attack

$$\underset{\mathbf{x}}{\mathsf{minimize}} \quad \|\mathbf{x} - \mathbf{x}_0\| + \lambda \left(\mathsf{max}_{j \neq t} \{g_j(\mathbf{x})\} - g_t(\mathbf{x})\right)$$