ECE595 / STAT598: Machine Learning I Lecture 34 Min-Distance Attacks

Spring 2020
Stanley Chan
School of Electrical and Computer Engineering
Purdue University

Purdue

Today's Agenda

- Last lecture we have learned the basic terminologies of adversarial attack.
- In today's and the next lectures, we will go into the details of how to attack.
- We will discuss three forms of attacks
- Min-distance attack
- Max-loss attack
- Regularized attack
- We will discuss everything for the linear model.
- And then we will talk about deep models.
- You are only required to know how to attack the linear model.
- For deep models, you probably need to have some prior experience with deep neural networks in order to understand what we are going to discuss.

Outline

- Lecture 33 Overview
- Lecture 34 Min-distance attack
- Lecture 35 Max-loss attack and regularized attack

Today's Lecture

- Linear models
- Definition
- Geometry
- Optimization solutions
- Deep models
- Deep fool
- ℓ_{∞} case

Minimum Distance Attack

Definition (Minimum Distance Attack)

The minimum distance attack finds a perturbed data \boldsymbol{x} by solving the optimization

$$
\begin{array}{ll}
\underset{\boldsymbol{x}}{\operatorname{minimize}} & \left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\| \\
\text { subject to } & \max _{j \neq t}\left\{g_{j}(\boldsymbol{x})\right\}-g_{t}(\boldsymbol{x}) \leq 0 \tag{1}
\end{array}
$$

where $\|\cdot\|$ can be any norm specified by the user.

- I want to make you to class \mathcal{C}_{t}.
- So the constraint needs to be satisfied.
- But I also want to minimize the attack strength. This gives the objective.

Geometry: Attack as a Projection

What is the Geometry of the Attack?

- Claim: Attacking a data point $=$ projecting it onto the decision boundary
- Let us look at ℓ_{2} minimum distance attack

Theorem (Minimum-Distance Attack as a Projection)
The minimum-distance attack via ℓ_{2} is equivalent to the projection

$$
\begin{aligned}
\boldsymbol{x}^{*} & =\underset{\boldsymbol{x} \in \Omega}{\operatorname{argmin}}\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|^{2}, \quad \text { where } \quad \Omega=\left\{\boldsymbol{x} \mid \max _{j \neq t}\left\{g_{j}(\boldsymbol{x})\right\}-g_{t}(\boldsymbol{x}) \leq 0\right\}, \\
& =\mathcal{P}_{\Omega}\left(\boldsymbol{x}_{0}\right)
\end{aligned}
$$

where $\mathcal{P}_{\Omega}(\cdot)$ denotes the projection onto the set Ω.

Geometry: Attack as a Projection

Figure: Geometry: Given an input data point \boldsymbol{x}_{0}, our goal is to send \boldsymbol{x}_{0} to a targeted class \mathcal{C}_{t} by minimizing the distance between \boldsymbol{x} and \boldsymbol{x}_{0}. The decision boundary is characterized by $g(\boldsymbol{x})=g_{i^{*}}(\boldsymbol{x})-g_{t}(\boldsymbol{x})$. The optimal solution is the projection of \boldsymbol{x}_{0} onto the decision boundary.

Geometry: Overshoot

- What if you move along the attack direction but overshoot?
- Define

$$
\boldsymbol{x}=\boldsymbol{x}_{0}+\alpha\left(\mathcal{P}_{\Omega}\left(\boldsymbol{x}_{0}\right)-\boldsymbol{x}_{0}\right)
$$

- Three cases:
- You overshoot but you still stay in the target class.
- You overshoot and you go back to the original class.
- You overshoot and you go to another class.

Targeted VS Untargeted Attack

Figure: [Left] Targeted attack: The attack has to be specific from \mathcal{C}_{i} to \mathcal{C}_{t}. [Right] Untargeted attack: The attack vector can point to anywhere outside \mathcal{C}_{i}.

- Targeted attack: The constraint set Ω is

$$
\Omega=\left\{\boldsymbol{x} \mid \max _{j \neq t}\left\{g_{j}(\boldsymbol{x})\right\}-g_{t}(\boldsymbol{x}) \leq 0\right\}
$$

- Untargeted attack: The constraint set Ω is

$$
\Omega=\left\{\boldsymbol{x} \mid g_{i}(\boldsymbol{x})-\min _{j \neq i}\left\{g_{j}(\boldsymbol{x})\right\} \leq 0\right\}
$$

White-box VS Black-box Attack

- White-box: You know everything about the classifier.
- So you know all g_{i} 's, completely.
- The constraint set is

$$
\Omega=\left\{\boldsymbol{x} \mid \max _{j \neq t}\left\{g_{j}(\boldsymbol{x})\right\}-g_{t}(\boldsymbol{x}) \leq 0\right\}
$$

- Black-box: You can only probe the classifier finite times.
- So you only know $\left\{g_{i}\left(\boldsymbol{x}^{(1)}\right), g_{i}\left(\boldsymbol{x}^{(2)}\right), \ldots, g_{i}\left(\boldsymbol{x}^{(M)}\right)\right\}$.
- The constraint set is

$$
\Omega=\left\{\boldsymbol{x} \mid \max _{j \neq t}\left\{\widehat{g}_{j}(\boldsymbol{x})\right\}-\widehat{g}_{t}(\boldsymbol{x}) \leq 0\right\}
$$

where \widehat{g} is the best approximation you can get from the finite observations.

Launching the Attack: Basic Principles

- Principle 1: You need to solve the optimization

$$
\begin{array}{ll}
\underset{\boldsymbol{x}}{\operatorname{minimize}} & \left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\| \\
\text { subject to } & \max _{j \neq t}\left\{g_{j}(\boldsymbol{x})\right\}-g_{t}(\boldsymbol{x}) \leq 0
\end{array}
$$

or its variations.

- Principle 2: You do not need to solve inequality. Equality is enough.
- You just need to hit the decision boundary.
- Then you add a small ϵ to your step.
- Principle 3: You do not need to be optimal.
- Optimal $=$ The nastiest attack.
- You can still fool the classifier with a less nasty attack.
- Our Plan: Look at linear classifiers, and binary classifiers only.

So, if we restrict ourselves to binary linear classifiers ...

The min-distance attack (ℓ_{2}-norm)

$$
\begin{array}{ll}
\underset{\boldsymbol{x}}{\operatorname{minimize}} & \left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|^{2} \\
\text { subject to } & \max _{j \neq t}\left\{g_{j}(\boldsymbol{x})\right\}-g_{t}(\boldsymbol{x}) \leq 0
\end{array}
$$

will become ...

- Linear classifiers, we have

$$
g_{i}(\boldsymbol{x})-g_{t}(\boldsymbol{x})=\boldsymbol{w}^{T} \boldsymbol{x}+w_{0} .
$$

- Two class: the constraint is simplified to

$$
g_{i}(\boldsymbol{x})-g_{t}(\boldsymbol{x}) \leq 0
$$

- And we just need to hit the boundary. So the attack becomes

$$
\begin{array}{ll}
\underset{\boldsymbol{x}}{\operatorname{minimize}} & \left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|^{2} \\
\text { subject to } & \boldsymbol{w}^{T} \boldsymbol{x}+w_{0}=0
\end{array}
$$

Recall: Distance Between Point and Plane

What is the closest distance between a point and a plane?

- $\boldsymbol{w}^{T} \boldsymbol{x}=0$ is a line.
- Find a point \boldsymbol{x} on the line that is closest to \boldsymbol{x}_{0}.
- Solution is

$$
\begin{aligned}
\boldsymbol{x} & =\boldsymbol{x}_{0}+\boldsymbol{w}\left(\boldsymbol{w}^{T} \boldsymbol{w}\right)^{-1}\left(0-\boldsymbol{w}^{T} \boldsymbol{x}_{0}\right) \\
& =\boldsymbol{x}_{0}-\left(\frac{\boldsymbol{w}^{T} \boldsymbol{x}_{0}}{\|\boldsymbol{w}\|^{2}}\right)^{T} \boldsymbol{w} .
\end{aligned}
$$

Minimum-Distance Attack: Solving the Optimization

Theorem (Minimum ℓ_{2} Norm Attack for Two-Class Linear Classifier) The adversarial attack to a two-class linear classifier is the solution of

$$
\underset{\boldsymbol{x}}{\operatorname{minimize}}\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|^{2} \text { subject to } \boldsymbol{w}^{\top} \boldsymbol{x}+w_{0}=0
$$

which is given by

$$
\boldsymbol{x}^{*}=\boldsymbol{x}_{0}-\left(\frac{\boldsymbol{w}^{\top} \boldsymbol{x}_{0}+w_{0}}{\|\boldsymbol{w}\|_{2}}\right) \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|_{2}} .
$$

- This is just finding the closest point to a hyperplane!
- $\boldsymbol{w} /\|\boldsymbol{w}\|_{2}$ is the normal direction $=$ best attack angle.
- $\frac{\boldsymbol{w}^{\top} \boldsymbol{x}_{0}+w_{0}}{\|\boldsymbol{w}\|_{2}}$ is the step size.

Minimum-Distance Attack: Two-Class Linear Classifier

Figure: Geometry of minimum-distance attack for a two-class linear classifier with objective function $\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|^{2}$. The solution is a projection of the input \boldsymbol{x}_{0} onto the separating hyperplane of the classifier.

Outline

- Lecture 33 Overview
- Lecture 34 Min-distance attack
- Lecture 35 Max-loss attack and regularized attack

Today's Lecture

- Linear models
- Definition
- Geometry
- Optimization solutions
- Deep models
- Deep fool
- ℓ_{∞} case

Deep-Fool (CVPR, 2016)

Let's Connect to the Real Problem.

- Proposed by Moosavi-Dezfooli, Fawzi and Frossard
- Generalize linear classifier to neural network

Definition (DeepFool Attack by Moosavi-Dezfooli et al. 2016)

The DeepFool attack for a two-class classification generates the attack by solving the optimization

$$
\underset{x}{\operatorname{minimize}}\left\|x-x_{0}\right\|^{2} \text { subject to } g(x)=0
$$

where $g(\boldsymbol{x})=0$ is the nonlinear decision boundary separating the two classes.

How to deal with non-linearity?

- First order approximation

$$
g(\boldsymbol{x}) \approx g\left(\boldsymbol{x}^{(k)}\right)+\nabla_{\boldsymbol{x}} g\left(\boldsymbol{x}^{(k)}\right)^{T}\left(\boldsymbol{x}-\boldsymbol{x}^{(k)}\right),
$$

- Modify the problem (assume $\boldsymbol{x}^{(0)}=\boldsymbol{x}_{0}$)

$$
\begin{aligned}
& \boldsymbol{x}^{(k+1)}=\underset{\boldsymbol{x}}{\operatorname{argmin}}\left\|\boldsymbol{x}-\boldsymbol{x}^{(k)}\right\|^{2} \quad \text { subject to } g(\boldsymbol{x})=0 . \\
& \vdots \\
& \boldsymbol{x}^{(k+1)}= \underset{\boldsymbol{x}}{\operatorname{argmin}}\left\|\boldsymbol{x}-\boldsymbol{x}^{(k)}\right\|^{2} \\
& \text { subject to } g\left(\boldsymbol{x}^{(k)}\right)+\nabla_{\boldsymbol{x}} g\left(\boldsymbol{x}^{(k)}\right)^{T}\left(\boldsymbol{x}-\boldsymbol{x}^{(k)}\right)=0 .
\end{aligned}
$$

- Now, rewrite

$$
\begin{aligned}
& g\left(\boldsymbol{x}^{(k)}\right)+\nabla_{\boldsymbol{x}} g\left(\boldsymbol{x}^{(k)}\right)^{T}\left(\boldsymbol{x}-\boldsymbol{x}^{(k)}\right) \\
& =\nabla_{\boldsymbol{x}} g\left(\boldsymbol{x}^{(k)}\right)^{T} \boldsymbol{x}+\boldsymbol{g}\left(\boldsymbol{x}^{(k)}\right)-\nabla_{\boldsymbol{x}} g\left(\boldsymbol{x}^{(k)}\right)^{T} \boldsymbol{x}^{(k)}
\end{aligned}
$$

How to deal with non-linearity?

- So here is our problem

$$
\begin{aligned}
\boldsymbol{x}^{(k+1)}= & \underset{\boldsymbol{x}}{\operatorname{argmin}}\left\|\boldsymbol{x}-\boldsymbol{x}^{(k)}\right\|^{2} \\
& \text { subject to } g\left(\boldsymbol{x}^{(k)}\right)+\nabla_{\boldsymbol{x}} g\left(\boldsymbol{x}^{(k)}\right)^{T}\left(\boldsymbol{x}-\boldsymbol{x}^{(k)}\right)=0 .
\end{aligned}
$$

- Let $\boldsymbol{w}^{(k)}=\nabla_{\boldsymbol{x}} g\left(\boldsymbol{x}^{(k)}\right)$ and $w_{0}^{(k)}=g\left(\boldsymbol{x}^{(k)}\right)-\nabla_{\boldsymbol{x}} g\left(\boldsymbol{x}^{(k)}\right)^{T} \boldsymbol{x}^{(k)}$
- Then equivalent to

$$
\boldsymbol{x}^{(k+1)}=\underset{\boldsymbol{x}}{\operatorname{argmin}}\left\|\boldsymbol{x}-\boldsymbol{x}^{(k)}\right\|^{2} \text { subject to }\left(\boldsymbol{w}^{(k)}\right)^{T} \boldsymbol{x}+w_{0}^{(k)}=0
$$

- This is just a linear problem!

How to deal with non-linearity?

- Here is the optimization

$$
\boldsymbol{x}^{(k+1)}=\underset{\boldsymbol{x}}{\operatorname{argmin}}\left\|\boldsymbol{x}-\boldsymbol{x}^{(k)}\right\|^{2} \text { subject to }\left(\boldsymbol{w}^{(k)}\right)^{T} \boldsymbol{x}+w_{0}^{(k)}=0
$$

- So the solution is

$$
\begin{aligned}
\boldsymbol{x}^{(k+1)} & =\boldsymbol{x}^{(k)}-\left(\frac{\left(\boldsymbol{w}^{(k)}\right)^{T} \boldsymbol{x}^{(k)}+w_{0}^{(k)}}{\left\|\boldsymbol{w}^{(k)}\right\|^{2}}\right) \boldsymbol{w}^{(k)} \\
& =\boldsymbol{x}^{(k)}-\left(\frac{g\left(\boldsymbol{x}^{(k)}\right)}{\left\|\nabla_{\boldsymbol{x}} g\left(\boldsymbol{x}^{(k)}\right)\right\|^{2}}\right) \nabla_{\boldsymbol{x}} g\left(\boldsymbol{x}^{(k)}\right)
\end{aligned}
$$

- How to evaluate the gradient?
- $\nabla_{\boldsymbol{x}} g\left(\boldsymbol{x}^{(k)}\right)$ can be computed via back propagation.

How to deal with non-linearity?

- Now, for this attack

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\left(\frac{g\left(\boldsymbol{x}^{(k)}\right)}{\left\|\nabla_{\boldsymbol{x}} g\left(\boldsymbol{x}^{(k)}\right)\right\|^{2}}\right) \nabla_{\boldsymbol{x}} g\left(\boldsymbol{x}^{(k)}\right)
$$

- You can control the perturbation magnitude:

$$
\boldsymbol{x}^{(k+1)}=\mathcal{P}_{[0,1]}\left\{\boldsymbol{x}^{(k)}-\left(\frac{g\left(\boldsymbol{x}^{(k)}\right)}{\left\|\nabla_{\boldsymbol{x}} g\left(\boldsymbol{x}^{(k)}\right)\right\|^{2}}\right) \nabla_{\boldsymbol{x}} g\left(\boldsymbol{x}^{(k)}\right)\right\} .
$$

- $\mathcal{P}_{[0,1]}$: Projection onto a ball, e.g., $\mathcal{P}_{[0,1]}(\boldsymbol{x})$ clips \boldsymbol{x} to $[0,1]$.

Deep-Fool (CVPR, 2016)

Corollary (DeepFool Algorithm for Two-Class Problem)
An iterative procedure to obtain the DeepFool attack solution is

$$
\begin{aligned}
\boldsymbol{x}^{(k+1)}= & \underset{\boldsymbol{x}}{\operatorname{argmin}}\left\|\boldsymbol{x}-\boldsymbol{x}^{(k)}\right\|^{2} \\
& \text { subject to } g\left(\boldsymbol{x}^{(k)}\right)+\nabla_{\boldsymbol{x}} g\left(\boldsymbol{x}^{(k)}\right)^{T}\left(\boldsymbol{x}-\boldsymbol{x}^{(k)}\right)=0 \\
= & \boldsymbol{x}^{(k)}-\left(\frac{g\left(\boldsymbol{x}^{(k)}\right)}{\left\|\nabla_{\boldsymbol{x}} g\left(\boldsymbol{x}^{(k)}\right)\right\|^{2}}\right) \nabla_{\boldsymbol{x}} g\left(\boldsymbol{x}^{(k)}\right),
\end{aligned}
$$

with $\boldsymbol{x}^{(0)}=\boldsymbol{x}_{0}$.

- This is not the complete Deep-fool.
- We assume two classes only.
- If you have multiple classes, you need to take care of " $\max _{j \neq t} g_{j}(\boldsymbol{x})$ "

The ℓ_{∞} Case

- How about we try to solve this?

$$
\underset{\boldsymbol{x}}{\operatorname{minimize}}\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|_{\infty} \text { subject to } \boldsymbol{w}^{T} \boldsymbol{x}+w_{0}=0
$$

- Not the ℓ_{2}-norm, but the ℓ_{∞}-norm.
- Let $\boldsymbol{r}=\boldsymbol{x}-\boldsymbol{x}_{0}, b_{0}=-\left(\boldsymbol{w}^{T} \boldsymbol{x}_{0}+w_{0}\right)$.
- Rewrite the problem as

$$
\underset{\boldsymbol{r}}{\operatorname{minimize}}\|\boldsymbol{r}\|_{\infty} \text { subject to } \boldsymbol{w}^{\top} \boldsymbol{r}=b_{0}
$$

- Setup Lagrangian function and take derivative?

$$
\mathcal{L}(\boldsymbol{r}, \boldsymbol{\lambda})=\|\boldsymbol{r}\|_{\infty}+\lambda\left(b_{0}-\boldsymbol{w}^{T} \boldsymbol{r}\right)
$$

- Doesn't work because ℓ_{∞} is not differentiable.

Solving the ℓ_{∞}-norm Problem

Theorem (Holder's Inequality)
Let $\boldsymbol{x} \in \mathbb{R}^{d}$ and $\boldsymbol{y} \in \mathbb{R}^{d}$. Then,

$$
-\|\boldsymbol{x}\|_{p}\|\boldsymbol{y}\|_{q} \leq\left|\boldsymbol{x}^{\top} \boldsymbol{y}\right| \leq\|\boldsymbol{x}\|_{p}\|\boldsymbol{y}\|_{q}
$$

for any p and q such that $\frac{1}{p}+\frac{1}{q}=1$, where $p \in[1, \infty]$.

- Let $p=1$ and $q=\infty$
- Can show that $\left|\boldsymbol{x}^{\top} \boldsymbol{y}\right| \leq\|\boldsymbol{x}\|_{1}\|\boldsymbol{y}\|_{\infty}$
- Then

$$
\left|b_{0}\right|=\left|\boldsymbol{w}^{T} \boldsymbol{r}\right| \leq\|\boldsymbol{w}\|_{1}\|\boldsymbol{r}\|_{\infty}, \quad \Longrightarrow \quad\|\boldsymbol{r}\|_{\infty} \geq \frac{\left|b_{0}\right|}{\|\boldsymbol{w}\|_{1}} .
$$

- So $\|\boldsymbol{r}\|_{\infty}$ is lower bounded by a constant.
- If \boldsymbol{r}^{*} can reach this lower bound, then \boldsymbol{r}^{*} is the minimizer.

Solving the ℓ_{∞}-norm Problem

- How about this candidate?

$$
\boldsymbol{r}=\eta \cdot \operatorname{sign}(\boldsymbol{w})
$$

for some constant η to be determined.

- We can show that

$$
\|\boldsymbol{r}\|_{\infty}=\max _{i}\left|\eta \cdot \operatorname{sign}\left(w_{i}\right)\right|=|\eta| .
$$

- So if we let $\eta=b_{0} /\|\boldsymbol{w}\|_{1}$, then we will have

$$
\|\boldsymbol{r}\|_{\infty}=|\eta|=\frac{\left|b_{0}\right|}{\|\boldsymbol{w}\|_{1}} .
$$

- Lower bound achieved! So the solution is

$$
\boldsymbol{r}=\frac{\left|b_{0}\right|}{\|\boldsymbol{w}\|_{1}} \cdot \operatorname{sign}(\boldsymbol{w})
$$

The ℓ_{∞} Solution

Theorem (Minimum Distance ℓ_{∞} Norm Attack for Two-Class Linear Classifier)
The minimum distance ℓ_{∞} norm attack for a two-class linear classifier, i.e.,

$$
\underset{\boldsymbol{x}}{\operatorname{minimize}}\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|_{\infty} \text { subject to } \boldsymbol{w}^{\top} \boldsymbol{x}+w_{0}=0
$$

is given by

$$
\boldsymbol{x}=\boldsymbol{x}_{0}-\left(\frac{\boldsymbol{w}^{\top} \boldsymbol{x}_{0}+w_{0}}{\|\boldsymbol{w}\|_{1}}\right) \cdot \operatorname{sign}(\boldsymbol{w})
$$

- Search direction is $\operatorname{sign}(\boldsymbol{w})$.
- This means ± 1 for every entry.
- In 2D, the search direction is $\pm 45^{\circ}$ or $\pm 135^{\circ}$.

The ℓ_{∞} Solution

- Is it the "optimal" direction? No.
- The fastest search direction is ℓ_{2}.
- Can it move \boldsymbol{x}_{0} to another class? Yes, if η is large enough.

Summary

Min-Distance Attack

$$
\begin{array}{ll}
\underset{\boldsymbol{x}}{\operatorname{minimize}} & \left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\| \\
\text { subject to } & \max _{j \neq t}\left\{g_{j}(\boldsymbol{x})\right\}-g_{t}(\boldsymbol{x}) \leq 0
\end{array}
$$

- We have talked about the geometry.
- You can see that the geometry applies beyond linear models.
- For linear models, we can derive closed-form solutions.
- Deep models apply successive approximations.

Next Lecture

- Max-Loss Attack

$$
\begin{array}{ll}
\underset{\boldsymbol{x}}{\operatorname{maximize}} & g_{t}(\boldsymbol{x})-\max _{\boldsymbol{j} \neq t}\left\{g_{j}(\boldsymbol{x})\right\} \\
\text { subject to } & \left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\| \leq \eta,
\end{array}
$$

- Regularized Attack

$$
\underset{\boldsymbol{x}}{\operatorname{minimize}}\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|+\lambda\left(\max _{j \neq t}\left\{g_{j}(\boldsymbol{x})\right\}-g_{t}(\boldsymbol{x})\right)
$$

