ECE595 / STAT598: Machine Learning I Lecture 33 Adversarial Attack: An Overview

Spring 2020

Stanley Chan

School of Electrical and Computer Engineering Purdue University

C Stanley Chan 2020. All Rights Reserved

Today's Agenda

- We have studied
 - Part 1: Basic learning pipeline
 - Part 2: Algorithms
 - Part 3: Learning theory
- Now, we want to study the robustness of learning algorithms
- Robustness = easiness to fail when input is perturbed. Perturbation can be in any kind.
- Robust machine learning is a very rich topic.
- In the past, we have robust SVM, robust kernel regression, robust PCA, etc.
- More recently, we have transfer learning etc.
- In this course, we will look at something very narrow, called adversarial robustness.
- That is, robustness against attacks.
- Adversarial attack is a very **hot** topic, as of today.
- We should not over-emphasize its importance. There are many other important problems.

Outline

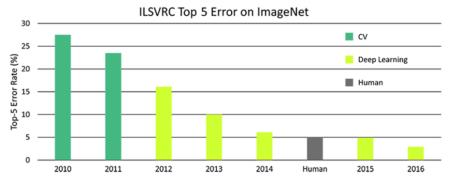
Lecture 33 Overview

- Lecture 34 Min-distance attack
- Lecture 35 Max-loss attack and regularized attack

Today's Lecture

- What are adversarial attacks?
 - The surprising findings by Szegedy (2013) and Goodfellow (2014)
 - Examples of attacks
 - Physical attacks
- Basic terminologies
 - Defining attack
 - Multi-class problem
 - Three forms of attack
 - Objective function and constraint sets

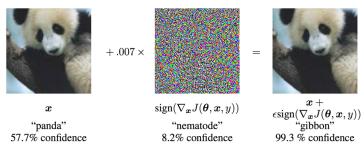
A Report in 2017



source: https://www.dsiac.org/resources/journals/dsiac/winter-2017-volume-4-number-1/real-time-situ-intelligent-video-analytics

Adversarial Attack Example: FGSM

- It is not difficult to fool a classifier
- The perturbation could be perceptually not noticeable



Goodfellow et al. "Explaining and Harnessing Adversarial Examples", https://arxiv.org/pdf/1412.6572.pdf

Adversarial Attack Example: Szegedy's 2013 Paper

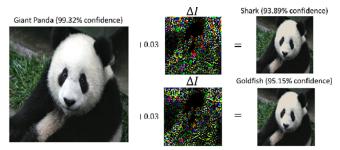
• This paper actually appears one year before Goodfellow's 2014 paper.

Szegedy et al. Intriguing properties of neural networks https://arxiv.org/abs/1312.6199

Adversarial Attack: Targeted Attack

Targeted Attack

I



Adversarial Examples Detection in Deep Networks with Convolutional Filter Statistics, https://arxiv.org/abs/1612.07767

Adversarial Attack Example: One Pixel

• One-pixel Attack

SHIP CAR(99.7%)

HORSE DOG(70.7%)

HORSE FROG(99.9%)

DOG CAT(75.5%)

DEER AIRPLANE(85.3%)

BIRD FROG(86.5%)

DEER DOG(86.4%)

BIRD FROG(88.8%)

One pixel attack for fooling deep neural networks https://arxiv.org/abs/1710.08864

Adversarial Attack Example: Patch

• Adding a patch

Handkersensetter and

African-Elephant (92.8%) → Baseball (90.7%)

Brown Bear (87.9%) \rightarrow Tree Frog (82.7%)

Sports Car (92.8%) → Shih-Tzu (90.7%)

Minivan (90.7%) \rightarrow Tree Frog (86.4%)

LaVAN: Localized and Visible Adversarial Noise, https://arxiv.org/abs/1801.02608

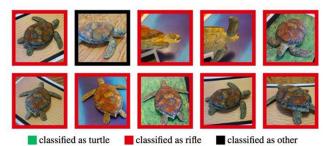
Adversarial Attack Example: Stop Sign

• The Michigan / Berkeley Stop Sign

Robust Physical-World Attacks on Deep Learning Models https://arxiv.org/abs/1707.08945

Adversarial Attack Example: Turtle

• The MIT 3D Turtle



Synthesizing Robust Adversarial Examples https://arxiv.org/pdf/1707.07397.pdf https://www.youtube.com/watch?v=YXy6oX1iNoA

> © Stanley Chan 2020. All Rights Reserved. 11 / 33

Adversarial Attack Example: Toaster

Classifier input place sticker on table Classifier input Classifier input Classifier input Classifier input Classifier input Classifier input Classifier output Classifier outp

Google Toaster

Adversarial Patch https://arxiv.org/abs/1712.09665 https://www.youtube.com/watch?v=i1sp4X57TL4

Adversarial Attack Example: Glass

CMU Glass

Recognized Person

Sharif, M., Bhagavatula, S., Bauer, L., & Reiter, M. K. (2016, October). Accessorize to a crime: Real and stealithy attacks on state-of-the-art face recognition. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (pp. 1528-1540). ACM.

Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition https://www.cs.cmu.edu/~sbhagava/papers/face-rec-ccs16.pdf https://www.archive.ece.cmu.edu/~lbauer/proj/advml.php

Adversarial Attack: A Survey in 2017

Applications	Representative Study	Method	Adversarial Fatsification	Adversary's Knowledge	Adversarial Specificity	Perturbation Scope	Perturbation	Attack Frequency	Perturbation Measurement	Dataset	Architecture
Reinforcement Learning	[93]	FGSM	N/A	White-box & Black-box	Non- Targeted	Individual	N/A	One-time	$\ell_1, \ell_2, \ell_\infty$	Atari	DQN, TRPO, A3C
	[94]	FGSM	N/A	White-box	Non- Targeted	Individual	N/A	One-time	N/A	Atari Pong	A3C
Generative Modeling	[95]	Feature Adversary, C&W	N/A	White-box	Targeted	Individual	Optimized	Iterative	l2	MNIST, SVHN, CelebA	VAE, VAE-GAN
	[96]	Feature Adversary	N/A	White-box	Targeted	Individual	Optimized	Iterative	<i>l</i> ₂	MNIST, SVHN	VAE, AE
Face Recog- nition	[67]	Impersonation & Dodging Attack	False negative	white-box & black-box	Targeted & Non- Targeted	Universal	Optimized	Iterative	Total Variation	LFW,	VGGFace
Object Detection	[22]	DAG	False negative & False positive	White-box & Black-box	Non- Targeted	Individual	N/A	Iterative	N/A	VOC2007, VOC2012	Faster- RCNN
Semantic Segmentation	[22]	DAG	False negative & False positive	White-box & Black-box	Non- Targeted	Individual	N/A	Iterative	N/A	DeepLab	FCN
	[97]	ILLC	False negative	White-box	Targeted	Individual	N/A	Iterative	l∞	Cityscapes	FCN
	[98]	ILLC	False	White-box	Targeted	Universal	N/A	Iterative	N/A	Cityscapes	FCN
Reading Comprehension Matware	[99]	AddSent, AddAny	Ň/A	Black-box	Non- Targeted	Individual	N/A	One-time & Iterative	N/A	SQuAD	BiDAF, Match- LSTM, and twelve other published models
	[100]	Reinforcement	False negative	White-box	Non- Targeted	Individual	Optimized	Iterative	ℓ ₀	TripAdvisor Dataset	Bi-LSTM, memory network
	[101]	JSMA	False	White-box	Targeted	Individual	Optimized	Iterative	ℓ_2	DREBIN	2-layer FC
Detection	[102]	Reinforcement Learning	False negative	Black-box	Targeted	Individual	N/A	Iterative	N/A	N/A	Gradient Boosted Decision Tree
	[103]	GAN	False	Black-box	Targeted	Individual	N/A	Iterative	N/A	malwr	Multi-layer Perceptron
	[104]	GAN	False negative	Black-box	Targeted	Individual	N/A	Iterative	N/A	Alexa Top 1M	Random Forest
	[105]	Generic Pro- gramming	False negative	Black-box	Targeted	Individual	N/A	Iterative	N/A	Contagio	Random Forest, SVM

Table III: Summary of Applications for Adversarial Examples

Adversarial Examples: Attacks and Defenses for Deep Learning https://arxiv.org/abs/1712.07107

Outline

• Lecture 33 Overview

- Lecture 34 Min-distance attack
- Lecture 35 Max-loss attack and regularized attack

Today's Lecture

- What are adversarial attacks?
 - The surprising findings by Szegedy (2013) and Goodfellow (2014)
 - Examples of attacks
 - Physical attacks
- Basic terminologies
 - Defining attack
 - Multi-class problem
 - Three forms of attack
 - Objective function and constraint sets

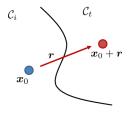
Definition: Additive Adversarial Attack

Definition (Additive Adversarial Attack)

Let $x_0 \in \mathbb{R}^d$ be a data point belong to class C_i . Define a target class C_t . An **additive** adversarial attack is an addition of a perturbation $\mathbf{r} \in \mathbb{R}^d$ such that the perturbed data

$$\mathbf{x} = \mathbf{x}_0 + \mathbf{r}$$

is misclassified as C_t .



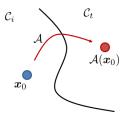
Definition: General Adversarial Attack

Definition (Adversarial Attack)

Let $x_0 \in \mathbb{R}^d$ be a data point belong to class C_i . Define a target class C_t . An **adversarial attack** is a mapping $\mathcal{A} : \mathbb{R}^d \to \mathbb{R}^d$ such that the perturbed data

$$\mathbf{x} = \mathcal{A}(\mathbf{x}_0)$$

is misclassified as C_t .



Example: Geometric Attack

Fast Geometrically-Perturbed Adversarial Faces (WACV 2019)

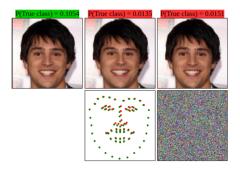
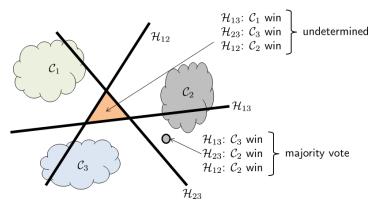


Figure 1. Comparison of the proposed attack to an intensity-based attack. First column: the ground truth image, which is correctly classified. Second column: the spatially transformed adversarial image wrongly classified and the corresponding adversarial land-mark locations computed by our method. Third column: the adversarial image wrongly classified and the corresponding perturbation generated by the fast gradient sign method [7]. The proposed method leads to natural adversarial faces which are clean from additive noise.

https://arxiv.org/pdf/1809.08999.pdf

The Multi-Class Problem

Approach 1: One-on-One

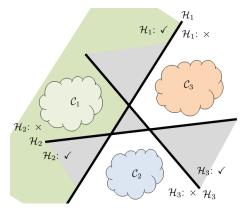


- Class *i* VS Class *j*
- Give me a point, check which class has more votes
- There is an undetermined region

C Stanley Chan 2020. All Rights Reserved

The Multi-Class Problem

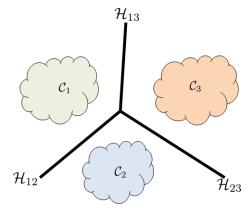
Approach 2: One-on-All



- Class i VS not Class i
- Give me a point, check which class has no conflict
- There are undetermined regions

The Multi-Class Problem

Approach 3: Linear Machine



- Every point in the space gets assigned a class.
- You give me x, I compute $g_1(x), g_2(x), \ldots, g_K(x)$.
- If $g_i(x) \ge g_j(x)$ for all $j \ne i$, then x belongs to class $i_{i \ge s_0}$

Stanley Chan 2020. All Rights Reserved.

Correct Classification

- We are mostly interested the linear machine problem.
- Let us try to simplify the notation. The statement:

If $g_i(\mathbf{x}) \ge g_j(\mathbf{x})$ for all $j \ne i$, then \mathbf{x} belongs to class i.

is equivalent to (asking everyone to be less than 0)

$$g_1(\boldsymbol{x}) - g_i(\boldsymbol{x}) \leq 0$$

$$g_k(\mathbf{x}) - g_i(\mathbf{x}) \leq 0,$$

and is also equivalent to (asking the worst guy to be less than 0)

$$\max_{j\neq i}\{g_j(\boldsymbol{x})\}-g_i(\boldsymbol{x})\leq 0$$

 Therefore, if I want to launch an adversarial attack, I want to move you to class t:

$$\max_{j\neq t} \{g_j(\boldsymbol{x})\} - g_t(\boldsymbol{x}) \leq 0.$$

© Stanley Chan 2020. All Rights Reserved

Here is what we are going to do

- First, we will preview the three **equivalent** forms of attack:
 - Minimum Distance Attack: Minimize the perturbation magnitude while accomplishing the attack objective
 - Maximum Loss Attack: Maximize the training loss while ensuring perturbation is controlled
 - Regularization-based Attack: Use regularization to control the amount of perturbation
- Then, we will try to understand the **geometry** of the attacks.
- We will look at the **linear classifier** case to gain insights.

Minimum Distance Attack

Definition (Minimum Distance Attack)

The **minimum distance attack** finds a perturbed data x by solving the optimization

$$\begin{array}{ll} \underset{\boldsymbol{x}}{\text{minimize}} & \|\boldsymbol{x} - \boldsymbol{x}_0\| \\ \text{subject to} & \max_{j \neq t} \{g_j(\boldsymbol{x})\} - g_t(\boldsymbol{x}) \leq 0, \end{array} \tag{1}$$

where $\|\cdot\|$ can be any norm specified by the user.

- I want to make you to class C_t .
- So the constraint needs to be satisfied.
- But I also want to minimize the attack strength. This gives the objective.

Maximum Loss Attack

Definition (Maximum Loss Attack)

The **maximum loss attack** finds a perturbed data x by solving the optimization

$$\begin{array}{ll} \underset{\mathbf{x}}{\text{maximize}} & g_t(\mathbf{x}) - \max_{j \neq t} \{ g_j(\mathbf{x}) \} \\ \text{subject to} & \|\mathbf{x} - \mathbf{x}_0\| \leq \eta, \end{array}$$

$$(2)$$

where $\|\cdot\|$ can be any norm specified by the user, and $\eta>0$ denotes the attack strength.

- I want to bound my attack $\| \boldsymbol{x} \boldsymbol{x}_0 \| \leq \eta$
- I want to make $g_t(x)$ as big as possible
- So I want to maximize $g_t(\mathbf{x}) \max_{j \neq t} \{g_j(\mathbf{x})\}$
- This is equivalent to

$$\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & \max_{j \neq t} \{g_j(\mathbf{x})\} - g_t(\mathbf{x}) \\ \text{subject to} & \|\mathbf{x} - \mathbf{x}_0\| \leq \eta, \end{array}$$

C Stanley Chan 2020. All Rights Reserved

Regularization-based Attack

Definition (Regularization-based Attack)

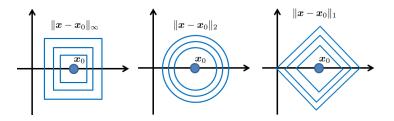
The **regularization-based attack** finds a perturbed data x by solving the optimization

minimize
$$\|\mathbf{x} - \mathbf{x}_0\| + \lambda \left(\max_{j \neq t} \{g_j(\mathbf{x})\} - g_t(\mathbf{x})\right)$$
 (3)

where $\|\cdot\|$ can be any norm specified by the user, and $\lambda > 0$ is a regularization parameter.

- Combine the two parts via regularization
- By adjusting $(\epsilon, \eta, \lambda)$, all three will give the same optimal value.

Understanding the Geometry: Objective Function



- ℓ_0 -norm: $\varphi(\mathbf{x}) = \|\mathbf{x} \mathbf{x}_0\|_0$, which gives the most sparse solution. Useful when we want to limit the number of attack pixels.
- ℓ_1 -norm: $\varphi(\mathbf{x}) = \|\mathbf{x} \mathbf{x}_0\|_1$, which is a convex surrogate of the ℓ_0 -norm.
- ℓ_{∞} -norm: $\varphi(\mathbf{x}) = \|\mathbf{x} \mathbf{x}_0\|_{\infty}$, which minimizes the maximum element of the perturbation.

Understanding the Geometry: Constraint

• The constraint set is

$$\Omega = \{ \boldsymbol{x} \mid \max_{j \neq t} \{ g_j(\boldsymbol{x}) \} - g_t(\boldsymbol{x}) \le 0 \}$$

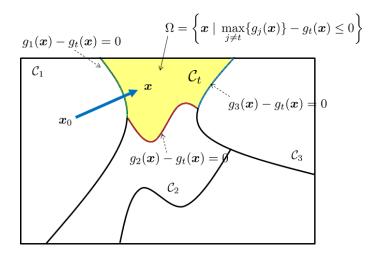
We can write Ω as

$$\Omega = egin{cases} & g_1(oldsymbol{x}) - g_t(oldsymbol{x}) &\leq 0 \ & g_2(oldsymbol{x}) - g_t(oldsymbol{x}) &\leq 0 \ & dots \ & g_k(oldsymbol{x}) - g_t(oldsymbol{x}) &\leq 0 \ \end{pmatrix}$$

• Remark: If you want to replace max by i^* , then i^* is a function of x:

$$\Omega = \left\{ \boldsymbol{x} \mid g_{i^*(\boldsymbol{x})}(\boldsymbol{x}) - g_t(\boldsymbol{x}) \leq 0 \right\}.$$

Understanding the Geometry: Constraint



Linear Classifier

- Let us take a closer look at the linear case.
- Each discriminant function takes the form

$$g_i(\boldsymbol{x}) = \boldsymbol{w}_i^T \boldsymbol{x} + w_{i,0}.$$

 The decision boundary between the *i*-th class and the *t*-th class is therefore

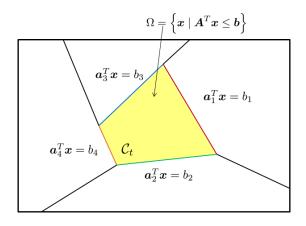
$$g(\mathbf{x}) = (\mathbf{w}_i - \mathbf{w}_t)^T \mathbf{x} + w_{i,0} - w_{t,0} = 0.$$

• The constraint set Ω is

$$\begin{bmatrix} \boldsymbol{w}_{1}^{T} - \boldsymbol{w}_{t}^{T} \\ \vdots \\ \boldsymbol{w}_{t-1}^{T} - \boldsymbol{w}_{t}^{T} \\ \boldsymbol{w}_{t+1}^{T} - \boldsymbol{w}_{t}^{T} \\ \vdots \\ \boldsymbol{w}_{k}^{T} - \boldsymbol{w}_{t}^{T} \end{bmatrix} \boldsymbol{x} + \begin{bmatrix} w_{1,0} - w_{t,0} \\ \vdots \\ w_{t-1,0} - w_{t,0} \\ w_{t+1,0} - w_{t,0} \\ \vdots \\ w_{k,0} - w_{t,0} \end{bmatrix} \leq \boldsymbol{0} \quad \Leftrightarrow \quad \boldsymbol{A}^{T} \boldsymbol{x} \leq \boldsymbol{b}$$

C Stanley Chan 2020. All Rights Reserved

Linear Classifier



- You can show $\Omega = \{ \boldsymbol{A}^T \boldsymbol{x} \leq \boldsymbol{b} \}$ is convex.
- But the complement $\Omega^{c} = \{ \boldsymbol{A}^{T} \boldsymbol{x} > \boldsymbol{b} \}$ is not convex.
- So targeted attack is easier to analyze than untargeted attack.

Attack: The Simplest Example

The optimization is:

$$\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & \|\mathbf{x} - \mathbf{x}_0\| \\ \text{subject to} & \max_{j \neq t} \{g_j(\mathbf{x})\} - g_t(\mathbf{x}) \leq 0, \end{array}$$

- $\bullet\,$ Suppose we use $\ell_2\text{-norm, and consider linear classifiers, then$
- the attack is given by

$$\min_{\boldsymbol{x}} \min_{\boldsymbol{x}} \|\boldsymbol{x} - \boldsymbol{x}_0\|^2 \text{ subject to } \boldsymbol{A}^T \boldsymbol{x} \leq \boldsymbol{b},$$

- This is a quadratic programming problem.
- We will discuss how to solve this problem analytically.

- Adversarial attack is a universal phenomenon for **any** classifier.
- Attacking deep networks are popular because people think that they are unbeatable.
- There is really nothing too magical behind adversarial attack.
- All attacks are based on one of the three forms of attacks.
- Deep networks are trickier, as we will see, because the internal model information is not easy to extract.
- We will learn the basic principles of attacks, and try to gain insights from linear models.